
Design and Implementation
of TLS Accelerator

Recep Onur Yıldız
Computer Engineering Department

Istanbul Technical University
Istanbul, Turkey

yildizr@itu.edu.tr

Ayse Yilmazer-Metin
Computer Engineering Department

Istanbul Technical University
Istanbul, Turkey

yilmazerayse@itu.edu.tr

Abstract—Communication devices deploy messages to another
one over either a controlled channel or a non-controlled channel.
When the communication channel is non-controlled, the deployed
message is available for anyone that is able to listen. But,
the deployed message may comprise private information that
needs to be shared securely. Therefore, to establish a secure
communication over a controlled or a non-controlled channel,
cryptography algorithms are used. The Transport Layer Security
(TLS) is a protocol that includes several cryptography algorithms.
With its algorithms, TLS provides authentication, confidentiality,
and data integrity features. These features achieved with repeated
calculations. Yet, these calculations increase the power consump-
tion and degrade the performance of a sequential processor. To
overcome these problems, an accelerator can be used for the
calculations of TLS protocol. In this work, a TLS accelerator
is designed and implemented on an FPGA. Our design aims to
increase the performance and decrease the power consumption of
sequential processor during the TLS calculations. The proposed
accelerator is implemented with Xilinx Vivado and the imple-
mentation results show that the proposed accelerator consumes
0.86 Watt power. The accelerator is simulated with Vivado in
order to measure the throughput of the proposed accelerator.
The encryption throughput of the proposed accelerator at 100
MHz operating frequency is observed as 700 Mbps. Also, the
proposed accelerator provides 52.4 handshake connections per
second.

I. INTRODUCTION

The secure communication is essential especially when the
message includes private information. When the communica-
tion medium is a controlled channel, the secure communication
can be established without precautions. Unfortunately, it is not
always possible to have a controlled channel. In case of non-
controlled channel, the cryptography algorithms can establish
a secure communication. The devices in the communication
channel can be authenticated with these algorithms. With the
authentication, the devices will have the same key that is
used in encryption and decryption algorithms. The encryption
algorithms produce the cipher text that is encrypted message.
Also, the decryption algorithms generate the plain text that
is decrypted cipher text. It is impracticable to produce the
same plain-cipher text tuple without the key that is used
in the cryptography algorithm. Thus, the message becomes
confidential. In addition to confidentiality, the integrity of the
message can be verified with cryptography algorithms. Since
the communication channel is non-controlled, the deployed

message can be modified. When the deployed message is
modified, it should be detected by the receiver. The receiver
detects the interference on the deployed message by using
the hash value. Thus these three main features provide secure
communication.

Transport Layer Security (TLS) is a widely used proto-
col in Internet of Things (IoT) and Vehicle to Everything
(V2X) applications [1]. TLS can be used for authentication of
devices, confidentiality of communication, and data integrity
of messages [2]. TLS protocol comprises several cryptogra-
phy algorithms that provide these three features. Despite the
benefits of these algorithms, their implementations degrade
the performance and increase the power consumption of a
general purpose sequential processor. That algorithms include
repeated arithmetic operations and bitwise manipulations of
big numbers that can be more than 128 bits wide. But, a
sequential core has limited functional units and there are
usually frequent memory accesses during these calculations.
Therefore, implementation of TLS protocol in a sequential pro-
cessoe degrades the performance as they may cause frequent
pipeline stalls and cache misses. Contrarily, the sequential core
provides ease of development in the IoT and V2X applications.
While having the usability of a sequential processor, to provide
better performance with these applications, an accelerator
implementing TLS protocol can be designed and attached to
the processor. In this work, we designed and implemented
a TLS protocol accelerator. Our accelerator implements the
Diffie-Hellman Key Excahnge (DHE), Rivest Shamir Adleman
(RSA), Cipher Block Chaining (CBC) mode of Advanced
Encryption Standard (AES) with Cipher based Message Au-
thentication Code (CMAC), and CBC mode of AES with
Secure Hash Algorithm (SHA).

Isobe et al. [3] also presented a TLS/SSL implementation
on FPGA. They designed RSA, AES, RC4, MD5, and SHA
algorithms. In this work, the presented throughput of the
encryption was 10 Gbps and power consumption was 23
Watt. Comparing with our proposed system, it has higher
throughout. But, the power consumption is also higher than
our system and it is too much for IoT and V2X applications.
To the best our knowledge, it is the only TLS protocol
implementation that contains RSA, AES, and SHA algorithms
in the literature.



The rest of this paper is organized as follows: Section
II explains the basics of TLS protocol and its comprised
algorithms. In Section III, we explain the implementation
of the accelerator. The simulation result of sequential core
performing modular exponentiation is represented in Section
IV. Also, the implementation and simulation results of the
proposed accelerator are given in the Section IV. The paper is
concluded and future works are given in Section V.

II. TLS PROTOCOL

TLS protocol comprises several cryptography algorithms
to provide secure communication. It utilizes RSA and DHE
algorithms for sharing secret key. The shared secret key is
used in encryption and decryption. There are several options
for the encryption and decryption in TLS protocol. The CBC
mode of AES is one of these options. Moreover, the shared
secret key is used to validate the data integrity of the received
message using hash values. In TLS protocol, the hash value
can be calculated using CMAC or SHA algorithms.

The DHE and RSA algorithms allow to share a secret
key securely. To utilize DHE algorithm, the devices in the
communication have their public and private keys. The first
step of the protocol is to encrypt a public variable with the
private key. Both server and client share the encrypted public
variable with the other one. The next step is to encrypt the
received data. The server encrypts the client’s shared value
and the client encrypts the server’s value. They both use their
own private key for encryption. The results of these encryption
are the same because of the modular exponentiation property.
Therefore, the server and the client have the same shared secret
key. Since they use modular exponentiation in encryption, it is
hard to recover their private key from the shared results. After
the secret key is shared, RSA algorithm is used to ensure that
both devices have the same shared secret key. In RSA, the
server has a public key and a private key. The private key
is the modular inverse of the public key. The client encrypts
the shared secret key with server’s public key and then, sends
the result to server. Since the private key of server is modular
inverse of its public key, server decrypts the received data. If
decrypted shared secret key matches with server’s calculated
one, the devices are authenticated.

In TLS protocol, the hash value can be calculated with
CMAC or SHA algorithms. The CMAC uses the AES algo-
rithm to calculate the hash value. The data is divided into
fixed length bit blocks and these blocks are encrypted with
AES. Except the first and last blocks, a plain text block is
XOR-ed with cipher of previous block. The first block is
directly encrypted and the last block is XOR-ed with sub-
key in addition to cipher of previous block. The CMAC
algorithm utilizes 2 subkeys and one of them is selected for
hash generation depends on the length of the plain text. CMAC
algorithm is represented in Fig. 1.

SHA algorithm is the another way to calculate hash value
in TLS. SHA algorithm uses the Keccak function to calculate
the hash value. The input of the Keccak function is plain text
concatenated with two bits. Also, the Keccak function defines

Fig. 1. Block diagram of CMAC

Fig. 2. Block diagram of SHA

the padding that appends a string to produce required length
of string. That padded plain text is divided into fixed length
blocks and the Keccak permutation function is applied to each
of them. The output of Keccak permutation function is XOR-
ed with plain text block and the result is the input of next
function. The Keccak permutation function consists of several
operations and the function is repeated for 24 times in TLS
protocol [4]. SHA algorithm is represented in Fig. 2.

The CBC mode of AES algorithm can be used to provide
confidentiality in TLS protocol. The plain text of encryption is
the message concatenated with its hash value. The plain text is
divided into fixed length blocks and AES algorithm is used for
encryption. The first block is XOR-ed with the initialization
vector and the result of XOR is encrypted. The following
blocks are XOR-ed with the cipher of previous block and then,
they are encrypted. The CBC mode of AES is illustrated in
Fig. 3.

In TLS protocol, a device decrypts the cipher text that is
received from the other device. The decrypted cipher text
contains the message and its hash value. To check the data
integrity of message, the device calculates hash value. If
the calculated and the received hash values match, the data
integrity is ensured.

III. IMPLEMENTATION

In this work, TLS protocol is implemented in the proposed
accelerator. The architecture of the proposed accelerator is
represented in Fig. 4. The modular exponentiations of DFE and

Fig. 3. Block diagram of AES in CBC mode



Fig. 4. Architecture of proposed accelerator

RSA is calculated by the ModExp. The AES is used during the
encryption, decryption, calculation of hash value with CMAC.
The hash value can be also calculated with SHA. The sub-
keys of CMAC algorithm are calculated with the SubKey.
In our design, the Controller is responsible for routing the
intermediate results and managing the data transfer with the
outer system. The inputs of the proposed accelerator are clock,
reset, enable, and data input, and the outputs are read request
and data output. The data input and data output are 128 bits
wide.

A. Controller

The controller is responsible for performing the selected
algorithm of TLS protocol or storing the values. It routs the
inter-calculation results, stores the final result, and communi-
cates with the outside of the proposed system. The controller
has 9 operational modes. The 4 of them are storing the private
key, public key, public value, shared secret key. If the DHE
algorithm and RSA are not used for secret key sharing, the
shared secret key can be loaded into the accelerator. Otherwise,
the DHE and RSA algorithms are handled by the accelerator.
The remaining modes are setting the accelerator for CBC mode
of AES with CMAC and CBC mode of AES with SHA. With
these modes, the proposed accelerator performs the encryption
or decryption.

B. ModExp

The modular exponentiation is calculated with Montgomery
Multiplication algorithm [5]. The algorithm propose a residue
class to prevent the redundant division operation in each
iteration of loop. The implementation of Montgomery Mul-
tiplication includes shifting and addition. The shifting can
be implemented easily within the hardware. Yet, the addition
may increase the path delay because of the long carry chain.
Therefore, to prevent the long chain, carry-save adder is used
in the implementation of Montgomery Multiplication. The
carry-save adder gets three inputs and generate two outputs
as carry and sum. The carry and sum represents the bitwise
carry and sum output, respectively. Therefore, the dependency
between the rightmost and leftmost bits is eliminated. The

modular exponentiation is calculated as in Algorithm 1. Since
there is no data dependency between Step 5 and Step 7, these
steps can be executed in parallel to improve the throughput of
modular exponentiation. Therefore, there are 2 Montgomery
multiplier in the proposed system.

Algorithm 1 Modular Exponentiation algorithm
1: M∗ ←Montgomery(M,R2, N)
2: S ← R mod N
3: for i = 0 to ke − 1 do
4: if (ei = 1) then
5: S ←Montgomery(M∗, S,N)
6: end if
7: M∗ ←Montgomery(M∗,M∗, N)
8: end for
9: C ←Montgomery(S, 1, N)

10: return C

C. AES

AES algorithm in the proposed system is implemented
using Rijndael algorithm [6]. This algorithm encrypts the 128
bits width block of data with key. The encryption comprises
rounds of non-linear byte substitution, cyclic shifting, bit
mixing, and XOR-ing with the round key of loop. The round
keys in Rijndael algorithm are generated from the initial key
using key expansion function. Our implementation of Rijndael
algorithm is based on the implementation that is shared by
National Institute of Standards and Technology (NIST). The
pipelined implementation of Rijndael is selected to achieve
higher throughput.

D. SHA

SHA algorithm processes the plain text with functions
defined in Keccak function. Keccak function appends the
necessary bits to end of the plain text and the extended plain
text is divided into fixed length of blocks. Keccak function
comprises Keccak-p permutation function that includes rounds
of 5 functions. A round of Keccak-p function is defined as in
Eq. 1.

round = ι(χ(π(ρ(θ(A)))), ir) (1)

The round number of Keccak-p is defined as 24 for SHA
algorithm. ι, χ, π, ρ, and θ functions are implemented as
defined in [4]. The input of ρ is the output of θ, the input
of π is the output of ρ and so on. Therefore, these functions
can not be implemented in parallel architecture. Moreover, the
round index is calculated in a loop. To improve the throughput,
that loop can be flattened or round indexes can be stored in
memory since they are constant. In the proposed accelerator,
round indexes are stored in the memory.

IV. RESULTS

The proposed accelerator is intended to increase the us-
ability of a sequential core in applications that utilizes TLS
protocol. To observe the overheads of TLS protocol, ibex
core is simulated with Spike simulator. Spike is a simulator



Fig. 5. Modular exponentiation simulation result on RISC-V core

Fig. 6. AES block cipher simulation result on RISC-V core

that compiles the given program and simulates it on RISC-
V core [7]. Ibex is an open source 32 bit RISC-V core that
has 2 stages pipeline [8]. The TLS protocol uses the modular
exponentiation as encryption in DHE and RSA. We simulate a
simple program that calculates the modular exponentiation for
various exponent values. The simulation result is illustrated
in Fig. 5. As the exponent increases, the clock cycle required
for the calculation is increases. Also, the calculation causes
stalls since the functional units are busy. Ibex core is also
simulated with a program which encrypts varying length of
plain text with AES block cipher. The simulation result is
illustrated in Fig. 6. It is shown that number of stall cycle
increases with the increase in width of plain text. Yet, the
designed accelerator perform AES encryption without causing
stall as it is pipelined.

The proposed system is implemented and simulated with
Xilinx Vivado v2019.2 and the FPGA is selected as
XC7A200T. The implementation results shows that the pro-
posed system can operate at 100 MHz clock frequency. Also,
the power consumption of the system is 0.86 Watt. The
resource usage of the proposed system is given in the Table
I.

The number of handshake per second and throughput of the
encoding is observed from the simulation results of proposed
system. The DHE and RSA algorithms are performed within

Utilization Used Utilization%
Slices LUTs 18169 13.58
Slice Registers 11132 4.16

TABLE I
RESOURCE USAGE OF PROPOSED SYSTEM

Fig. 7. Throughput of CBC with CMAC and CBC with SHA

19 ms. In the simulation, the widths of base, exponent, and
modulo are selected as 2048 bits. The sequential core perfroms
modular exponentiation with 20 bit exponent within the same
duration that is 19 ms. Therefore, the proposed accelerator
reduces the power consumption because of the reduced clock
cycle. The throughput is simulated with various length plain
texts and the result is illustrated in Fig. 7. Since the proposed
accelerator gets the message 128 bits at a time, the proposed
accelerator has to wait for the whole plain text to calculate
hash value with SHA But, CMAC can calculate the hash
value block by block. Therefore, while CBC with CMAC has
constant throughput, throughout of CBC with SHA increases
as the width of plain text increases. But, it saturates since the
AES implementation takes fixed time for calculation.

V. CONCLUSION AND FUTURE WORKS

In this work, an accelerator for TLS protocol is proposed.
The proposed accelerator is capable of performing DHE, RSA,
CBC mode of AES, CMAC, and SHA. To observe the over-
head of TLS protocol, calculation of modular exponentiation is
simulated with Spike on ibex core. Moreover, the accelerator is
implemented and simulated with Xilinx Vivado. The resource
usage and power consumption of the accelerator is observed
from the implementation results. Also, the throughput of the
proposed accelerator is simulated.

As the future work, the accelerator will be attached to a
RISC-V core that contains modulation and demodulation ac-
celerator. Therefore, the system will be used in the application
that requires encryption and decryption for the communication,
such as IoT and V2X applications. Also, the Elliptic Curve
Cryptography algorithms will be implemented on the designed
accelerator.



REFERENCES

[1] “Ieee standard for wireless access in vehicular environments (wave)–
certificate management interfaces for end entities,” IEEE Std 1609.2.1-
2020, pp. 1–287, 2020.

[2] K. McKay and D. Cooper, “Guidelines for the selection, configuration,
and use of transport layer security (tls) implementations,” 2019-08-29
2019.

[3] T. Isobe, S. Tsutsumi, K. Seto, K. Aoshima, and K. Kariya, “10 gbps
implementation of tls/ssl accelerator on fpga,” in 2010 IEEE 18th Inter-
national Workshop on Quality of Service (IWQoS), 2010, pp. 1–6.

[4] M. Dworkin, “Sha-3 standard: Permutation-based hash and extendable-
output functions,” 2015-08-04 2015.

[5] P. L. Montgomery, “Modular multiplication without trial division,” Math-
ematics of Computation, vol. 44, pp. 519–521, 1985.

[6] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback,
and J. Dray, “Advanced encryption standard (aes),” 2001-11-26 2001.

[7] [Online]. Available: https://github.com/riscv-software-src/riscv-isa-sim
[8] [Online]. Available: https://github.com/lowRISC/ibex


