
29th Telecommunications forum TELFOR 2021 Serbia, Belgrade, November 23-24, 2021.

CORDIC Accelerator for RISC-V
Recep Onur Yıldız

Computer Engineering Department
Istanbul Technical University

Istanbul, Turkey
yildizr@itu.edu.tr

Ayse Yilmazer-Metin
Computer Engineering Department

Istanbul Technical University
Istanbul, Turkey

yilmazerayse@itu.edu.tr

Abstract—Software Defined Radio (SDR) is a highly config-
urable transceiver that provides flexibility in communication
systems. The flexibility of SDR is achieved by implementing most
of the SDR architecture in software. The software of the SDR
is responsible for the modulation/demodulation of messages and
frequency conversion of the signals. These operations frequently
use Sine and Cosine functions. Sine and Cosine functions are
required to be stored in memory or to be calculated. Storing these
values in the memory causes a decrease in core performance.
Sine and Cosine functions can be calculated with Coordinate
Rotation Digital Computer (CORDIC) algorithm or Taylor’s
Series. Taylor’s series consists of multiplication and division
operations which are hard to implement in hardware. This study
proposes an accelerator that calculates Sine and Cosine functions
with CORDIC algorithm. The architecture of the accelerator
is based on systolic array architecture to allow the core to
acquire the functions’ value immediately. The result shows that
the proposed system provides at least 32x speed up over Taylor’s
Series having grade 4. While providing speedup, the proposed
accelerator increases the resource usage of the bare system as
around 5,5% and power consumption of bare system as around
8%.

Index Terms—sdr, risc-v, cordic. accelerator

I. INTRODUCTION

Advance in technology leads to growth in the number
of active wireless devices. These devices communicate with
each other using communication protocols. Each of these
communication protocols has unique characteristics such as
efficiency and frequency. The communication protocol of the
device is implemented by transmitter and receiver systems.
When any modification on the communication protocol is
necessary, these systems may require to be modified also.
To realize the modifications on these systems, the hardware
needs to be modified if transmitter and receiver are imple-
mented in hardware. But, modifying hardware takes time and
needs money. To overcome this problem Mitola [1] proposed
the Software Defined Radio (SDR) concept. The proposed
architecture implements transmitter and receiver systems as
a collection of hardware and software. There are 3 segments
in SDR which are RF Front End, Digital Front End and Signal
Processing. The RF Front End which is responsible for trans-
mitting and receiving communication signals is implemented
in hardware. Digital Front End and Signal Processing segments
are implemented in software. Digital Front End is responsible
for conversion of baseband signal to Intermediate Frequency
(IF) signal or vice versa. The modulation and demodulation of

messages are performed in Signal Processing segment. Thus,
any change in the implemented communication protocol can
be done in the software of SDR.

Software of SDR can be implemented in Field Pro-
grammable Gate Array (FPGA) or General Purpose Processor
(GPP). FPGA is a highly re-configurable architecture and it
allows users to design digital systems. GPP is a processor that
is re-programmable and allows to run software sequentially.
Designing an SDR system on GPP provides ease of develop-
ment. The software of GPP is translated into instructions that
are defined by the Instruction Set Architecture (ISA). RISC-V
is a free and open ISA that allows efficient implementations
by avoiding over-architecting [2]. RISC-V ISA defines a base
integer ISA and it can be extended in two ways; standard
extension and non-standard extension. The non-standard ex-
tensions use reserved opcodes for custom instructions that can
be used to control an accelerator. Attaching an accelerator to
the RISC-V core, increase the low computing performance of
the GPP originated from the sequential processing.

Trigonometric functions can be stored in memory but
storing these functions has an important area penalty. In
addition to storing, Taylor Series can be used to calculate these
functions [3]. The accuracy of the function increases when
the grade of Taylor Series increases. The sine function can be
calculated with Taylor Series as in the Eq. 1. The calculation
includes multiple divisions, multiplications, subtractions, and
additions which may cause pipeline stalls in the core.

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
· · · (1)

To acquire these functions, Jack E. [4] proposed a technique
called Coordinate Rotation Digital Computer (CORDIC).
CORDIC is suitable for real-time applications which mainly
consist of trigonometric functions. Since the CORDIC algo-
rithm uses shifting and addition operations in calculations, it
is cost-efficient to implement in hardware.

In this study, a novel CORDIC accelerator for RISC-V ISA
is proposed. The CORDIC algorithm is implemented in a sys-
tolic array architecture. Systolic array architecture decreases
the calculation time with parallel operations and finishes the
calculations of CORDIC in a single cycle. The attached
CORDIC accelerator increases the computation throughput of
GPP and provides flexibility to RISC-V core in Sine and
Cosine calculation. This flexibility makes the RISC-V core

978-1-6654-2585-8/21/$31.00©2021 IEEE

20
21

 2
9t

h
Te

le
co

m
m

un
ic

at
io

ns
 F

or
um

 (T
EL

FO
R

) |
 9

78
-1

-6
65

4-
25

85
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

TE
LF

O
R

52
70

9.
20

21
.9

65
34

39

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on January 09,2022 at 15:09:57 UTC from IEEE Xplore. Restrictions apply.

more convenient to use in SDR architecture. This document
is organized as follows: Section II provides information on
related work. The architecture of the proposed system is
described in Section III. Section IV presents the evaluation
results of the design. This paper is concluded in Section V.

II. RELATED WORK

RISC-V ISA provides features to study and conduct re-
search on computer architecture. The base integer ISA allows
standard and non-standard instruction extensions. An accel-
erator can be attached to the core and ISA can be extended
with non-standard instructions to control the accelerator. In
[5], the authors presented a configurable DSP accelerator that
accelerates addition, multiplication, and linear combination
operations. The authors of [6] presented a parameterized
Secure Hashing Algorithm (SHA) accelerator for RISC-V.
SHA algorithm is a widely used hashing algorithm that takes
an input message and generates the unique hash value for the
related input. The parameterization of the SHA3 accelerator
helps the designer to evaluate the parameterized accelerator in
energy efficiency, performance, and size. In [7], the authors
presented a configurable system generator called Gemmini.
Gemmini generator supports a variety of different hardware ar-
chitecture, programming interface, system integration options
to generate Deep Neural Networks (DNN) accelerator. The
central unit of Gemmini is based on systolic-array architecture
and it is responsible for the calculation of the accelerator.

CORDIC algorithm is a resource-efficient implementation
of trigonometric function calculation. Trigonometric functions
are calculated by addition and shifting operations which
are cheap for hardware implementation. In [8], the authors
presented a re-configurable CORDIC concept. The proposed
concept can be configured to operate in either circular or
hyperbolic trajectories. The mode of the proposed CORDIC
is also configurable as rotation or vectoring-modes. The au-
thors of [9] presented an efficient CORDIC algorithm by
removing redundant iterations of CORDIC algorithm. In the
proposed design, conventional CORDIC and Virtually Scaling-
Free (VSF) CORDIC is combined. VSF CORDIC follows the
same direction in vector rotation.

III. SYSTEM ARCHITECTURE

In this study, CORDIC accelerator for RISC-V is proposed.
The accelerator is tightly coupled to the core and it com-
municates with the core through a custom interface which
is Rocket Custom Coprocessor (RoCC) interface. The system
architecture is illustrated in Fig. 1.

A. Architecture of Rocket Core

The Rocket Core is generated with the Chipyard framework
which is used to generate System on Chip (SoC) systems.
Chipyard framework includes Rocket Chip which is a SoC
generator developed in Berkeley. Rocket Chip generates the
Rocket Core and SoC parts besides the Rocket Core. The
Rocket Core is a core that is a 5-stage in-order RISC-V
core. The Rocket Core implements the RV32GC and RV64GC

Fig. 1. The system architecture of Rocket Core with CORDIC accelerator

Fig. 2. Instruction format

ISAs [10]. The abbreviation ”G” represents general-purpose
ISA which combines integer multiplication, atomic instruction,
single precision, and double precision floating point extensions
with base integer ISA. The abbreviation ”C” represents the 16-
bit instruction format. In this study, RV64GC ISA is selected
as the ISA of the core. The ISA of the proposed system is
extended as the reserved non-standard custom instruction of
RISC-V ISA encoding space. The format of the proposed
custom instruction is in the Fig. 2 When the function of
instruction is equal to 0 (1), the accelerator returns the cosine
(sine) function result.

In the proposed design, input and output format of the
accelerator is fixed-point binary representation which consists
of integer part and fraction part. The most significant 32 bits
of 64 bits represent the integer part of fixed-point. The least
significant 32 bits of 64 bits are the fraction. The core sends the
angle input in degree and the accelerator sends the output of
the selected function over the RoCC interface. The RoCC in-
terface includes the response of the accelerator and command
by the Rocket Core. The Rocket Core sends opcode, function,
source registers, and destination register and the accelerator
responds with data and destination register. In addition to
that signals, there are ready and valid signals between the
accelerator and Rocket Core. When the ready signal is active,
the corresponding RoCC signals are shared and the valid signal
is activated. The calculation of the CORDIC is finished in one
clock cycle and the output is shared via RoCC interface in one
cycle. So that, the core can have the sine or cosine function
result in two clock cycles by using the proposed CORDIC
accelerator.

B. Architecture of CORDIC Accelerator

CORDIC is a technique that calculates trigonometric func-
tions. CORDIC algorithm rotates the given coordinates step
by step until the angular argument of the vector is zero.
The accuracy increases when the number of rotation increase.
Following equations hold when the given vector is a unit vector
and its coordinates are as in Eq. 2 and Eq. 3.

Y = sinθ (2)

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on January 09,2022 at 15:09:57 UTC from IEEE Xplore. Restrictions apply.

X = cosθ (3)

In the (i+ 1)th step of CORDIC algorithm, coordinates of
ith vector are rotated as α. The coordinates of (i+1)th vector
are calculated as in Eq. 4 and Eq. 5.

Xi+1 = Xicosα− Yicosα = cosα(Xi − Yitanα) (4)

Yi+1 = Yicosα+Xisinα = cosα(Yi +Xitanα) (5)

The iterative rounds add a multiplier as cosαi where αi

represents the rotation angle. The rotation angle in each round
is defined as in Eq. 6.

αi = tan−1(2−i) (6)

Since the cosαi and cos(−αi) are equal and the rotation
angles are predefined, the cosine multipliers can be combined
as in Eq. 7. The n represent the total round number in
CORDIC algorithm. For the 8 round CORDIC algorithm K
is calculated as 0.607261323.

K =

n−1∏
i=0

ki = cosα0cosα1cosα2 · · · cosαn−1 (7)

In the (i+1)th round, the coordinates are calculated in Eq.
8 and Eq. 9 since αi = tan−1(2−i). The operation is defined
by the di whether it is an addition or a subtraction. The di
can be equal to +1 or -1 which is defined by the sign of the
zi. When the sign of di is equal to the sign of zi. Power of
2’s in the equations can be realized by right shift in hardware
because shifting right is equal to 2−1. So that, computations of
CORDIC are implemented by shifting and addition/subtraction
operations. In the first step of the CORDIC algorithm, i = 0,
α = 45, X0 = K, Y0 = 0, and , Z0 = θ where θ is the input
angle.

Xi+1 = Xi − di2−iYi (8)

Yi+1 = Yi + di2
−iXi (9)

Zi+1 = Zi − diαi (10)

The CORDIC architecture can be implemented as word-
serial or pipelined [11]. The word-serial implementation ro-
tates the angle in each cycle and rotations are unfolded
in pipeline implementation. In this study, a novel CORDIC
accelerator is implemented in systolic array architecture. The
proposed system calculates the sine or cosine functions in a
single clock cycle. Therefore, possible stalls of core during
these calculation is prevented. The systolic array architecture
contains interconnected Processing Elements (PE). Each PE is
responsible for the dedicated simple calculation and operates
parallel with other PEs. Computing simple calculations in PE
makes the main calculation less complex [12]. All PEs in
the CORDIC accelerator are identical which have 4 inputs
named as X, Y, C, and S; and 2 outputs named as Result and
Carry. The X and Y inputs of PE are the data inputs and C is
the carry input. The input S determines the type of operation
whether it is addition or subtraction. The computation of PE
are in the Eq. 11 and Eq. 12 where & represents logical-AND

Fig. 3. PE used in CORDIC Systolic Array

Fig. 4. Error rates of 4,6,8,10 rounded CORDIC

and ∧ represents logical-XOR. When the input S is logical
high (low), the PE subtracts (adds) input Y from input X. The
representation of PE is in the Fig. 3. The interconnected PEs
are responsible for the addition and subtraction in CORDIC
algorithm. Shifting operation of CORDIC is implemented as
the interconnection between PEs.

Result = X ∧ (Y ∧ S) ∧ C (11)

Carry = X&(Y ∧ S)&C (12)

CORDIC accelerator takes angle and function as its in-
puts. Function defines whether the trigonometric function is
sine or cosine. CORDIC accelerator generates the selected
trigonometric function output in a single clock cycle. The
most significant 29 bits of integer part of the angle input and
integer part of trigonometric function result are always logic-0.
Therefore, the related PEs of these redundant bits are removed
to decrease resource usage and power consumption.

IV. TEST RESULTS

In order to evaluate the effect of the number of rounds in
CORDIC, the different numbers of rounded CORDICs are
tested. The angle inputs of CORDICs are incremented as
1°from 0°to 90°. To visualize the round effect, the Eq. 13
is calculated for each round and plotted in the Fig. 4. When
the round number of CORDIC increases, the output becomes
more precise but resource usage increases. In this study, the
round number is selected as 8.

%Error =
(RealSine− CORDICSine)

RealSine
(13)

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on January 09,2022 at 15:09:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Speedup of proposed system over 4 termed Taylor Series

TABLE I: Comparison of resource usage
Resource Bare System Propsed System
Slice LUTs 42858 45216
Slice Registers 20326 20431

Comparing the systolic array based proposed CORDIC im-
plementation with 8 rounded parallel and iterative implemen-
tations of CORDIC, the proposed CORDIC implementation
finishes the calculation in a single clock cycle. Nevertheless,
conventional 8 rounded iterative CORDIC implementations
finish the calculation in 8 clock cycles and 8 rounded parallel
CORDIC implementations calculate the first value in 8 clock
cycles [13]. On the other hand, parallel and iterative methods
have lower path delay comparing to the presented architecture.
Therefore, the proposed system has lower clock frequency.
Moreover, the calculation time of 4 termed Taylor Series
calculates the Sine function is tested. The calculation clock
cycle of Taylor Series and proposed CORDIC accelerator
is compared and the speedup of the proposed accelerator is
illustrated in Fig. 5. The speedup of the accelerator increases
when the number of consequent Sine calculations increases.
The proposed system provides at least 32x speed up over
a system that use 4 termed Taylor Series to calculate sine
function. Since there are multiple additions, multiplications,
and divisions in the Taylor Series computation, the calculation
of Sine occupies the related ALUs during computation. Also,
cache lines are occupied by the intermediate results of the
calculation.

The proposed system and default system are compiled with
Chipyard framework. The generated outputs of both systems
are implemented using Vivado. The FPGA of the test system
is Xilinx XC7A200. The implemented default system does
not include stored Sine values and the proposed system im-
plements the 8 rounded CORDIC aglorithm. The comparison
of the resource usage is in the Table I. The implementation
reports of Vivado show that adding the proposed CORDIC
accelerator in the system increases the power consumption by
8%.

V. CONCLUSION AND FUTURE WORKS

In this study, a novel CORDIC accelerator is designed as in
systolic array architecture. The accelerator is attached to the

core and it communicates with the core via RoCC interface. In
order to calculate the sine and cosine functions, RISC-V base
integer ISA is extended. Using the added custom instruction,
the core shares the input angle and function with the proposed
accelerator. The function defines the trigonometric function
whether it is Sine or Cosine and input angle is in degree.
The CORDIC accelerator sends the calculated trigonometric
function value to the core.

We evaluate the accuracy of the accelerator by changing the
number of rounds in CORDIC. Moreover, the performance of
the accelerator is tested and compared with the 4-grade Taylor
Series implementation. The resource usage of the accelerator
implementation is also compared with the default system.

In the future, we plan to add input/output (I/O) capability
to accelerator. The accelerator will be able to drive a Digital
to Analog Converter (DAC). It is also planned to extend the
accelerator operands with built-in modulators and demodula-
tors. Therefore, the system will be more convenient to be used
in an SDR architecture.

REFERENCES

[1] J. Mitola, “The software radio architecture,” IEEE Commun. Mag.,
vol. 33, pp. 26–38, 1995.

[2] K. A. Andrew Waterman, “The risc-v instruction set manual,” Annalen
der Physik, vol. 322, no. 10, pp. 891–921, 1905.

[3] C. Brunelli, H. Berg, and D. Guevorkian, “Approximating sine functions
using variable-precision taylor polynomials,” in 2009 IEEE Workshop on
Signal Processing Systems, pp. 057–062, 2009.

[4] J. E. Volder, “The cordic trigonometric computing technique,” IRE
Transactions on Electronic Computers, vol. EC-8, no. 3, pp. 330–334,
1959.

[5] L. Calicchia, V. Ciotoli, G. C. Cardarilli, L. di Nunzio, R. Fazzolari,
A. Nannarelli, and M. Re, “Digital signal processing accelerator for risc-
v,” in 2019 26th IEEE International Conference on Electronics, Circuits
and Systems (ICECS), pp. 703–706, 2019.

[6] C. Schmidt and A. Izraelevitz, “A fast parameterized sha3 accelerator,”
tech. rep., EECS Department, University of California, Berkeley, 2015.

[7] H. Genc, S. Kim, A. Amid, A. Haj-Ali, V. Iyer, P. Prakash, J. Zhao,
D. Grubb, H. Liew, H. Mao, A. Ou, C. Schmidt, S. Steffl, J. Wright,
I. Stoica, J. Ragan-Kelley, K. Asanovic, B. Nikolic, and Y. S. Shao,
“Gemmini: Enabling systematic deep-learning architecture evaluation
via full-stack integration,” 2021.

[8] S. Aggarwal, P. K. Meher, and K. Khare, “Concept, design, and
implementation of reconfigurable cordic,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 24, no. 4, pp. 1588–1592,
2016.

[9] Y. Xue and Z. Ma, “Design and implementation of an efficient modified
cordic algorithm,” in 2019 IEEE 4th International Conference on Signal
and Image Processing (ICSIP), pp. 480–484, 2019.

[10] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar,
B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas, A. Magyar,
H. Mao, M. Moreto, A. Ou, D. A. Patterson, B. Richards, C. Schmidt,
S. Twigg, H. Vo, and A. Waterman, “The rocket chip generator,” Tech.
Rep. UCB/EECS-2016-17, EECS Department, University of California,
Berkeley, Apr 2016.

[11] M. D. Ercegovac and T. Lang, “Chapter 11 - cordic algorithm and
implementations,” in Digital Arithmetic (M. D. Ercegovac and T. Lang,
eds.), The Morgan Kaufmann Series in Computer Architecture and
Design, pp. 608–648, San Francisco: Morgan Kaufmann, 2004.

[12] Kung, “Why systolic architectures?,” Computer, vol. 15, no. 1, pp. 37–
46, 1982.

[13] M. Chinnathambi, N. Bharanidharan, and S. Rajaram, “Fpga implemen-
tation of fast and area efficient cordic algorithm,” in 2014 International
Conference on Communication and Network Technologies, pp. 228–232,
2014.

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on January 09,2022 at 15:09:57 UTC from IEEE Xplore. Restrictions apply.

