

ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

IMPLEMENTATIONS OF NOVEL CELLULAR NONLINEAR AND
CELLULAR LOGIC NETWORKS AND THEIR APPLICATIONS

Ph.D. THESIS

Ramazan YENİÇERİ

Electronics and Communication Engineering Department

Electronics Engineering Doctorate Program

OCTOBER 2015

ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

IMPLEMENTATIONS OF NOVEL CELLULAR NONLINEAR AND
CELLULAR LOGIC NETWORKS AND THEIR APPLICATIONS

Ph.D. THESIS

Ramazan YENİÇERİ
(504092207)

Electronics and Communication Engineering Department

Electronics Engineering Doctorate Program

Thesis Advisor: Prof. Dr. Müştak Erhan Yalçın

OCTOBER 2015

İSTANBUL TEKNİK ÜNİVERSİTESİ F FEN BİLİMLERİ ENSTİTÜSÜ

YENİ HÜCRESEL DOĞRUSAL OLMAYAN VE HÜCRESEL LOJİK
AĞLARIN GERÇEKLEMELERİ VE UYGULAMALARI

DOKTORA TEZİ

Ramazan YENİÇERİ
(504092207)

Elektronik ve Haberleşme Mühendisliği Anabilim Dalı

Elektronik Mühendisliği Doktora Programı

Tez Danışmanı: Prof. Dr. Müştak Erhan Yalçın

EKİM 2015

Ramazan YENİÇERİ, a Ph.D. student of ITU Graduate School of Science Engi-
neering and Technology 504092207 successfully defended the thesis entitled “IM-
PLEMENTATIONS OF NOVEL CELLULAR NONLINEAR AND CELLULAR
LOGIC NETWORKS AND THEIR APPLICATIONS”, which he/she prepared af-
ter fulfilling the requirements specified in the associated legislations, before the jury
whose signatures are below.

Thesis Advisor : Prof. Dr. Müştak Erhan Yalçın
Istanbul Technical University

Jury Members : Prof. Dr. İsmail Serdar Özoğuz
Istanbul Technical University

Prof. Dr. Hulusi Hakan Kuntman
Istanbul Technical University

Prof. Dr. Vedat Tavşanoğlu
Isik University

Prof. Dr. Cüneyt Güzeliş
Yasar University

Date of Submission : 31 July 2015
Date of Defense : 9 October 2015

v

vi

To my wife and daughter,

vii

viii

FOREWORD

From the beginning to the end of my doctorate, I always feel the enthusiasm of my
advisor Prof. Müştak E. Yalçın. He never slows down the tempo of himself, of mine
and also his research group. His scholarship and experience, now has been created an
new science admirer. My special thanks will be permanent for him.

My wife, Vuslat, who is my adored half, has never withdraw her support and belief to
me. Thank you very much my darling, for your hands tightly joint to mine. We always
wish our bliss lasts forever in our family with our new member, our daughter, Hüma.
Welcome my baby. Thank you for you incredible smiles that relieve my tiredness.

Prof. Vedat Tavşanoğlu has never spared his wisdom. Thank you professor for the
long conversations which reshape my perception to many scientific subjects. Also,
thank you Prof. Serdar Özoğuz for your quick and practical evaluations on critical
subjects that I have encountered during my research.

I can not thank Prof. Muharrem Ök enough, the person who never leaves off guiding,
always motivates for the science and enlightenment.

I owe everyone in our group, Embedded System Design Laboratory in ITU, which
includes current and past members who are Prof. Berna Örs, Emre Göncü, Emrah
Abtioğlu, Giray Başkır, Tuba Ayhan, Akif Özkan, Çağrı Bağbaba, Buse Ustaoğlu,
Ahmet Arış, Selman Ergünay, Mehmet Tükel, Şahin Baş, Özen Özkaya, Onur Varol,
Sercan Tunçay, Seyhan Çalışkan, Ercan Kalalı, Barış Karakaya and many others a debt
of gratitude.

A period of my research has been completed in University of Notre Dame, with Prof.
Wolfgang Porod and Gyorgy Csaba. Special thanks go to them and TÜBİTAK for grant
from 2214a programme for this period and 2211 programme for the entire doctorate.

Finally, thank you very much dear reader, as you are interested in this thesis and are
giving a value by reading it.

October 2015 Ramazan YENİÇERİ
Electronics Engineer, M.Sc.

ix

x

TABLE OF CONTENTS

Page

FOREWORD... ix
TABLE OF CONTENTS.. xi
ABBREVIATIONS ... xiii
LIST OF TABLES .. xv
LIST OF FIGURES ..xvii
SUMMARY ... xxv
ÖZET ...xxvii
1. INTRODUCTION .. 1

1.1 Purpose of Thesis ... 1
1.2 Literature Review ... 1
1.3 Hypothesis and Contributions .. 3
1.4 Organization ... 4

2. CELLS ... 7
2.1 Relaxation Oscillators .. 7

2.1.1 Oscillator using absolute value nonlinearity .. 8
2.1.2 Oscillator using signum nonlinearity.. 9

2.2 Logic Oscillator .. 11
2.3 Time-delay Sampled-data Chaotic System... 12

2.3.1 Generating mono-scroll attractor.. 13
2.3.2 Generating multi-scroll attractor .. 21

3. NETWORKS... 31
3.1 Cellular Nonlinear Networks.. 31

3.1.1 Network using absolute nonlinearity.. 33
3.1.2 Network using signum nonlinearity ... 39
3.1.3 Cellular logical network ... 45
3.1.4 Results and comparison of networks .. 47

3.2 1D Network with Unidirectional Coupling .. 50
4. IMPLEMENTATIONS... 53

4.1 Implementations for Relaxation Oscillators ... 54
4.1.1 Digital implementation of relaxation oscillator network........................ 54
4.1.2 Implementation of relaxation oscillator network on GPU 60

4.2 Partial Reconfiguration of Cellular Logic Network 65
4.3 Implementations for Time-delay Chaotic System .. 73

4.3.1 Asynchronous delay doubler for binary delay lines 77
4.3.2 Mono-scroll attractor using analog integrator and flip-flop chain.......... 81
4.3.3 Mono-scroll attractor using analog integrator and ADD chain 85
4.3.4 Mono-scroll attractor using digital integrator and inverter chain 89

xi

4.3.5 Multi-scroll attractor using analog integrator and flip-flop chain........... 92
4.3.6 1D network using analog integrator and flip-flop chain 100
4.3.7 1D network using digital integrator and flip-flop chain 103

5. APPLICATIONS .. 109
5.1 Feedback Motion Planning... 110

5.1.1 Generating feedback plan by relaxation oscillator networks 114
5.1.2 Predictive planning in 2D discrete space.. 123

5.2 Random Bit Generation.. 131
5.2.1 True random bit generator .. 135
5.2.2 Attack on true random bit generator... 143

6. CONCLUSION ... 147
6.1 Obtained Results... 147
6.2 Publications on The Thesis... 149
6.3 Open Research Fields ... 150

REFERENCES.. 153
CURRICULUM VITAE... 170

xii

ABBREVIATIONS

1D : One Dimensional
2D : Two Dimensional
3D : Three Dimensional
ACE : Analogic CNN Emulator Engine
ADD : Asynchronous Delay Doubler
CA : Cellular Automata
CFOA : Current Feedback OpAmp
CLN : Cellular Logic Network
CNN : Cellular Nonlinear Network
CNN-UM : Cellular Nonlinear Network Universal Machine
CNPN : Cellular Nonlinear Processor Network
CPU : Central Processing Unit
DDE : Delay Differential Equation
DE : Doppler Effect
DPR : Dynamic Partial Reconfiguration
DSP : Digital Signal Processor
EEPROM : Electrically Erasable Programmable Read Only Memory
EXOR : EXclusive OR
FPGA : Field Programmable Gate Array
FSR : Full Signal Range
GPU : Graphics Processing Unit
Gbps : Giga-bit per second
Gsps : Giga-sample per second
ICAP : Internal Configuration Access Port
ISE : Xilinx Integrated Synthesis Environment
LCL : Inductor-Capacitor-Inductor
LM311 : A kind of analog comparator
LUT : Look-Up Table
Mbit : Megabit
MG : Mackey-Glass
Msps : Mega sample per second
NPE : Nodal Processing Element
OpAmp : Operational Amplifier
RAM : Random Access Memory
RM : Reconfigurable Module
RP : Reconfigurable Partition
SDK : Software Development Kit
TRBG : True Random Bit Generator

xiii

xiv

LIST OF TABLES

Page

Table 4.1 : Parameters and state variables hold by s1 and s2 stacks in the NPE. .. 56
Table 4.2 : Comparison of Resource Utilizations and Latencies of Arithmetic

Circuits [1]. ... 59
Table 4.3 : Comparison of Resource Utilizations of Top-Level Design [1]. 59
Table 4.4 : Comparison of 128×128 sized network simulation performances

of three different platforms [2].. 65
Table 4.5 : Truth table of priority encoder used in the circuit............................... 95
Table 4.6 : Truth table of decoder used in the circuit.. 97
Table 5.1 : Exact angle values using horizontal, vertical gradients and

temporary angle. ... 126
Table 5.2 : The NIST 800-22rev1a tests’ summary results for a 40 Mbit string

sampled at 20Mbit/s rate... 136
Table 5.3 : The NIST 800-22rev1a Test Suite’s summary results for a 40Mbit

string generated by single circuit at 40Mbit/s rate.............................. 138
Table 5.4 : The NIST 800-22rev1a Test Suite’s summary results for a 40Mbit

string co-generated by a pair of circuits at 50Mbit/s rate. 139
Table 5.5 : NIST’s SP800-22rev1a statistical test results. The effect of

time-variant delay in DLUT (buffer chain delay line) is shown on
the second column... 143

xv

xvi

LIST OF FIGURES

Page

Figure 2.1 : Phase portrait of Oscillator 1. .. 9
Figure 2.2 : x(t) and y(t) signals generated by Oscillator 1.................................. 9
Figure 2.3 : Phase portrait of Oscillator 2. .. 10
Figure 2.4 : x(t) and y(t) signals generated by Oscillator 2.................................. 10
Figure 2.5 : State diagram of Oscillator 3. .. 12
Figure 2.6 : x(t) and y(t) signals generated in Oscillator 3................................... 12
Figure 2.7 : The nonlinear function f (x) and its approximate function g(x)

with γ = 20 given in (2.10). .. 14
Figure 2.8 : Chaotic attractor of the system (2.8). .. 15
Figure 2.9 : Bifurcation diagram of the system (2.8) with the nonlinearity

(2.10) versus a) α and b) the delay value τ . Figures also include
spectrum of the Lyapunov exponent versus the same parameters.
The observed dynamical behaviors of the system in bifurcation
diagram and the calculated Lyapunov exponents are in a good
agreement for both figures. ... 16

Figure 2.10: a) Block diagram of the system (2.8), b) the sequence of the
blocks is rearranged in order to have binary input for the delay
block. f (·) is decomposed into two functions fc(·) and h(·) so that
f (·) = fc(h(·)). Then the delay block is placed after the function
h(·) as in (2.12). .. 17

Figure 2.11: Block diagram of the chaotic time-delay sampled-data system
(2.15)... 17

Figure 2.12: Chaotic dynamics of the system (2.15) for Ts = 0.1 in x(t)-x(t−τ)
space. The characteristic shape of strange attractors of the system
(2.8) (see Figure 2.8) and the chaotic time-delay sampled-data
system (2.15) for Ts = 0.1 are similar. .. 18

Figure 2.13: Bifurcation diagrams of the system (2.15) with the nonlinearity
(2.10), τ = 8 and Ts = 0.1 versus α . Figure also includes the
spectrum of the Lyapunov exponent versus the same parameters.
The observed dynamical behavior of the system in bifurcation
diagram and the calculated Lyapunov exponent are in a good
agreement.. 19

Figure 2.14: The output of the ideal delay line h(x(t − τ)) and the output
of the sample-and-hold delay line h(x(tk− τ)) where k = 1,2,3.
h(x(tk− τ)) is obtained after the sampling of h(x(t − τ)). These
two signal will not be the same between tb (when a state change
occurs between two samples) and t3 (the next sampling time). 20

Figure 2.15: Bifurcation diagram and the spectrum of Lyapunov exponent of
the introduced system (2.15) with α = 2 and τ = 8 versus Ts............ 21

xvii

Figure 2.16: Lyapunov exponent spectrums of the system (2.15) for τ = 8
versus α calculated for Ts = 0.02, Ts = 0.25, Ts = 0.4 and Ts = 0.6.. 22

Figure 2.17: Dynamical behavior of the time-delay sampled-data system
(2.15) in (Ts−α)-plane. Black region indicates that the system is
in chaos. Gray region indicates that the system produces a periodic
motion. .. 23

Figure 2.18: A nonlinear function that generates multi-scroll attractor. It has
7 intersections with x

α
line which separates the x-axis into 8 parts

and generates 6-scrolls. ... 24
Figure 2.19: A six-scroll attractor generated by the system (2.16). 25
Figure 2.20: Bifurcation diagram and accompanying largest Lyapunov expo-

nent versus o f is given on the left. A sample phase portrait for a
chosen o f value is given on the right. ... 27

Figure 2.21: Bifurcation diagram and accompanying largest Lyapunov expo-
nent versus h f is given on the left. A sample phase portrait for a
chosen h f value is given on the right. ... 27

Figure 2.22: Bifurcation diagram and accompanying largest Lyapunov expo-
nent versus w f is given on the left. A sample phase portrait for a
chosen w f value is given on the right. .. 28

Figure 2.23: Bifurcation diagram and accompanying largest Lyapunov expo-
nent versus α is given on the left. A sample phase portrait for a
chosen α value is given on the right. .. 28

Figure 2.24: Bifurcation diagram and accompanying largest Lyapunov expo-
nent versus τ is given on the left. A sample phase portrait for a
chosen τ value is given on the right. ... 29

Figure 2.25: Bifurcation diagram and accompanying largest Lyapunov expo-
nent versus Ts is given on the left. A sample phase portrait for a
chosen Ts value is given on the right. ... 29

Figure 2.26: Phase portraits in the x(t − τ) versus x(t) state space. System
parameters are the same as Figure 2.19 except n f . n f values in
sub-graphs are 1 in (a), 2 in (b), 4 in (c), and 5 in (d). According
to the V-shape of a mono-scroll attractor, each phase portrait has
2n f scrolls. .. 30

Figure 3.1 : Autowave propagation on Network 1 by top view of x state
variables a) at t = 39, b) at t = 40, and c) at t = 41............................ 34

Figure 3.2 : Phase portrait of cells in Network 1. Saddle points are indicated
with triangles... 35

Figure 3.3 : a) Moving input in time from left to right, b) nested traveling
wave propagation on Network 1. .. 36

Figure 3.4 : Autowave generation with constant inputs u12,12 = 0.005 and
u12,13 = −0.005. Subfigures are mesh plots of a (23 × 24)
network’s X state variable matrix a) for t = 15, b) for t = 17, c)
for t = 34, d) for t = 38. Cells on boundary are not depicted. A
non-symmetrical wave front is observed with this configuration. 37

xviii

Figure 3.5 : Autowave generation with constant inputs u12,13 = u13,12 =
u13,14 = u14,13 = 0.05 and u13,13 = −0.25. Subfigures are mesh
plots of a (25×25) network’s X state variable matrix a) for t = 13,
b) for t = 19, c) for t = 23, d) for t = 27. Cells on boundary are
not depicted. A symmetrical wave front is observed with this
configuration. .. 38

Figure 3.6 : The route of input pattern in the scenario.. 39
Figure 3.7 : The 2D plots of the X matrix of the 45× 45 network with

continuously moving DC input. Subfigures belong to t = 20 in
a, t = 50 in b, t = 170 in c, t = 260 in d. .. 40

Figure 3.8 : The mesh plots of the D matrix, which are related to the Doppler
Effect, (on the left column) of a 45×45 network with continuously
moving DC input (on the right column). The d values, which
compose the D matrix, are the last recorded omnidirectional
wave-front passing periods on cells. d is inversely proportional
to the approach speed of the wave source to the cell. The moving
input pattern is the same one in Figure 3.5. Subfigures belong to
t = 80 in a and b, t = 170 in c and d, t = 220 in e and f, t = 280 in
g and h... 41

Figure 3.9 : Autowave propagation on Network 2 by top view of x state
variables at a) t = 3.5, b) t = 4.0, and c) t = 4.5. 42

Figure 3.10: a) A saddle point of Network 2 with γ = 5.4, b) a stable
equilibrium point of Network 2 with γ = 5.25. 43

Figure 3.11: Phase portrait of cells in Network 2. Saddle points are indicated
with triangles... 44

Figure 3.12: a) Moving input in time from left to right, b) nested traveling
wave propagation on Network 2. .. 44

Figure 3.13: State diagram of Oscillator 3 with enable e input. State word is
(x,y). Transition is controlled by e. .. 45

Figure 3.14: Autowave propagation on Network 3 by top view of x state
variables at t = 3.8 in a, t = 3.9 in b, and t = 4.0 in c........................ 46

Figure 3.15: a) Moving input in time from left to right, b) nested traveling
wave propagation on Network 3. .. 47

Figure 3.16: a) Route of the wave generating input signal, b) D matrix of
Network 1, which consists of d values of the cells, c) D matrix
of Network 2, d) D matrix of Network 3. ... 48

Figure 3.17: Evolution of x1 and x2 is plotted in time. Due to the anticipating
synchronization, the red signal which belongs to x2 occurs τ = 8
seconds before the blue signal of x1. The first 100 seconds of the
simulation is not plotted in order to ignore the transient effect of
initial conditions. .. 52

Figure 3.18: The anticipating synchronization between a) x1(t)-x2(t − τ), b)
x1(t)-x3(t−2τ), c) x1(t)-x4(t−3τ).. 52

Figure 4.1 : The scheme of the wave computing system. 55
Figure 4.2 : Block diagram of the Nodal Processing Element (NPE), Id:

variable and parameter inputs, Od: variable outputs, Ic: control
signal inputs, Oc: control signal outputs [3]....................................... 56

xix

Figure 4.3 : Block diagram of the wave computer core. 57
Figure 4.4 : Autowaves and traveling wave are obtained on the network which

is emulated by the Core by using different network configurations
and initial conditions [4]: a) autowaves generated from corners,
b) autowaves in medium with obstacles, c) autowave generated by
the center cell, d) traveling wave in medium with obstacles. 61

Figure 4.5 : Conceptual device architecture of OpenCL with computing units.
Host is not shown. Image was redrawn from the figure in [5]............ 63

Figure 4.6 : A regular-grid network that consists of empty Reconfigurable
Partitions (RPs) on the FPGA. The favor of partial reconfiguration
is the opportunity to load the fixed cell design or alive cell design,
both fits to empty RP, whenever it is required in run-time. 67

Figure 4.7 : Circuit schematic of the alive cell. The required memory is a
2-bit register. The function generation needs a few logical gates.
On an FPGA-like device, it can be implemented by two 5-input
Look-up-tables. Circuit has four single bit inputs (i0 to i3) and a
1-bit output z. .. 67

Figure 4.8 : From a to j each subplot represents a 5-cell network in plus-sign
formation with zero-flux boundary condition. The initial condition
is given in (a) and each consecutive subplot shows following
discrete moment. The numbers given within the cells represent
the state and the buffered output (x[k],z[k], together. As noticed,
the 1 input from the boundary affects the center cell’s output in
c and propagates immediately in d moment. When all the cells
coupled to the center cell has 1 output, it switches its state x to 1
as in e. Similar dynamics is observed when 0 is injected to the
network as in between f and j. .. 68

Figure 4.9 : The evolution of the network configuration in 3D spatiotemporal
space. m and n axes are vertical and horizontal axes of the 2D
network, respectively. k is the time axis. The configuration
of the network can be changed any time during the operation
as illustrated by two partial reconfiguration events. Partial
reconfiguration only occurs for the cells that are decided to be
swapped their function. ... 70

Figure 4.10: The evolution of the trigger-wave on the Cellular Logical
Network manipulated by partial reconfiguration. 2D subplots are
the snapshots of the network output Z[k] in discrete time sequence:
a) k = 1, b) k = 5, c) k = 6, d) k = 10, e) k = 15, f) k = 18, g)
k = 23, h) k = 30, i) k = 32, j) k = 36, k) k = 42, l) k = 50. In
the figure, light yellow spot represents the alive cell whose output
is 1. Green spot represents the alive cell whose output is 0. Black
spots represent the fixed cells whose output is determined by the
zero-flux boundary condition. .. 72

Figure 4.11: Two different implementations of the binary delay line: a)
Non-inverting buffer chain, b) D-type flip-flop chain. Both
chains have finite number of units. The former chain functions
asynchronously, but the latter one functions synchronously with c(t). 74

xx

Figure 4.12: There is a structural discontinuity (granularity) in the delay unit
chains (Figure 4.11) which causes a limitation on the minimum
event interval (pulse width) of the binary signal to be delayed. The
given waveform belongs to the output of a chain delay line when
a pulse-width sweep is applied to its input. The pulses narrower
than τmin is filtered out. ... 75

Figure 4.13: The input signal x(t), the output signal x(t − τ) of the buffer
chain (Figure 4.11a), the output signal x(tk − τ) of the flip-flop
chain (Figure 4.11b) and the clock signal c(t). Both outputs obey
the τmin limitation. The buffer chain is able to respond its input
asynchronously and propagate the input signal always with the
same amount of delay, theoretically. The deviation of a buffer’s
delay (τb) is related to the physical implementation facts and
environmental conditions. On the other hand, the flip-flop chain
samples and holds the input during the Tc period which always
causes deformation on output pulse widths. 76

Figure 4.14: Asynchronous Delay Doubler doubles the amount of delay using
one delay unit twice. ... 78

Figure 4.15: The ADD is an asynchronous state machine with an input of
binary signal to be delayed from master (FM), an output of delayed
binary signal to master (TM), an output of binary signal to be
delayed to slave (TS) and an input of delayed binary signal from
slave (FS). ... 78

Figure 4.16: The state diagram of ADD with assigned state codes. Transitions
occur through the arrows with FM FS / TM TS signals. Don’t-care
conditions by means of the minimum input interval assumption
reduce the number of states to 4, and the number of state
transitions from 16 to 10. .. 79

Figure 4.17: The realization of the ADD is done using three 4-input look-up
tables. .. 79

Figure 4.18: A cascaded recursive structure is constituted with ADDs. Each
cascaded block has a delay time τi related to its recursion order
(Ni), the propagation delay of ADD (τADD) and the base delay
time (τ i,0). ... 80

Figure 4.19: Binary low-pass filters (F is) protecting the nested ADD blocks
against the pulses narrower than τi. These filters do not increase
the amount of delay significantly. If the blocks ideally have the
same amount of delay, filter should be applied to each block. Else,
only the block having the greatest delay should have a BLPF............ 81

Figure 4.20: Input signal x(t) with various pulses and glitches, and xF(t− τ)
which is the output signal of a recursive ADD block with BLPF
is plotted. BLPFs filter out the pulses narrower than the delay
provided by its slave delayer, which is τ for this case. 82

Figure 4.21: LUT-based schematic of the BLPF. Similar to the ADD, only
three 4-input look-up tables are required to implement BLPF. 82

Figure 4.22: The experimental circuit used to realize the proposed chaotic
system (2.15)... 83

Figure 4.23: Phase portrait in vC(t̂− τ̂)− vC(t̂) plane. .. 85

xxi

Figure 4.24: vC(tk− τ)− vC(t) phase portraits of circuit realization for Ts =
0.001 in a, Ts = 0.020 in c, Ts = 0.250 in e and of simulations
for Ts = 0.001 in b, Ts = 0.020 in d, Ts = 0.250 in f. For all
experiments α = 2.5 and τ = 8. This results demonstrate that
the chaotic behavior of the system can be obtained with a small
number of flip-flops down to 32 in conformity with Lyapunov
exponent spectrum in Figure 2.17... 86

Figure 4.25: Using ADDs on the delay line of a time-delay sampled-data
system which was proposed as a True Random Bit Generator [6].
ADD and buffer chain based delay line converts the system from
sampled-data to continuous-time. In this implementation, VCC =
5V , VEE = −5V , Vbias = 0.5V , Vpos = 1.10V , Vneg = −0.97V ,
R1 = 2.76kΩ, R2 = 5.73kΩ, τline = 555.6µs, τmin = 4.4µs, and
the bit sampling rate is 20kHz. ... 88

Figure 4.26: Phase portraits of chaotic signals obtained a) by the original
system with flip-flop chain, b) by the system with the proposed
ADD based delay line. .. 88

Figure 4.27: Schematic diagram of integrate and compare block (INTCOMP). ... 90
Figure 4.28: Schematic diagram of D-type flipflop based delay line (DDFF)....... 91
Figure 4.29: Schematic diagram of Look-up-table based delay line (DLUT). 91
Figure 4.30: Schematic diagram of top level design. ... 93
Figure 4.31: Circuit diagram of multi-scroll time-delay sampled-data chaotic

system. The Circuit has 7 comparators that determines the
maximum number of scrolls as 6. With data coding approach, the
delay line number is less that the comparator number and increases
linearly when the comparator need increases exponentially for
exponential growth in scroll number. .. 96

Figure 4.32: Results from the circuit implementation: a) The implemented
nonlinear function y = fm(x) (blue), and y = x/α line (red).
Nonlinear function has 7 discontinuities which yields 6 scrolls.
b−d) Phase portraits in the x(t − τ) versus x(t) state space
generated by the circuit implementation with common parameters:
α = 1, h f = 1.5, w f = 0.5, o f = 0, τ = 200µs, NFF = 1000,
Ts = 200ns, RC = 10µs, Vsupp = ±3.3V, n f = 3 in b, n f = 1 in
c, n f = 2 in d... 99

Figure 4.33: Four sampled-data feedback systems are used for the realization
of the idea. The Master System has the time-delay feedback. Slave
System 1 is coupled to the Master System in a non-delayed form.
Just one D flip-flop is used to make the drive signal sampled-data
which is synchronous to the delay line. Slave System 2 and Slave
System 3 are implemented in the same manner. As a result, Slave
System 3 predicts (anticipates) the state of the Master System 3τ

before. ... 102
Figure 4.34: a) x1(t) vs. x2(t) plot, b) x2(t) vs. x3(t) plot, c) x1(t) vs. x3(t)

captured on an analog oscilloscope screen, d) x1(t) vs. x3(t) plot
drawn by computer simulation. ... 104

xxii

Figure 4.35: Digital oscilloscope screen captures depicting x1(t) (blue), x2(t)
(red), x3(t) (green) and x4(t) (purple) synchronously. The yellow
box is shifted τ second left at each channel and used for focusing
a short-time signal record that is seen on every system’s output. 104

Figure 4.36: Block diagram of coupled systems for anticipating synchroniza-
tion. S1, S2, and S3 are digital slave systems whose states are
hidden. In order to measure the hidden states, integrators (S1, S2,
and S3) are employed. They work like sampled data system, as
they continuously integrate the sampled and held binary signal. 107

Figure 4.37: The chaotic attractors observed by an analog oscilloscope. Phase
planes used for observation have been noted below subfigures.......... 108

Figure 4.38: From top to bottom, x0(t) (blue), x1(t) (red), x2(t) (yellow),
x3(t) (green) in a 2ms-long record. Each have 100µs left-shift
in reference to the one up signal. .. 108

Figure 5.1 : Reference map. .. 115
Figure 5.2 : x state values of the nodes surrounding the source node during the

first two iterations: a) initial values, b) the first iteration results, c)
the second iteration results. ... 116

Figure 5.3 : x state values of the nodes surrounding the node (56,45) during
the iterations 103 to 105: a) at iteration 103, b) at iteration 104, c)
at iteration 105. .. 117

Figure 5.4 : Output vectorial images of wavefront diffusion based algorithm
with sequencing iterations numbers: a) step 100, b) step 200, c)
step 300, d) step 527 which is the final step, e) the vector legend. 118

Figure 5.5 : Traces found by the Wavefront Diffusion Based Algorithm. 119
Figure 5.6 : x and y state values of the nodes surrounding the source node

during the first three iterations: a) initial x-states, b) x-states at
the 1st iteration, c) x-states at the 2nd iteration, d) x-states at the
3rd iteration, e) initial y-states, f) y-states at the 1st iteration, g)
y-states at the 2nd iteration, h) y-states at the 3rd iteration. 120

Figure 5.7 : Accumulation images of Wave Accumulation and Gradient Based
algorithm with sequencing iterations numbers: a−g) from top
view, h) step 700 detailed with labels. .. 121

Figure 5.8 : Output gradient images of Wave Accumulation and Gradient
Based algorithm: a) only horizontal gradient (∆x), b) only vertical
gradient (∆y). .. 122

Figure 5.9 : Traces found by the Wave Accumulation and Gradient Based
Algorithm.. 124

Figure 5.10: Scenario: Obstacles and the predetermined route of the target. 125
Figure 5.11: Mapping real world to network layers... 126
Figure 5.12: Simulation snapshots of proposed predictive motion planning.

Both are at equal velocities. Region 1 is green, Region 2 is yellow,
Region 3 is white. Blue points are the steps of target. Red steps
belong to the tracker.. 129

Figure 5.13: Simulation results of Network 1. ... 130
Figure 5.14: Simulation results of Network 2. ... 132
Figure 5.15: Simulation results of Network 3. ... 133

xxiii

Figure 5.16: The strange attractor observed on the x(t)− x(t− τ) plane. 138
Figure 5.17: The block diagram of the unsynchronized circuit pair, the EXOR

gate and the bit recording buffer. .. 139
Figure 5.18: The average Poker Test results for 2µs ≤ Tb ≤ 60µs interval for

single (red) and double (blue) circuit forms. 140
Figure 5.19: The observed phase portrait of the two circuit system on x1(t)−

x2(t) state space. ... 141
Figure 5.20: Overlapping phase portraits. Black trajectory which belongs to

the periodic system employing DDFF has been plotted over red
trajectory which belongs to the aperiodic system employing DLUT.. 142

Figure 5.21: Similar to x signals, digital oscilloscope screen captures depicting
f (x1(tk − τ)) (blue), f (x1(tk)) (red), f (x2(tk)) (green) and
f (x3(tk)) (purple) synchronously. The yellow box is shifted τ

second left at each channel and used for focusing a short-time
signal record that is seen on every system’s output. 144

Figure 5.22: Distribution of erroneous bits between strings of f (x2(tp− τ))
and f (x1(tp)) in a, f (x3(tp− τ)) and f (x2(tp)) in b, f (x4(tp− τ))
and f (x3(tp)) in c. String length is 1000 bits...................................... 145

xxiv

IMPLEMENTATIONS OF NOVEL CELLULAR NONLINEAR AND
CELLULAR LOGIC NETWORKS AND THEIR APPLICATIONS

SUMMARY

This thesis is a consistent and coherent reorganization of studies on two topics of
nonlinear systems. First topic includes Relaxation Oscillators and logic oscillators
with similar behavior which are locally coupled and the resulting Cellular Nonlinear
Networks (CNN) are utilized for a predictive motion planning algorithm. Nonlinear
waves, especially autowave and traveling wave, have been studied and their system
model, coupling schemes, parameters, and inputs generating both types of nonlinear
waves are explained. The research covers two implementations of selected CNN
and compares their digital circuit (FPGA prototyping), CPU simulation and GPU
simulation performances. The research is focused on the Doppler Effect occurrence of
the propagated nonlinear waves. A novel nonlinear wave propagation based feedback
motion planning algorithm which utilizes the Doppler Effect and generates a prediction
for the future state of target object has been proposed. The comparisons which reveals
the effect of Doppler Effect are reported. The results prove that a tracker even slower
than the target may catch it using the proposed algorithm. This new method of
motion planning needs two layers of oscillator based CNNs. Two types of relaxation
oscillators (one of them is a new model) and the logic oscillator have been tested for
the algorithm.

Novel models of chaotic time-delay systems are introduced in the thesis as the
second topic. The proposed binary output nonlinearity makes the oscillator generate a
mono-scroll chaotic attractor. This thesis also proposes a generalization of the binary
output nonlinear function, which is a quantized output nonlinearity. The generalized
nonlinearity yields a multi-scroll attractor. Both systems are modelled as sampled-data
models, because the binary delay lines are constructed by digital components (D-type
flip-flops). The research on implementations of these oscillators has been expanded
with binary inverting buffers (NOT gates) and asynchronous digital state machines.
These systems successfully generate true random bit sequences without the need for
post-processing. Up-to-date NIST’s statistical test suite is used for the tests of bit
sequences and successful throughput rates are reported. The jitter on the NOT gate
based delay line is utilized as physical noise and all-digital implementation supported
by the jitter also passed the statistical tests.

The thesis merges research parts and reorganize the outputs under four titles: cells,
networks, implementations and applications.

xxv

xxvi

YENİ HÜCRESEL DOĞRUSAL OLMAYAN VE HÜCRESEL LOJİK
AĞLARIN GERÇEKLEMELERİ VE UYGULAMALARI

ÖZET

Bu tez, doğrusal olmayan sistemler ailesinden gevşemeli osilatörler, lojik osilatörler,
zaman gecikmeli kaotik osilatörler; bu sistemlerden kurulan ağlar, bunların elektronik
gerçeklemeleri ve uygulama alanlarında katkılar sunmaktadır.

Tez, iki hipotezi tartışır. Tezde, doğrusal olmayan dalga yayılımı için ortam olan iki
boyutlu hücresel doğrusal olmayan ağlar, iki boyutlu hareket planlama problemlerinde
hedefin gelecekteki durumlarını öngörmeye yarayan öznitelikler ürettiği gösterilmiştir.
Ayrıca, zaman gecikmeli sistemlerde kullanılan, ürettiği ikili sembol dizileri gerçek
rastgele bit dizisi olan, en az bir tane iki seviyeli çıkış veren geribesleme fonksiyonu
vardır. İki hipotezli bu doktora çalışmasında, hücresel gevşemeli osilatör ağ
uygulamaları ve zaman-gecikmeli kaotik osilatör gerçeklemeleri ağırlıklı araştırma
sahaları olmuştur. Elde edilen çıktıların çoğu bu iki başlık altında toplanmıştır ve iki
hipotez test edilmiştir.

Gevşemeli osilatörler ile ilişkili çalışmalar doktora başlangıcından sonuna kadar geçen
süreye yayılmıştır. Başlangıçta hedeflenen yeni bir hücresel gevşemeli osilatör ağ
modeline başarıyla ulaşılmıştır. Zaman gecikmeli kaotik sistemler ile ilişkili çalışmalar
ise tez çalışmalarına sonradan dahil olmuş, sürenin orta ve son kısmında yoğun olarak
yürütülmüştür. Özetin devamında, tezin yazım organizasyonuna göre ana bölümler ve
alt bölümler kısaca anlatılacak ve aralarındaki ilişki sunulacaktır.

Giriş bölümünü takip eden ilk bölüm olan ’Hücreler’ bölümünde beş osilatör modeli
sunulmaktadır. İlk osilatör (Osilatör 1) çalışmalara referans olan gevşemeli osilatördür
ve modelinde bir parça parça doğrusal fonksiyon bulunmaktadır. Bu fonksiyon,
iki mutlak değer fonksiyonu ile gerçekleştirilebilir. Osilatör 2, yeni bir gevşemeli
osilatör modelidir ve bu doktoranın orjinal önermelerindendir. Model yalnızca bir tane
işaret (signum) fonksiyonu barındırır. Osilatör 3 ise lojik osilatör olmakla birlikte,
Osilatör 1 ve 2’ye ait dinamik davranışın taklidini yapmaktadır. Kısaca, gevşemeli
osilatörde mevcut iki durum değişkeninin birbirine yakın (tepe) değerlerde bulunduğu,
biri pozitif diğeri negatif iki tepe durum, ve bunlar arasında farklı yörüngeler üzerinden
gerçekleşen iki geçiş durumu, Osilatör 3’teki dört durum ile modellenmiştir. Lojik
osilatörün, gevşemeli osilatöre davranışsal olarak benzetilerek sentezlenmesi tezin
literatüre katkılarındandır. Osilatör 4 ise yeni bir zaman gecikmeli kaotik sistemi,
önerdiği iki seviyeli çıkış veren bir doğrusal olmayan fonksiyon ile sunar. Modelinde
bulunan doğrusal olmayan fonksiyonun seviye sayısı sistematik şekilde arttırılarak çok
sarmallı çekici üreten kaotik model elde edilmiştir. Osilatör 5 olarak anılacak olan
bu modelde doğrusal olmayan fonksiyonun genelleştirilmesi verilir. Yeni önerilen
doğrusal olmayan foksiyonları ile hem Osilatör 4 modeli hem de Osilatör 5 modeli
tezin literatüre katkılarındandır.

xxvii

Üçüncü ana bölüm olan ’Ağlar’da, beş osilatörden ilk dördü kullanılmakta ve farklı
iki tip ağ kurulmaktadır. Osilatör 1, 2 ve 3 ile hücresel doğrusal olmayan ağlar
oluşturulmuş, Ağ 1, 2 ve 3 isimleri verilmiştir. Dördüncü osilatör (kaotik zaman
gecikmeli osilatör) ile farklı bir tip ağ kurulmuştur. Ağ 1 referans modeldir ve tezde
bilgilendirme amacıyla bulunur. Her üç ağ üzerinde, doğrusal olmayan dalgalardan,
otodalga ve yürüyen dalganın üretilmesi ve yayılması gösterilmiştir. Ağ 2 ve Ağ 3 için
otodalga ve yürüyen dalgaları üreten bağlantı kuralları ve parametreler tezde önerilen
yeniliklerdendir. Üç ağda aranan ilerleme, ardı ardına ve lokasyonu değişen kaynak ile
üretilen yürüyen dalgaların, 2 boyutlu uzayda iç içe geçmiş ve Doppler Etkisini ortaya
çıkarmış dalga çeperleri oluşturmasıdır. Çalışmalarda üç ağda da Doppler Etkisinin
gözlenmesi başarılmıştır. Ağların hücreleri otonom osilasyon yapan dinamikte iken
otodalga yayılmakta, tezde açıklanan kurallar ile çift kararlı (bistable) dinamiğe sahip
kılındıklarında ise yürüyen dalga yayılabilmektedir.

Ağ 1, 2 ve 3, beş farklı metrik ile karşılaştırılmıştır. Karşılaştırma esnasında hücreler
çift kararlı davranışa ayarlanmış, yürüyen dalga yayılmıştır. Metrik 1, dalga çeperi
geçiş periyodu olan d büyüklüğünün çözünürlüğüdür. Ağ 3 neredeyse 2 değere
nicelenmiş d üretebilir, Ağ 2 dört farklı değerde, Ağ 1 çok daha fazla değerde
d üretebilir. Tez, Doppler Etkisinin sonucu olarak kaynak hareketi ile ilişkilenen
d değişkeninin analizini uygulama kısmında kullanır. Dolayısyla, d’nin niceleme
seviyesindeki fazlalık, analiz işleminde sonuçların keskinliğini etkiler.

Metrik 2 elektronik gerçekleme karmaşıklığıdır. Ağ 3’ün lojik devre olması sebebiyle,
modele uygun gerçekleme az sayıda transistor ile mümkündür. Ağ 1 ve 2 ise sürekli
zamanlı modellere sahip olduğundan analog devre olarak gerçeklenebilir. Modele
uygun, yüksek doğrulukta çalışacak, gerçeklemenin karşılaştırıcı, toplayıcı, integre
edici, kuvvetlendirici, çoklayıcı gibi bileşenleri çok sayıda transistor gerektirir. Ağ
1 gerçeklemesi, daha karmaşık olan doğrusal olmayan fonksiyonu sebebi ile Ağ 2
gerçeklemesinden karmaşık olacaktır.

Metrik 3 uzaysal-zamansal çalışma bölgesinde ağ üzerinde yayılan dalga çeperlerinin
yayılma hızıdır. Sürekli zaman modelli Ağ 1 ve Ağ 2’de hız saniye birim
zamanda değerlendirilirken, ayrık zamanlı Ağ 3’te hız iterasyon adımına göre
değerlendirilmektedir. Ancak, modellerin sayısal yöntemler ile çözümü, her üçünü
de ayrık zamanlı ve kaşılaştırılabilir hale getirir. Buna göre Ağ 3 en hızlı dalga yayılan
ağdır. Ağ 2’de de Ağ 1’e göre daha hızlı dalga yayılır.

Metrik 4, ağdaki hücrelerin (1 ve 2’de) eyer noktaları arasındaki hareketlerinde geçen
süre ve (3’te) tepe durumlar arasındaki hareketlerinde geçen süredir. Metrik 3’teki
gibi, yeni durumuna en hızlı yerleşen hücreler Ağ 3’tekiler, daha yavaş yerleşenler Ağ
2’dekiler, ve en yavaş yerleşenler Ağ 1’dekilerdir. Yerleşme hızı, giriş işareti ile yeni
dalga yaratma sıklığını üstten sınırlandıran bir büyüklük olarak değerlendirilmelidir.

Yayılan dalga çeperlerinin eğriliği Metrik 5’tir. Ağ 3’te yayılan yürüyen dalga ve
otodalga çeperleri dörtgen şeklindedir. Ağ 2’te otodalgalar dörtgen şekilde yayılırken,
yürüyen dalga için parametre araştırmasında, uygulanan bir ofset ile sistem dinamiği
sekizgen dalga çeperi üretecek hale getirilmiştir. Ağ 1 çember şekle sahip dalga
formları yayabilmesi sayesinde diğer ikinsine göre uygulamalarda avantajlı konuma
gelmektedir.

xxviii

Ağlar ana bölümünün içerdiği son ağ bir boyutlu, tek yönlü bağlantıya sahip zaman
gecikmeli hücrelerden kurulu ağdır. Bu ağ, kaotik osilatörler arasında sezgisel
(anticipating) senkronizasyonun kurulabildiğini göstermektedir.

Takip eden ana bölümde Hücreler ve Ağlar bölümünden modellerin bir kısmının
gerçeklemesi için yapılan çalışmalar sunulmaktadır. Ağ 1’in ileri Euler metodu
ile ayrıklaştırılmış hali sayısal sistem olarak tasarlanmış ve seçilen Sahada
Programlanabilir Kapı Dizisi (Field Programmable Gate Array, FPGA) üzerinde
gerçeklenmiştir. Yapılan gerçeklemede, 2008’de gerçeklenen kayan nokta sayı
formatıyla çalışan aritmetik devreler yerine sabit nokta aritmetiği kullanılmıştır.
Devrenin çalışma performansı ve FPGA üzerinde kapladığı alan açısından referans
tasarım ile karşılaştırması sunulmuştur. Ayrıca, Grafik İşleme Birimi (Graphics
Processing Unit, GPU) üzerinde yine Ağ 1 modeline ilişkin benzetim sonuçları elde
edilmiştir ve gerek Merkezi İşlem Birimi (Central Processing Unit, CPU) üzerinde
çalışan benzetimlerden, gerek FPGA gerçeklemelerinden daha yüksek performans elde
edilmiştir.

Ağ 3’ün gerçeklemesi FPGA’larda var olan ve günümüzde hala geliştirilmekte olan bir
özelliğin ağ gerçeklemesine katkısı incelenerek yapılmıştır. Dinamik Kısmi Yeniden
Yapılandırma (Dynamic Partial Reconfiguration, DPR) adlı bu özellik, ile sayısal
devrenin bir kısmı çalışırken diğer bir kısmı değiştirilebilir. Bu özellik, Ağ 3’ün bazı
hücrelerinin çalışma esnasında değiştirilmesi sağlanacak şekilde kullanılmıştır. Elde
edilen sonuçlara göre, FPGA alanından tasarruf sağlanmış fakat öte yandan yalnızca
özelliğin aktif tutulmasını sağlayan ek alan tüketimi sorunu da tespit edilmiştir.

Bu doktora çalışmasındaki elektronik gerçeklemelerin çoğunluğu zaman gecikmeli
sistemler (Osilatör 4, 5) ve ağları (Ağ 4) için yapılmıştır. İki seviyeli doğrusal
olmayan fonksiyonla önerilen yeni modelin en büyük avantajı gecikme hattının
gerçeklenmesinde görülür. Sayısal devre elemanlarından DEĞİL kapısı (evirici
tampon, inverting buffer) ve tutucular, özellikle D tipi tutucu (flip-flop) ile ikili
işaretler geciktirilebilir. Senkron tutucular ile yapılan gerçeklemede örneklemeli
(sampled-data) sistem modeli kullanılması uygun olur. Bu ana başlık altında anlatılan
gerçeklemenin ilki hem DEĞİL kapısı gibi asenkron cevap verebilen (saat işaretsiz)
hem de tutucu dizisi kadar uzun gecikme süresi sağlayabilen bir gecikme hattı
yapıtaşıdır. Tezde, Asenkron Gecikme Çiftleyici (Asynchronous Delay Doubler,
ADD) adı verilen bu yeni devre ile iç içe kullanım sayesinde üstel artan gecikme
süreleri elde edilebilmiş, bu sayede zaman sabiti büyük olan ayrık analog integrator
devrenin ihtiyaç duyduğu uzun gecikme sağlanabilmiştir. Osilatör 4’ün analog
integrator, D tipi tutucu gecikme hattı gerçeklemesi; analog integrator, ADD gecikme
hattı gerçeklemesi; sayısal integrator, DEĞİL kapısı gecikme hattı gerçeklemesi
aynı ana bölümde alt bölümler olarak sunulmaktadır. Bunları Osilatör 5’in analog
integrator, D tipi tutucu gecikme hattı gerçeklemesi; Ağ 4’ün analog integrator, D tipi
tutucu gecikme hattı geçeklemesi ve yine Ağ 4’ün sayısal integrator, D tipi tutucu
gecikme hattı gerçeklemesi takip eder.

Sonuçlardan önceki son bölüm olan ’Uygulamalar’ ana bölümü, iki bölümden oluşur.
İlkinde Ağ 1, kestirim yapılmaksızın geribeslemeli hareket planlama algoritmasında
kullanılır. Ardından Doopler Etkisini ve onunla üretilen yeni özniteliği kullanan
öngörülü geribeslemeli hareket planlama algoritması sunulmaktadır. Öngörülü
planlama tezin içerdiği yeniliklerdendir. Geribeslemeli hareket planı, ayrıklaştırılmış
uzayda uzayın her ayrık parçası için bir hareket vektörünün hesaplanmış olduğu

xxix

plandır. Uzayın, ayrıklaştırılmış olması sebebiyle hücresel doğrusal olmayan ağlarla
modellenmesi mümkün olur. Bu ağlar üzerinde dalga hedef noktadan doğar. Dalga
yayıldıkça, çeperin ulaştığı hücreler geliş açısını tespit ve kayıt ederek geribeslemeli
hareket planı oluşturur. Bu yöntemde geribesleme ifadesinden kasıt, planlama için
yayılan dalganın tüm ağa dağılması dolayısıyla modellenen fiziksel dünyanın tüm
noktaları için çözümün bulunmuş olması, bu sayede hedefe giden yolların tek seferde,
tüm hücreler için aynı anda tespit edilmesidir. Üretilen sonucu kullanan sistem rota
üzerinde hata yapsa da elde edilen çözüm sayesinde yeniden hesaplamaya gerek
kalmaksızın hedefe doğru ilerlemesi mümkün olmaktadır.

’Uygulamalar’daki bir diğer alt bölümde de zaman gecikmeli Osilatör 4’ün rasgele
bit dizisi üretiminde kullanımı konusunda elde edilen araştırma sonuçları verilmiştir.
Önerilen kaotik sistemlerin gecikme hattından çıkan bit dizisi rasgele sayı olarak kabul
edilir ve NIST’in istatistiksel test ortamıyla dizi sınanır. Uygun düşük hızda yapılan
örnekleme sonucunda testi başarıyla geçen bit dizileri elde edilebilektedir. Ayrıca
sezgisel senkronizasyon sağlayan ağ ile Osilatör 4 tabanlı rastgele bit üreticisinin
gelecekte üretteceği değerlerin önceden tespit edilebildiği gösterilmiştir.

Tez boyunca yürütülen çalışmalarda, yeni modeller, yenilikçi gerçeklemeler ve
yeni uygulamalara ulaşılmıştır. Her ne kadar tez organizasyonu, hücreler, ağlar,
gerçeklemeler ve uygulamalar bölümleriyle yapılmış olsa da içeriği oluşturan
çalışmalar, farklı alt bölümlerin bir arada ele alındığı şekilde yürütülmüştür. Bu
sebeple, tez çalışması boyunca yayınlanmış olan veya hakem değerlendirmesinde
bulunan bildiri ve makaleler farklı alt bölümlerden parçalar ihtiva etmektedir. Çalışma
süresince 8 uluslararası konferans bildirisi sunulmuş, 5 dergi makalesi ve 1 kitap
bölümü yayınlanmıştır. Ayrıca henüz hakemlik süreci tamamlanmayan 1 dergi
makalesi mevcuttur.

xxx

1. INTRODUCTION

This thesis is introduced through four steps. It starts with the purpose and then

reviews the literature to construct the necessary background. They are followed by

the hypothesis with achieved contributions. Introduction ends with outlining the thesis

organization.

1.1 Purpose of Thesis

Besides the linear systems with narrower variety in dynamics, simple yet functional

nonlinear systems provide diverse solutions to engineering problems. The overall

aim of the thesis is to present a study to advance the knowledge about three

specific types of nonlinear systems which are: relaxation oscillators, logic oscillator

and time-delay chaotic oscillators. The contribution of the thesis comprises the

mathematical models of individual systems, coupling schemes in order to constitute

their networks, implementations and applications. Empowering these systems with

novel functionalities together which implies expansion of the application field stands

for the main motivation. At every stage of the study, implementability of the developed

models has been regarded, although a limited number of the proposed systems have

been implemented within this thesis. Hence, proposing and synthesizing processes of

new systems and their networks comply with the implementability intention.

1.2 Literature Review

The lumped circuit approximation simplifies the electric circuit problems when the

physical dimensions of the circuit is small enough to neglect the electromagnetic

propagation. Although every electrical system is actually an electromagnetic system,

the spatial behavior of the system is ignored when it is assumed to be a lumped circuit.

An engineer needs such an approximation to be able to solve the problem easily within

an acceptable error limit. Instead of ignoring the spatial features of the problem,

discretizing the spatial dimensions also helps to suggest numerical solutions to the

1

problems. For example, modeling the three dimensional (3D) physical space with a

regular grid form, then mapping the spatially discretized Maxwell’s equations to this

artificial discrete space establish the medium for numerical analysis or emulation. The

given method is presented by Balsi in 1995 [7]. It is mainly based on a work by

Roska in 1995, which investigates simulating nonlinear waves and partial differential

equations using Cellular Neural Network (CNN) [8]. CNN has spread to many

scientific fields, such as the wave simulation example given above, and becomes the

template structure for spatial discretization, since its invention by Chua and Yang in

1988 [9].

Like many other engineering inventions, CNN is defined with its known applications

too. Chua and Yang first targeted image processing and pattern recognition

applications [10]. As CNN is inspired by cellular automata [11] for its network

structure and artificial neuron models for its node (or cell) dynamics, image or

two dimensional (2D) pattern processed by CNN has discrete-space continuous-time

properties. In the following years, the neuron model has been changed to many

different nonlinear systems, which causes CNN to be approved as Cellular Nonlinear

Network [12]. Due to the advances in CMOS circuit technology, mixed-signal circuits

has been started to employ in CNNs. Examples of mixed-signal implementations,

which are called analogic in CNN field, are CNN-UM [13], ACE4k [14], ACE16k

[15]. These implementations have given their place to digital only solutions in recent

years [3, 16–18]. On the other hand, the application spectrum has been expanded to

the control of the electromechanical systems, artificial pattern generation, biological

system emulation, and motion planning. One of two focuses in this thesis is the motion

planning using implementable CNN models which have oscillatory cells. Further

literature review and background for this focus is presented at the beginning of the

related chapter and sections.

There exist another focus in this thesis, which is random number generation, using

implementable time-delay systems which exhibit chaotic oscillation. Beginning with

the first-order Delay Differential Equation (DDE) modeling of some physiological

systems by Mackey and Glass [19] in 1977, research on time-delay systems have

gained momentum. The chaotic behavior of their system exhibits some relation to

dynamical respiratory and hematopoietic diseases, and this points out the importance

2

of chaos control in medicine. The abstract model of time-delay chaotic systems

consists of an integrator (which also sums signals), a delay line and a nonlinear

feedback function. On the implementation side, Namajunas et al. introduced the first

circuit for Mackey-Glass (MG) model in 1995 [20]. The exponential nonlinearity

of MG model has been approximated by coupling two complementary junction

field-effect transistors in a special way in this work. A saturated piecewise nonlinear

feedback function has been used in time-delay chaotic system model by Lu in

1996 [21] and it has been analyzed as a cell of cellular neural networks with delay

(DCNN) in [22] without any implementation. Tamasevicius et al. implemented

the system using non-saturated piecewise nonlinear feedback function with the same

delay line proposed in [20], which is assembled by T-type LCL filters, in 2006 [23].

Buscarino et al. widen the time-delay chaotic system implementations using a different

odd-symmetric non-saturated piecewise nonlinear feedback function with cascaded

low-pass second-order Bessel filters as delay line [24]. References indicate that

the main bottleneck of the time-delay chaotic system implementations is the delay

part. In order to overcome this bottleneck, a configuration of digital shift registers,

which is coupled to the remaining analog part of the system with analog-to-digital

converter (ADC) and digital-to-analog converter (DAC), has been introduced in 2012

[25]. From the implementation point of view, recent works draw the attention to

the simplification of chaotic system which also covers the delay line design. Models

with new nonlinearities, their implementations, and their successful application in true

random bit generation have been covered within this thesis. Following chapters and

sections include further related literature review and background.

1.3 Hypothesis and Contributions

2D Cellular Nonlinear Networks, which reveals the Doppler Effect of nonlinear wave

propagation, provide features in order to predict the future positions of the target in 2D

motion planning problems. In this thesis, the reader finds three cell models which are

appropriate to be employed in CNN. The configuration of the first relaxation-oscillator

cell in order to control the nonlinear wave propagation, the nonlinearity and the

coupling scheme of the second relaxation oscillator cell, and control and coupling

scheme of the third logic oscillator cell are the first level contributions of this

3

thesis. Revealing the Doppler Effect (DE) on the networks constructed by these

three oscillators, employing the effect for prediction, then utilizing the prediction

for increasing the tracking performance in 2D motion planning are the following

contributions.

Furthermore, this thesis states that binary symbol sequences, autonomously generated

by time-delay systems with at least one binary output feedback function, are true

random bit sequences. The novel nonlinear feedback function, its generalization,

simply implementable delay lines, sampled-data system model properly modeling the

delay line, method for anticipating future states, and circuit implementations are the

contributions related to this hypothesis.

1.4 Organization

The thesis is divided into four chapters, which are: Cells, Networks, Implementations,

and Applications. Two relaxation oscillators, one logic oscillator, one chaotic oscillator

with binary feedback function and a chaotic oscillator with generalized feedback

function have been proposed, investigated, and presented in Chapter 2. In Chapter

3, the reader will find CNNs composed of two relaxation oscillators and the logic

oscillator. Coupling methods, and their effects are given in related sections. A

one dimensional (1D) network with unidirectional coupling scheme, which causes

anticipating synchronization between the chaotic oscillators, is also proposed and

presented in Chapter 3. Chapter 4 includes realization of some cells and networks from

previous two chapters. Digital implementation of a relaxation oscillator based CNN

on a Field Programmable Gate Array (FPGA) and its software implementation on a

Graphics Processing Unit (GPU) is reported. A recent method for resource efficiency

in FPGA implementations, which is called Dynamical Partial Reconfiguration (DPR),

is studied for CNN composed of logic oscillator and reported in this chapter. Seven

implementations related to time-delay chaotic oscillator and its network is also

included to this Chapter. These implementations employ analog and digital parts

in different configurations and yield impressive results. Applications which test the

hypotheses and exhibit the results are organized in Chapter 5. Feedback motion

planning enhanced with future state prediction of a moving target by Doppler Effect

justifies the first hypothesis. On the other hand, up-to-date NIST statistical test suite,

4

justifies the randomness of bit sequences generated by proposed time-delay chaotic

systems. A conclusion chapter resides after these four chapters including suggestions

on possible future works.

5

6

2. CELLS

This chapter presents and investigates five nonlinear dynamical systems without any

coupling. All the systems in this chapter have been evaluated as potential cells of

proper networks. Two of them are continuous-time second-order nonlinear systems

which exhibit relaxation oscillation behavior. One of these two is known as the

simplest relaxation oscillator model proposed by Yalcin in 2008 [26]. Its alternative,

which is a novel contribution of this thesis, explains the relaxation oscillation

phenomenon with a simpler model in terms of the nonlinear function. These two

relaxation oscillators are followed by the simplest 2-state logic oscillator. The third

cell is a logic oscillator which is generalized to a 4-state one, thus some of its features

are correlated with former relaxation oscillators. The last two are time-delay nonlinear

systems which are capable of exhibiting chaotic oscillation. The main difference

between these two cells is the nonlinearity where one type of nonlinearity causes

mono-scroll attractor and the other causes multi-scroll attractor generation. Both

mono-scroll and multi-scroll attractor generators are also modeled as sampled-data

systems, which is the first time that chaotic time-delay systems are modeled as

sampled-data system, according to the author’s best knowledge. Besides sampled-data

modeling, the time-delay cells have further novel contributions such as new binary

output nonlinearity and its generalized form. This chapter is organized as follows.

Two relaxation oscillators are presented in Section 2.1. Logical oscillator appears in

Section 2.2. Section 2.3 explains the studies on time-delay chaotic oscillators.

2.1 Relaxation Oscillators

Relaxation oscillations were first observed by van der Pol in 1926. He discovered that a

triode circuit may exhibit self-sustained oscillations in varying waveforms from almost

sinusoidal to ones with sharp edges. As explained by Wang in 1999 [27], the period

of the oscillation is proportional to the relaxation time (time constant) of the system

7

in the latter case. The term relaxation oscillation comes from this phenomenon. The

properties of relaxation oscillations are defined by van der Pol as follows [28]:

1. The period of oscillations is determined by some form of relaxation time.

2. They represent a periodic autonomous repetition of a typical aperiodic phe-

nomenon.

3. Drastically different from sinusoidal or harmonic oscillations, relaxation oscillators

exhibit discontinuous jumps.

4. A nonlinear system with implicit threshold values, characteristic of the all-or-none

law.

This section investigates two relaxation oscillator models. Subsection 2.1.1 is a

reminder of Yalcin’s model. In Subsection 2.1.2, a novel model is proposed which uses

a signum function as the nonlinearity. For both systems, network models, parameters

values, phase portraits and state signal graphs in time have been given in the following

two subsections.

2.1.1 Oscillator using absolute value nonlinearity

This oscillator model originally inspired from ACE16k CNN chip [15] and proposed

by Yalcin in 2008 [26]. The model has constructed CNNs in wave processing

applications [3, 29, 30]. Below is the model which is called Oscillator 1 in this thesis.

Oscillator 1 is modelled by:

ẋ(t) = αx(t)+βy(t)+g(x(t)),

ẏ(t) = γx(t)+ εy(t),
(2.1)

with the nonlinearity given by

g(x) =−µ(|x+λ |− |x−λ |−2x), (2.2)

where x,y ∈ R. The desired dynamics is obtained with parameters: α = 4.2, β =

−3, γ = 1, ε = −0.5, µ = −10, λ = 1. In [26], the nonlinearity g(·) is given by a

conditional expression. However, we prefer to write it using a basic special function,

the absolute value, to be able to compare with other systems. The phase portrait with

8

nullclines and oscillator’s limit cycle is plotted in Figure 2.1. Oscillating state in time

domain is plotted in Figure 2.2. As shown in the figures, y-state slowly changes. When

it across the threshold value, it causes x-state to change quickly. As in the definition,

the relaxing quantity here is the y-state.

Figure 2.1 : Phase portrait of Oscillator 1.

Figure 2.2 : x(t) and y(t) signals generated by Oscillator 1.

2.1.2 Oscillator using signum nonlinearity

In order to simplify the model, a new relaxation oscillator with a single signum

function has been investigated. The absolute function can be decomposed into two

signum functions with two multiplicative nonlinearities. Thus, in comparison with

the nonlinearity of Oscillator 1, one signum function makes the system much simpler.

9

New model is called Oscillator 2 in this thesis. Oscillator 2 is modeled by

ẋ(t) = (−α +µ)x(t)−βy(t)+g(x(t),y(t)),

ẏ(t) = γx(t)+ εy(t),
(2.3)

with the nonlinearity given by

g(x,y) =−µsign(αx+βy), (2.4)

where x,y ∈ R. The desired dynamics is obtained with parameters: α = 5.4, β =−6,

γ = 2, ε =−2, µ =−10. This oscillator is simpler than Oscillator 1 as it has only one

sign(·) nonlinearity. The phase portrait with nullclines and oscillator’s limit cycle is

plotted in Figure 2.3. State oscillation in time-domain is plotted in Figure 2.4.

Figure 2.3 : Phase portrait of Oscillator 2.

Figure 2.4 : x(t) and y(t) signals generated by Oscillator 2.

10

Further analysis on the effect of signum function is performed as follows: As g(x,y) =

±µ , x-nullcline is y = ((−α + µ)/β)x± µ/β , which means x-nullcline is shifted up

by µ/β in one half of the state space and shifted down by −µ/β in other half. The

argument of signum function in g, which is αx+ βy, defines a line y = (−α/β)x.

Signum function divides the state space into two halves by this line. g = µ above the

line and g =−µ below the line. Thus, x-nullcline is y = ((−α +µ)/β)x+µ/β above

the line and vice versa below. As plotted in Figure 2.3, x-nullcline is shifted up by µ/β

above the y = (−α/β)x line, and shifted down by −µ/β below.

As a result, −α/β is the slope of inner (middle) piece of x-nullcline, (−α + µ)/β is

the slope of outer (right and left) pieces of the nullcline. The breaking points are the

intersections of inner and outer lines given by

y = (−α/β)x = ((−α +µ)/β)x±µ/β ,

−αx = (−α +µ)x±µ,

x =∓1,

y =±α/β .

(2.5)

As parameter β is employed both in (2.3) and (2.4), slope of both inner and outer pieces

are controlled by β . If β in (2.3) is switched by a new parameter φ > 0, only slope

of outer pieces change sign. Thus, the x-nullcline of Oscillator 2 resembles Oscillator

1’s. In this case, the breaking point should be recalculated.

2.2 Logic Oscillator

The simplest digital oscillator is defined by its Boolean state equation

x(tk+1) = x′(tk), (2.6)

where x′ stands for logical inverse of x ∈ {0,1} and tk is the k-th sampling time. An

abstraction may be done for relaxation oscillators in Subsection 2.1.1 and 2.1.2, such

as two state variables approximate each other close to two different points in the state

space and they follow two different trajectories in order to move between these two

approximation regions. Abstraction leads one who needs to discretize the dynamics

of relaxation oscillators to create 4 discrete states. Therefore, in order to mimic the

given two relaxation-oscillators, the digital oscillator should have at least 4 states, in

11

which two states are for peaks and other two states are for the transitions between the

peaks. Thus, rising and falling transitions in a relaxation oscillation may be represented

separately. Because it is a logic system 4 states are coded by 2 binary state variables.

In (2.7), a simple 4-state logic oscillator, which is called Oscillator 3 in the thesis, has

been given.

x(tk+1) = y(tk)

y(tk+1) = x′(tk)
(2.7)

Figure 2.5 shows the state diagram of the Oscillator 3, whose state word is (x,y). It

oscillates through the low peak state (00), rising state (01), high peak state (11), falling

state (10), and continues to low peak state (00). State oscillation in time-domain is

plotted in Figure 2.6.

Figure 2.5 : State diagram of Oscillator 3.

Figure 2.6 : x(t) and y(t) signals generated in Oscillator 3.

2.3 Time-delay Sampled-data Chaotic System

The research on chaotic behavior of a new time-delay systems is comprised in this

section. In Subsection 2.3.1, a new binary function is employed in Mackey-Glass

system. Then, the system is modeled as sampled-data system which is the first example

for chaotic systems. Sampled-data modeling contributes to the realization of the

proposed system. However, implementations are left to Chapter 4. The following

12

subsection 2.3.2 generalizes the system nonlinearity in order to generate multi-scroll

chaotic attractor. In both subsections, the chaotic behavior are proved by numerically

calculated largest Lyapunov exponents and bifurcation diagrams.

2.3.1 Generating mono-scroll attractor

There has been an increasing interest in DDE to generate chaotic dynamics since

Mackey-Glass equation [19] describing physiological control systems was introduced.

The first circuit realization to integrate Mackey-Glass equation was presented

by Namajunas et al. [20] in 1995. Despite its simplicity, first-order nonlinear

differential-delay equation of Mackey-Glass system can exhibit various dynamic

behavior on a single state variable. Inspired by Mackey-Glass system, a new first-order

nonlinear differential-delay equation with piecewise nonlinearity has been introduced

by Uwe an der Heiden and M.C. Mackey [31] and its circuit realization was given by

Losson et al. [32]. Another DDE with piecewise linear characteristic, motivated by

Cellular Neural Network with delay, was introduced by Lu and He [21] and its chaotic

behavior was experimentally verified by [22]. Autonomous and non-autonomous

systems require to be at least third-order and second-order continuous-time systems,

respectively, in order to exhibit chaos. However, a first-order continuous-time system

with time-delay feedback can generate chaos. Although chaotic time-delay systems

may be of smaller degree than the other types of systems, they need a particular

component, the delay-line which requires attention when designing the system model.

In this subsection a new time-delay system is proposed. Its delay line is modelled

with sampled-and-hold blocks which converts the proposed system into a time-delay

sampled-data system. Although sampled-data system is well-known in digital control

systems and some related techniques have been recently used for synchronization of

chaotic systems [33–35], a chaotic sampled-data system has yet not been introduced

in the literature. One should notice that systems employing digital delay line, such as

these in [25,36], and systems employing a digital integrator [37] can also be modelled

as sampled-data systems due to their hybrid (digital and analog) structure.

Consider the following delay differential equation:

ẋ(t) =−x(t)+α f (x(t− τ)) (2.8)

13

where α ∈ R is the bifurcation parameter, τ is the delay and the nonlinearity f (·)

(Figure 2.7) is given by

f (x) =
{
−1 |x| ≤ 1
1 |x|> 1. (2.9)

This equation with small difference has been used by Uwe an der Heiden and M.C.

Figure 2.7 : The nonlinear function f (x) and its approximate function g(x) with γ = 20
given in (2.10).

Mackey [31] to model the processes in various areas of biology and chaotic dynamics

of the system. Figure 2.8 shows the chaotic attractor of the presented system (2.8) in

x(t)− x(t− τ) plane for α = 2 and τ = 8.

The nonlinearity of the system is a discontinuous function and it can be approximated

by tanh(·) functions such as

g(x) = tanh(γ(−x−1))+ tanh(γ(x−1))+1. (2.10)

Figure 2.7 shows the f (·) function and its approximation g(·). The introduced system

(2.8) with this smooth approximate function (2.10) evolves in the same type of chaotic

attractor.

Here, S = {x(t) : x(t) = x(t− τ)} is defined as a Poincaré section for computing the

bifurcation diagram. The bifurcation diagram of the system (2.8) versus parameter α is

shown in Figure 2.9(a). For a quantitative measure of the system dynamics, Lyapunov

exponent [38] versus the parameter α is displayed on the same figure (Figure 2.9(a))

14

Figure 2.8 : Chaotic attractor of the system (2.8).

with the bifurcation diagram. These results show a good agreement between the values

of the Lyapunov exponent and the observed bifurcation diagram. The presence of a

positive Lyapunov exponent along with the observed strange attractor and bifurcation

diagram indicates chaotic behavior in the system. As a result, the attractor of the

introduced system (2.8), which is illustrated in Figure 2.8, is a chaotic attractor.

In order to understand the sensitivity of the dynamical behavior of the system (2.8)

to the delay τ , the variation of the Lyapunov exponent versus the delay is displayed

in Figure 2.9 (b) with the bifurcation diagram. Figures 2.9(a)-(b) indicate that the

introduced system shows chaotic dynamics within a wide range of parameter values of

α and τ .

Next, a time-delay sampled-data system which is remodeled from the system (2.8) is

introduced where the delay part of the system is composed of sample-and-hold blocks.

The block diagram of the system (2.8) is shown in Figure 2.10(a). The nonlinearity

f (x) of the system (2.8) is reformulated:

f (x) = fc(h(x)) =
{

1 h(x) = 1
−1 h(x) = 0 (2.11)

where h(x(t)) is a binary output function such that the output of function is 0 while

|x(t)| ≤ 1, else it is 1. This new formulation of the nonlinearity allows to implement

h(x) with two unit-step functions (u(·)) such as

h(x) = u(x(t)−1)+u(−x(t)−1). (2.12)

15

(a)

(b)

Figure 2.9 : Bifurcation diagram of the system (2.8) with the nonlinearity (2.10) versus
a) α and b) the delay value τ . Figures also include spectrum of the Lyapunov exponent
versus the same parameters. The observed dynamical behaviors of the system in
bifurcation diagram and the calculated Lyapunov exponents are in a good agreement
for both figures.

16

Figure 2.10 : a) Block diagram of the system (2.8), b) the sequence of the blocks is
rearranged in order to have binary input for the delay block. f (·) is decomposed into
two functions fc(·) and h(·) so that f (·) = fc(h(·)). Then the delay block is placed
after the function h(·) as in (2.12).

The nonlinearity of the system is a composition of the functions h(·) and fc(·). Here,

the function h(·) is the binary output function and nonlinear characteristic of the

function f (·) can be realized by this function. The function fc(·) given in (2.11)

converts 0 to −1 and fc(1) is equal to 1.

Figure 2.11 : Block diagram of the chaotic time-delay sampled-data system (2.15).

Furthermore, as f (·) is not a function of time, therefore one can write

f (TDelay[x(t)]) = TDelay[f (x(t))] (2.13)

where TDelay[x(t)] = x(t − τ). The above equation implies that the function of the

delayed signal is equal to the delayed function of the signal. Therefore, the delay

block TDelay[·] can be placed after the nonlinear block which implements the function

17

f (·). Hence, the new block diagram representation of the system is shown in Figure

2.10(b). In this work, the delay block is placed just before fc(·).

The block diagram of the system is given in Figure 2.11 after the sample-and-hold

operation is introduced into the model in Figure 2.10(b). This type of system is known

as sampled-data system [39], therefore the system given with block diagram in Figure

2.11 will henceforth be called chaotic time-delay sampled-data system. The signal at

the delay line output is h(x(tk− τ)) (Figure 2.11) which is given by

h(x(tk− τ)) = TDelay[h(x(tk)]. (2.14)

Thus, the mathematical model of the introduced chaotic time-delay sampled-data

system is

ẋ(t) =−x(t)+α f (x(tk− τ)), tk ≤ t < tk +Ts (2.15)

where Ts is the sampling period and tk is the kth sampling time. This system will also

be called Oscillator 4 throughout this thesis. The system (2.15) has a similar strange

attractor in x(t)−x(t−τ) plane for α = 2, τ = 8 and Ts = 0.1 as shown in Figure 2.12.

Figure 2.12 : Chaotic dynamics of the system (2.15) for Ts = 0.1 in x(t)-x(t−τ) space.
The characteristic shape of strange attractors of the system (2.8) (see Figure 2.8) and
the chaotic time-delay sampled-data system (2.15) for Ts = 0.1 are similar.

18

In order to examine the dynamics of the system (2.15), S = {x : x(t) = x(t − τ)} is

again chosen as Poincaré section for computing the bifurcation diagram. Figure 2.13

shows the experimentally obtained bifurcation diagram versus parameter α for Ts =

0.1. Lyapunov exponent versus the parameter α is displayed on the same figure (Figure

2.13) with the bifurcation diagram. Figure 2.13 experimentally proves that the obtained

attractor in Figure 2.12 is a chaotic attractor for the given parameter set. The Figures

2.9 and 2.13 show that the systems (2.8) and (2.15) have similar dynamical behavior.

Specially, the system dynamics are almost identical for the small sampling period.

Figure 2.13 : Bifurcation diagrams of the system (2.15) with the nonlinearity (2.10),
τ = 8 and Ts = 0.1 versus α . Figure also includes the spectrum of the Lyapunov
exponent versus the same parameters. The observed dynamical behavior of the system
in bifurcation diagram and the calculated Lyapunov exponent are in a good agreement.

Dynamics of the sampled-data system depend on sampling period Ts. In the chaotic

time-delay sampled-data system presented in (2.15), the signal is binary in the input

of the zero-order hold block (see Figure 2.11), an error occurs when the input signal

changes the state within the sampling interval. Otherwise the output of the delay line

will be equal to the output of the ideal delay block (h(x(t− τ)) = h(x(tk− τ))). The

gray region in Figure 2.14 represents this situation. The input signal might change any

time between the two samples, therefore h(x(t−τ)) = h(x(tk−τ)) until a change in the

19

state occurs (for example, the output of the delay line will be correct h(x(t− τ)) value

between time t2 and tb (see Figure 2.14)). However, the output of the delay line will not

be h(x(t− τ)) between the time when the state change occurs and the next sampling

time (tb and t3 in Figure 2.14, respectively). In fact, the output of the delay line will

be h(x(t2− τ)) instead of h(x(t− τ)) where tb ≤ t ≤ t3. This error appears since the

x(t) is a chaotic signal and/or h(x(t)) and sampling signal are not synchronized. The

amount of error depends on the sampling period Ts.

Figure 2.14 : The output of the ideal delay line h(x(t − τ)) and the output of the
sample-and-hold delay line h(x(tk−τ)) where k = 1,2,3. h(x(tk−τ)) is obtained after
the sampling of h(x(t− τ)). These two signal will not be the same between tb (when a
state change occurs between two samples) and t3 (the next sampling time).

Choosing the S = {x : x(t − τ) = −1} as a Poincaré section, the corresponding

bifurcation diagram is depicted on Figure 2.15 to illustrate the behavior of the system

with varying sampling period. The system keeps its chaotic regime while Ts ≤ 0.26.

In order to have similar dynamical behavior with the system (2.8), Ts should be

chosen small. However, the system (2.15) exhibits chaotic dynamics depending on

the bifurcation parameter α also. Figure 2.16 shows how the bifurcation parameter α

effects the behavior of the system. In Figure 2.16, spectrums of Lyapunov exponent

for Ts = 0.02, Ts = 0.25, Ts = 0.4 and Ts = 0.6 versus α are given in the same figure.

Lyapunov spectrums of the chaotic time-delay system (2.8) and the chaotic time-delay

sampled-data system (2.15) for Ts = 0.02 which are given in Figure 2.9(a) and Figure

2.16, respectively, indicate that these two systems show the same dynamical behavior.

The system (2.15) might be in a chaotic region for a large Ts depending on α parameter

(see Figure 2.16). However, a wide range of parameter values which keeps the system

20

Figure 2.15 : Bifurcation diagram and the spectrum of Lyapunov exponent of the
introduced system (2.15) with α = 2 and τ = 8 versus Ts.

(2.15) in chaos does not exists. In order to better understand the dynamics of the system

(2.15), Lyapunov-exponent spectrum is calculated for both Ts and α , in the range of

[0.02, 1] and [0.9, 3], respectively. The obtained Lyapunov exponents are displayed on

(Ts−α)-plane (Figure 2.17) by mapping the Lyapunov exponent which is larger than

0 to a black dot. Gray region indicates that the system produces a periodic motion.

2.3.2 Generating multi-scroll attractor

Since its invention, Chua’s circuit [40] has become a paradigm for chaos studies. The

simple 3-rd order nonlinear system using a 3-segment piecewise nonlinearity generates

a double-scroll attractor in its 3-dimensional state space and has motivated the research

in order to simplify the chaotic systems and increase the complexity of their behavior.

The attention of scientists to multi-scroll chaotic attractors has considerably risen

since the first n-scroll chaotic attractor was introduced by Suykens and Vandewalle in

1993 [41], which is the generalization of the original well-studied Chua’s circuit. The

systematic way of generating additional scrolls in the state-space is proposed as adding

additional break points to the characteristics of nonlinear resistor. Recently, improved

version of Chua’s circuit has been employed for multi-scroll attractor generation [42].

21

Figure 2.16 : Lyapunov exponent spectrums of the system (2.15) for τ = 8 versus α

calculated for Ts = 0.02, Ts = 0.25, Ts = 0.4 and Ts = 0.6.

A second chaotic system (later called Jerk circuit), which has been proposed

by Elwakil and Kennedy in 2001 [43], has gained popularity due to its simple

circuit implementation. Then, the research on multi-scroll attractors has yielded

a generalization in Jerk circuit using hard limiter series [44]. Moreover, locating

attractors in any state variable direction has become possible by the introduction

of the family of scroll grid attractors in 2002 [45]. The given approaches for the

generalization of the nonlinearity have been expanded by using hysteresis [46] and

saturated circuit series [47]. In 2006, Deng and Lu have presented a systematic

method for generating multi-directional multi-scroll chaotic attractors using fractional

differential systems [48]. Besides autonomous systems, non-autonomous techniques

for generating multi-scroll attractors are present in the literature, such as [49].

Stair-type and sawtooth functions, which are used in the implementation of multi-scroll

chaotic generator, have been realized by floating gate-based CMOS structures in a

22

Figure 2.17 : Dynamical behavior of the time-delay sampled-data system (2.15) in
(Ts − α)-plane. Black region indicates that the system is in chaos. Gray region
indicates that the system produces a periodic motion.

recent work [50]. Like stair-type or structure sawtooth functions, multi-segment

quadratic functions are also capable of multi-scroll generation [51]. Since 2006,

researchers find multi-scroll attractor generating systems based on variety of delay

differential equations (DDE).

Since the work by Wang and Yang in 2006, multi-scroll attractors are realized also by

time-delay systems [52]. Both [52] and [53] use the same cascaded LCL filter as delay

line given in [20]. The main difference between [52] and [53] is that the nonlinear

feedback function they used are multi-segment piecewise linear function and hard

limiter function, respectively. Moreover, it has been shown that a modified nonlinearity

of [53] with hysteresis function series also exhibits chaotic behavior in [54]. A chaotic

system generating two double-scroll attractors has been introduced employing a three

segment piecewise function, called threshold controller, by Srinivasan [55]. Besides

the classical first-order systems with nonlinear delayed feedback function, multi-scroll

attractors may also be generated by adding nonlinear delayed control term to higher

order chaotic systems like Chen systems [56]. Another multi-scroll attractor generating

system which uses the nonlinearity in [57] in the model given by [53] has been reported

by Zhang in 2012 [58]. Zhang’s work, using the delay line in [20], also suffers form

the delay line implementation drawback. Apart from all the multi-scroll generating

chaotic time-delay systems cited, Marquez et al. have recently proposed a novel

system implementation, recently [37]. This new system has an optical delay line with

Mach-Zehnder modulator in order to implement nonlinear feedback function and a

23

photodiode which connects the output of delay line to the electrical part. Moreover,

the integrator is implemented by a digital signal processor (DSP).

In [52], a multi-scroll chaotic oscillator is proposed based on the first circuit realization

of the Mackey-Glass model [20]. According to [52], the attractor in Figure 2.8

is a mono-scroll attractor that appears in a ‘V’ shape. If the mono-scroll attractor

is considered with two wings, a double-scroll attractor consists of two mono-scroll

attractors, one of them is in upside down position, like ‘Λ’, and one wing of each

mono-scroll attractor overlap. For three scrolls ‘V+Λ+V’, a ‘W’ shape is yield. To

generate multi-scroll attractor, Wang and Yang have used a piecewise linear feedback

function [52]. Generation of multi-scroll attractor based on the system (2.15), i.e.

Oscillator 5, with a parametrically quantized function is explained here.

Figure 2.18 : A nonlinear function that generates multi-scroll attractor. It has 7
intersections with x

α
line which separates the x-axis into 8 parts and generates 6-scrolls.

The proposed nonlinear function fm(x) for the multi-scroll attractor is discrete in

amplitude and have discontinuous points. fm(x) which is composed by a few

parameters and unit-step functions is given by

fm(x) = o f+
(

h f −
n f w f

α

)
+

2n f

∑
k=0

[(w f

α
+(−1)k+1

(
2h f +

w f

α

))
·u
(
x+w f

(
n f − k

))]

24

Figure 2.19 : A six-scroll attractor generated by the system (2.16).

where o f is the offset, h f is the absolute difference between y = x/α line and fm(x) at

the left most discontinuity on fm(x), if o f = 0. w f is the horizontal distance between

the points of discontinuity on fm(x). n f is the parameter which determines the number

of discontinuities. Number of discontinuities is equal to 2n f + 1, which separates

x-axis into 2n f + 2 regions and generates 2n f -scrolls. Figure 2.18 depicts fm(x) with

parameters n f = 3, o f = 0, h f = 1.5, w f = 0.5, and α = 1.

Using the nonlinearity (2.16) in the system (2.15) yields the new multi-scroll chaotic

system given by

ẋ(t) =−x(t)+α fm(x(tk− τ)), tk ≤ t < tk +Ts. (2.16)

Before further analysis, a six-scroll attractor is generated by the given system with a

parameter set, n f = 3, o f = 0, h f = 1.5, w f = 0.5, α = 1, τ = 20, and Ts = 0.02 whose

trajectory is depicted in Figure 2.19.

Lyapunov exponents measure the exponential rates of divergence or convergence

of nearby trajectories. Systems in a chaotic motion exhibit sensitivity to initial

conditions which means trajectories should locally diverge away from each other [59].

25

Thus, the proposed system’s behavior is analyzed by largest Lyapunov exponents and

accompanying bifurcation diagram using the Poincaré section defined by S = {x(t) :

x(t) = x(t − τ)/α}. Numerical calculation methods for largest Lyapunov exponent

are given in [59–61]. Sprott’s method which is for smooth systems is the basis

of numerical analysis in this subsection. Although other methods, for example the

one based on synchronization [62], appear for non-smooth systems, the estimation of

Lyapunov exponents is not straightforward for them. Hence, a smooth approximation

for the system (2.16) has been suggested, and the results obtained from the smooth

version have been checked by the original model and the experimental circuit. An

approximation of unit-step function is given by

u(x) =


0, x < 0;
0.5 x = 0;
1, x > 0;

= lim
s→∞

tanh(sx)+1
2

. (2.17)

Considering (2.17), the approximation of fm(x) is given by

f̂m(x) = o f+
(

h f −
n f w f

α

)
+

2n

∑
k=0

[
1
2

(w f

α
+(−1)k+1

(
2h f +

w f

α

))
·
(

tanh
(

s f
(
x+w f

(
n f − k

)))
+1
)]

.

In (2.18), s f parameter determines the slope of the tanh function at zero. For the

largest Lyapunov exponents, bifurcation diagrams and phase portrait plots in Figure

2.20−2.25 in this subsection, f̂m(x) is used as the nonlinearity, and s f is set to

50. Other parameter values are the same as Figure 2.19 unless it is the bifurcation

parameter.

The offset parameter determines a bias for the scrolls. Positive offset values cause

the scrolls on the negative half of the state space to disappear. Figure 2.20 shows

the bifurcation diagram and largest Lyapunov exponents versus o f . According to the

figure, in the−1 < o f < 1 range, the system is capable of generating chaotic attractors.

However, the offset range is very tight (−0.05,0.05) for the desired multi-scroll

attractor. Figure 2.20 also includes a phase portrait in which some of the scrolls have

disappeared because of the high bias by o f .

In order to have the desired multi-scroll attractor, the h f parameter should be set in a

proper range. Small values starting from 0 yield periodic motion in the state space.

Also, very large values again come out with a limit cycle which surrounds the desired

26

Figure 2.20 : Bifurcation diagram and accompanying largest Lyapunov exponent
versus o f is given on the left. A sample phase portrait for a chosen o f value is given
on the right.

Figure 2.21 : Bifurcation diagram and accompanying largest Lyapunov exponent
versus h f is given on the left. A sample phase portrait for a chosen h f value is given
on the right.

multi-scroll attractor. For example, h f = 5 in Figure 2.21 yields an attractor in which it

is not possible to detect the scrolls. For the given parameter set, h f around 1.5 provides

a 2n f -scroll attractor.

Same with o f and h f , the width parameter w f has a bounded range for the system to

be in the chaotic motion which is shown in Figure 2.22. The width of scrolls increases

with increasing w f . For large values of w f , it takes more time for trajectories to include

every scroll. Despite the fact that multi scroll attractor can be better observed for the

values of w f around 0.5, it is still possible to observe them for w f = 1.2 as shown by

the phase portrait in Figure 2.22.

27

Figure 2.22 : Bifurcation diagram and accompanying largest Lyapunov exponent
versus w f is given on the left. A sample phase portrait for a chosen w f value is given
on the right.

Figure 2.23 : Bifurcation diagram and accompanying largest Lyapunov exponent
versus α is given on the left. A sample phase portrait for a chosen α value is given on
the right.

α The weight of the delayed nonlinear function has similar effect as h f on the system

dynamics. Both determines the amplitude of the feedback term. The envelope of

largest Lyapunov exponents is shrinking in Figure 2.23, because the Poincaré section

is defined using α . As shown by the phase portrait in Figure 2.23, large values blend

the scrolls and yield a different attractor which can not be defined as multi-scroll.

Values greater than 3.63 yield periodic motion. α = 1 keeps the system in the chaotic

region, and provides a clear multi-scroll attractor with the given parameter set.

The delay amount effects the chaotic behavior fairly. In Figure 2.24, the largest

Lyapunov exponents and bifurcation diagram show that the system may have chaotic

behavior even for τ = 0.7, however the multi-scroll attractor can not be observed with

28

Figure 2.24 : Bifurcation diagram and accompanying largest Lyapunov exponent
versus τ is given on the left. A sample phase portrait for a chosen τ value is given
on the right.

this delay. In order to have the expected multi-scroll attractor, τ should be equal to 0.8

or greater. The phase portrait for τ = 0.8 is plotted in Figure 2.24.

Figure 2.25 : Bifurcation diagram and accompanying largest Lyapunov exponent
versus Ts is given on the left. A sample phase portrait for a chosen Ts value is given
on the right.

According to the analysis whose results are plotted in Figure 2.25, sampling period

Ts should be as small as possible. As a matter of fact, the sampled-data system has

a continuous-time model basis. Thus, keeping the sampling period small protects the

chaotic behavior of the system. Ts = 0.2 yields a reasonable multi-scroll attractor as

given in Figure 2.25. On the other hand, even though it is not shown here, it is observed

that the chaotic attractors are not the expected multi-scroll type for Ts > 0.2.

29

Figure 2.26 : Phase portraits in the x(t−τ) versus x(t) state space. System parameters
are the same as Figure 2.19 except n f . n f values in sub-graphs are 1 in (a), 2 in (b),
4 in (c), and 5 in (d). According to the V-shape of a mono-scroll attractor, each phase
portrait has 2n f scrolls.

Figure 2.20−2.25 show that the observed behavior of the system in bifurcation

diagram and the numerically calculated Lyapunov exponent spectrum are in good

agreement. Besides, simulations employing non-smooth nonlinearity (2.16) result

in phase portraits which correspond to the given bifurcation diagrams and Lyapunov

exponent spectrums. In Figure 2.26, n f varies from 1 to 5, excepting 3, and phase

portrait has been plotted using the non-smooth nonlinearity and parameter set in Figure

2.19, which includes the phase portrait for n f = 3. Theoretically, number of scrolls has

no limit, but the state variable is bounded by some facts, such as supply voltages in

practical implementations.

30

3. NETWORKS

Two relaxation oscillator based networks, Network 1 and Network 2 (Subsections

3.1.1, 3.1.2), one logic oscillator based Network 3 (Subsection 3.1.3) and one

time-delay chaotic system based Network 4 (Subsection 3.2) are presented in this

Chapter. Oscillator 1−4, which are given in Subsections 2.1.1, 2.1.2, Section

2.2 and Subsection 2.3.1, respectively, have been employed in these networks.

Networks 1−3 have regular grid structure and are members of Cellular Nonlinear

Networks. Thus, they are investigated under the ‘Cellular Nonlinear Networks’

title. These three networks provide the base for research on spatio-temporal waves.

In Subsection 3.1.4, three networks are compared and some results are presented.

Dissimilarly, one dimensional unidirectionally coupled cells constitute Network 4,

whose synchronization phenomenon has been studied with.

3.1 Cellular Nonlinear Networks

The Cellular Nonlinear Network (CNN), which has been outstanding candidate for

non-Boolean computing paradigm since its invention in 1988 [9], are exploited

in many applications especially the ones where massively parallel processing is

essentially required. In order to solve the problems defined in one or more

dimensional space, computational devices similarly having spatial dimension are

sought. In image processing, for example, CNN proved its success for many ways.

Analogical implementation of CNN [13] and its fully digital emulators [16, 63]

are utilized to process image with high performance. One of the applications in

which parallel processing is demanded is the wave processing. Solving problems

exploiting linear or nonlinear waves on artificial excitable media (commonly electronic

emulators) have recently attracted researchers’ attention. For example, the shortest

path planning problem is studied using Digital Reaction-Diffusion System [64],

Relaxation-Oscillator CNN [3], and Reaction-Diffusion CNN [65]. Common feature

of the given references concerns dynamic systems with real-valued state variables.

31

On the other hand, binary systems are also capable of wave processing. A kind

of binary wave, which is called trigger wave in [66], is proved to solve many

morphological image processing problems. This trigger wave processing technique

has roots extending to 1999 [67]. Both the shortest path solving and morphological

image processing applications motivate the research on wave-based computing.

Autowave is a kind of nonlinear waves, that propagates on active excitable media at

the expense of the stored energy on the medium [68]. They can propagate without a

driving signal, so the autowave term is used as the abbreviation for autonomous wave.

Three properties listed below define the autowave [69]:

1. The shape and amplitude of autowaves remain constant during the propagation.

2. They do not reflect at the medium boundaries.

3. Two colliding autowaves annihilate each other.

Traveling waves, another nonlinear wave type, is propagated on active bistable (or

stable) media but needs a driving signal. They are not self-sustaining like autowaves.

Generating input signal that gives the opportunity to control the system is essential for

this kind of wave. The network in this section focuses on the autowave and traveling

wave propagation.

First, networks are designed as active media for autowaves, which have quite stationary

source locations. In order to move the autowave source location on these networks,

special spatio-temporal input patterns should be discovered, like for Network 1 in

Subsection 2.1.1. The more generalizable method is configuring the network for

successive traveling wave propagation by input patterns. These successive (i.e. nested)

traveling waves mimic the autowaves in terms of their waveforms. For analog systems

(e.g. Network 1 and Network 2) the key rule is to overlap some pieces of cell’s

nullclines in order to generate and propagate nested traveling waves. By this action,

two saddle points and arbitrary numbers of unstable equilibrium points are revealed.

Cells start to switch from one saddle point to the other by perturbation from the input or

coupling terms. For the Network 3, cells should be modified such that the oscillation

is controlled by an enable signal and this enable signal is determined in a traveling

32

wave generating way. Hence, three systems are converted to bistable mediums for

propagating nested traveling waves.

Actually, the main purpose of the research on nonlinear waves in this section is to

reveal the Doppler Effect for them. The Doppler Effect is the change in frequency of a

periodic event when the source and the observer is in a relative motion. The successive

wave-fronts of the periodic event are generated at different locations or if the source

is moving or sensed at different locations if the observer is moving with respect to a

reference point. Both cases may cause the observation of the wave-fronts with intervals

different from the event period. The Doppler Effect observed on excitable media that

generate nonlinear waves, such as Cellular Nonlinear Networks, is used as a kind of

new feature related with the source movement.

3.1.1 Network using absolute nonlinearity

Coupling schemes are required for each cell model in order to construct an oscillatory

medium. Simply, they form cellular nonlinear(/logic) networks after coupling. When

coupling the cells, i.e., Oscillator 1 and 2 in order to have a network, it is supposed

that every cell behaves same in the beginning. Then, the weight of one state term in

one of the state equations, at least, is shared between the coupled cells and itself. It

means the total weight in the network model for the selected state variable is equal to

its weight in the single cell model. In Network 1 based on Oscillator 1, the weight

of x state variable in the state equation for x has been shared. The coupling term I is

included to the state equation for x in (2.1) which is given by

ẋi, j = αxi, j +βyi, j +g(xi, j)+ωIi, j,

ẏi, j = γxi, j + εyi, j.
(3.1)

The coupling scheme, which is called synaptic law in CNNs, is given by

Ii, j = xi−1, j + xi+1, j + xi, j−1 + xi, j+1. (3.2)

α in the network configuration is set to 3 when ω is chosen to be 0.3. Other parameters

are the same with those of the oscillator. If the connected neighbors have the same state

with the center cell, xi, j = xi−1, j = xi+1, j = xi, j−1 = xi, j+1 as supposed, the dynamics of

single oscillator is preserved in the network. Indeed, cells on the network oscillates like

uncoupled oscillators, only with small phase differences between neighbor cells. This

33

phenomenon forms a wave in the spatial domain which is observed by the top view

of the network. In Figure 3.1, the state variable x of cells on Network 1 are depicted

in three separate images at t = 39, t = 40, t = 41, respectively. Here, the numerical

solution of Network 1 and Network 2 in Subsection 3.1.2 have been computed by

Forward Euler Integration method with h = 0.1 second/iteration step. The waveform

in the figure is called autowave due to its self generating ability. Once an autowave is

generated on such a network, it does not require to be fed by any input signal in order

to generate successive wave-fronts.

(a) (b) (c)

Figure 3.1 : Autowave propagation on Network 1 by top view of x state variables a)
at t = 39, b) at t = 40, and c) at t = 41.

In order to create two saddle points for cells in Network 1, the parameters are selected

as α = 3, β =−3, γ = 4.2, ε =−3, µ =−10, λ = 1. Also input term is added to the

state equation for x given by

ẋi, j = αxi, j +βyi, j +g(xi, j)+ωIi, j +ui, j(t). (3.3)

Under the assumption that all the cells on the network have the same state, which

means ωIi, j = 4ωxi, j, this configuration yields two saddle points at (1,1.4) and

(−1,−1.4). The phase portrait is separated into two equal parts, and each part

converges to one of the saddle points. Phase portrait is depicted in Figure 3.2.

Nullclines overlap on the line segment [(1,1.4),(−1,−1.4)]. All the points on this

line segment except the endpoints are unstable equilibrium points.

In this configuration, a slight difference in the value of state variable x of any neighbor

turns the overlapped part of ẋ = 0 nullcline counterclockwise and converts the cell to

an oscillator with only one unstable equilibrium point at (0,0). However, the cell does

34

Figure 3.2 : Phase portrait of cells in Network 1. Saddle points are indicated with
triangles.

not oscillate, just follows the neighbor cell while it is converging to other saddle point.

As t→ ∞, cells are again converted back to two-saddle point systems and they evolve

to the same saddle point together with phase differences. These phase differences in

time give rise to the traveling wave in the spatio-temporal domain.

Similarly, a non-zero input shifts the ẋ = 0 nullcline on the x-axis. So, the input is able

to convert the system to a system with a single stable equilibrium point. Hence, one

of the cells on a network on which all cells are stationary at one of the saddle points

can be triggered to converge to the other saddle point with a proper input. By means

of the local coupling, cells from the closest neighbors to the farthermost ones start to

converge to the same point with a phase shift.

The explained dynamics is the fundamental feature of the network configuration for

the nested traveling wave propagation, hence for revealing the Doppler Effect. For this

network, usource(t) =−0.5xsource(tk), where tk ≤ t < tk+T , and T is the traveling wave

half-period. The Doppler Effect appears in Figure 3.3, in which T = 5 and source

location is shifted to the right by two cells at each half-period. In the figure, nested

traveling waves are depicted at t = 15.

After the nested traveling wave propagation method, whose source update scheme is

a discrete process, Network 1 is again configured for generating autowaves below.

35

(a) (b)

Figure 3.3 : a) Moving input in time from left to right, b) nested traveling wave
propagation on Network 1.

Autowaves whose generation is a continuous time process, are intent to provide more

precision to the wave source movement. The coefficients α = 3, β = −3, ε = 3.6,

γ = −3, µ = −50, λ = 1 and w = 0.15 are chosen for this time. Also, zero-flux

boundary condition is applied.

In order to get input driven autowave generation a 23×24 sized network is built with

the parameters, nonlinearity, synaptic law and boundary condition above. The input

pair u12,12 = 0.005, u12,13 =−0.005 and uelse = 0 are applied. It should be noticed that

the inputs are applied to the center of the network. Figure 3.4 illustrates the evolution

of the network in time. The alternation to the negative states begins from the cell at

(12,13) which has input u12,13 = −0.005. On the other hand, the alternation to the

positive states begins from the cell at (12,12), as the input applied to the cell is 0.005.

This is the reason for the non-symmetrical autowave generation observed on Figure

3.4. Here, one should consider that the non-symmetry happens in the wave generation

not in the propagation which is determined by the symmetrical coupling given in the

synaptic law (3.2).

To eliminate the non-symmetry, a symmetrical plus-sign shaped input pattern is

proposed which is again applied continuously with constant values for autowave

generation. A new (25×25) sized network is formed, which has 5 cells with non-zero

input. Same network model, parameters and boundary condition are used. Input

pattern has a negative value at the center u13,13 =−0.25 and absolutely smaller positive

36

(a) (b)

(c) (d)

Figure 3.4 : Autowave generation with constant inputs u12,12 = 0.005 and u12,13 =
−0.005. Subfigures are mesh plots of a (23× 24) network’s X state variable matrix
a) for t = 15, b) for t = 17, c) for t = 34, d) for t = 38. Cells on boundary are not
depicted. A non-symmetrical wave front is observed with this configuration.

values surrounding it u12,13 = u13,12 = u13,14 = u14,13 = 0.05. The result is depicted in

Figure 3.5. Applying this pattern to a fixed location yields the symmetrical generation

of the autowave. When all inputs are set to zero, the network goes to one of its

saddle points, either (xi, j,yi, j) = (−1,−1,2) or (xi, j,yi, j) = (1,1,2). Then a new

autowave can be generated from a new location using the same input pattern. But,

this method annihilates the continuity of autowave evolution and has no advantage

compared to the nested traveling wave generation in [70]. However, the advantage of

utilizing input-driven autowaves appears when the wave source input pattern moves

continuously.

In order to obtain the Doppler Effect, which means to carry information about wave

source’s movement across the medium, there should be continuity in wave generation

and propagation. The nested traveling wave mimics the autowaves with the moving

wave source very well [70]. But the mechanism still works in discrete-time. The wave

source location should be updated and its amplitude should be alternated periodically.

Instead of this process, the plus-sign shaped input pattern can be moved continuously

(at each iteration for computer simulations). The autowave generation still goes on

37

(a) (b)

(c) (d)

Figure 3.5 : Autowave generation with constant inputs u12,13 = u13,12 = u13,14 =
u14,13 = 0.05 and u13,13 =−0.25. Subfigures are mesh plots of a (25×25) network’s
X state variable matrix a) for t = 13, b) for t = 19, c) for t = 23, d) for t = 27.
Cells on boundary are not depicted. A symmetrical wave front is observed with this
configuration.

but it is directionally doped by the input pattern’s motion. The cells in front of the

moving input pattern are forced to join state alternation sooner while the cells behind

the moving input pattern are being relaxed to evolve slower. This yield higher and

lower autowave frequencies before and after the moving input pattern.

The Doppler Effect sensing mechanism given in (3.11) still works. Using this

mechanism a simple scenario is prepared. The input pattern (its center) is placed to

the position (5,5) on a 45× 45 sized network and moved to the east direction with

0.1 cell/second speed. At 100-th second its direction is changed to the south-east but

the speed is kept the same. When the input pattern’s center cell reaches the (12,22)

position again, its direction is changed to the south with the same speed. The scenario

ends when the pattern reaches the (22,22) position. Figure 3.6 shows the route of the

input pattern on the network. Figure 3.7 depicts the X matrices (constructed by x-states

of the cells in regular grid form) of the network for different moments in this scenario.

38

Figure 3.6 : The route of input pattern in the scenario.

It is obviously seen in the figure that the autowave generation is controlled by the

continuously moving input pattern. In Figure 3.8, subfigures on the left side are the

mesh plots of the D matrix (formed by d values in (3.11)). The U matrices of the

network are depicted in the subfigures on the right. The D matrix plots show the high

and low period regions which agree with the slow and continuous movement of the

plus-sign shaped input pattern. For computer simulation the Forward Euler integration

method is used for discretization of the analog model. The integration step is 0.02

second. Initial conditions are xi, j = −1 and yi, j = −1.2 which is a saddle point with

zero input. Inputs applied to the cells that do not coincide with the plus-sign shaped

pattern are zero. At each iteration step the input pattern moves only (0.02) · 0.1 =

0.002 cell distance on a discrete 2D space. Therefore, the input pattern is smoothly

distributed to the neighboring cells.

In this section, Network 1 in both bistable configuration and oscillatory configuration

are proved to be able to propagate nonlinear waves that reveal the Doppler Effect. In

both cases, special spatio-temporal input patterns are applied to continue the existence

of wave source.

3.1.2 Network using signum nonlinearity

Similar to Network 1, the x state variables of cells are coupled in Network 2. However,

coupling is applied to the arguments of the nonlinearity. Equation (3.4) is the network

39

(a) (b)

(c) (d)

Figure 3.7 : The 2D plots of the X matrix of the 45× 45 network with continuously
moving DC input. Subfigures belong to t = 20 in a, t = 50 in b, t = 170 in c, t = 260
in d.

model and (3.5) is the nonlinearity using the same synaptic law given in (3.2).

ẋi, j = (−α +µ)xi, j−βyi, j +g(xi, j,yi, j, Ii, j),

ẏi, j = γxi, j(t)+ εyi, j(t),
(3.4)

g(x,y, I) =−µsign(αx+βy+ωI), (3.5)

where α = 4, β = −6, γ = 2, ε = −2, µ = −10, ω = 0.35. The weight of x in the

nonlinearity of single cell is shared between the state variable x of the center cell and

the ones of neighbor cells in the network with ω = 0.35. Hence, the dynamics is

preserved. Other parameters are the same with the oscillator. Figure 3.9 depicts the

top view of Network 2’s x state variables which form autowaves.

In order to switch cells in Network 2 to bistable systems, some parameters are changed:

γ = 5.25, ε = −6, µ = 1.5. Also input term is added to the state equation for x given

40

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.8 : The mesh plots of the D matrix, which are related to the Doppler Effect,
(on the left column) of a 45× 45 network with continuously moving DC input (on
the right column). The d values, which compose the D matrix, are the last recorded
omnidirectional wave-front passing periods on cells. d is inversely proportional to the
approach speed of the wave source to the cell. The moving input pattern is the same
one in Figure 3.5. Subfigures belong to t = 80 in a and b, t = 170 in c and d, t = 220
in e and f, t = 280 in g and h.

41

(a) (b) (c)

Figure 3.9 : Autowave propagation on Network 2 by top view of x state variables at
a) t = 3.5, b) t = 4.0, and c) t = 4.5.

by

ẋi, j = (−α +µ)xi, j−βyi, j +g(xi, j,yi, j, Ii, j)+ui, j. (3.6)

The coupling scheme in this network which occurs in the argument or the nonlinear

function deviates from the classical coupling scheme, for example the one for Network

1. For Network 2 cell, the slope of outer pieces of the x-nullcline may have negative

slope, thus resemble Network 1. To do this, required parametrization has been

explained in Subsection 2.1.2. On the other side, x-nullcline of Network 1 can not have

positive slope, as its nonlinearity is a function of only x. This feature gives flexibility

in the design of cell (hence the network) dynamics.

On the contrary, the signum nonlinearity causes relatively high departure speeds when

evolving from one saddle point to the other. If γ was set to 5.4, the nullclines would

intersect on three points. Two of them would be saddle points and the third one would

be the unstable equilibrium at (0,0). However, γ = 5.25 makes the system a two stable

point one. Figure 3.10(a) shows the phase portrait of the cell around the saddle point

(1.003,0.903), and Figure 3.10(b) shows the phase portrait of the cell around the stable

equilibrium point (0.909,0.795). γ is 5.4 in Figure 3.10(a), 5.25 in Figure 3.10(b).

As given in Figure 3.9, this system tends to generate tile shape wave-fronts with

γ = 5.4. The speed of departure from the saddle points is too high to distinguish

the numbers of neighbors effecting the center cell (see Figure 3.10(a)). Even the effect

of one neighbor whose state has started to change is enough to trigger the cell to start

to change its state immediately. But, if γ = 5.25, then center cell becomes immune

to small effects from neighbors. Total effect of the neighbors should be high enough

42

(a)

(b)

Figure 3.10 : a) A saddle point of Network 2 with γ = 5.4, b) a stable equilibrium
point of Network 2 with γ = 5.25.

to change the slope of inner piece of the x-nullcline in clockwise in order to switch

the stable equilibrium point to a saddle one. When only this occurs, total effect of

neighbors triggers a state transition at center cell. Similarly, the vertical shift effect of

input term on x-nullcline should be high enough to switch the stable equilibrium point

to a saddle one or remove that equilibrium. For further analysis, γ = 5.25 is chosen. A

global view of phase nullclines is depicted in Figure 3.11. The necessity of this choice

hides behind the wave-front curvature. By this way, a cell effected by a single neighbor

and another cell effected by two cells do not behave similar. As a result, this network

is able to propagate nested traveling waves with octagonal wave-front.

For this network, usource(t) =−0.5xsource(tk), where tk ≤ t < t +1, and usource(t) = 0,

where tk + 1 ≤ t < tk +T . The Doppler Effect on Network 2 appears in Figure 3.12,

43

Figure 3.11 : Phase portrait of cells in Network 2. Saddle points are indicated with
triangles.

(a) (b)

Figure 3.12 : a) Moving input in time from left to right, b) nested traveling wave
propagation on Network 2.

44

in which T = 5 and source location is shifted to right by two cells at each half-period.

In the figure, nested traveling waves are depicted at t = 15. Moving the source of

autowave for Network 2 has not been investigated in the thesis.

3.1.3 Cellular logical network

In cells of both Network 1 and Network 2, oscillation is controlled by some facts. The

weights tune the phase portraits and determine the waveform and frequency. Phase

is controlled by the coupling. Thus, in order to observe the effect of coupling, and

generate autowave, at least one control input should be added to the Oscillator 3.

In Figure 3.13, the digital oscillator with an enable e signal is given with its state

diagram. Briefly, system oscillates if e= 1, and preserves its state if e= 0. Its next-state

equations are given by

x(tk+1) = ey(tk)+ e′x(tk),

y(tk+1) = ex′(tk)+ e′y(tk).
(3.7)

Figure 3.13 : State diagram of Oscillator 3 with enable e input. State word is (x,y).
Transition is controlled by e.

Then, a coupling scheme can be defined on enable signal. A cell is enabled to oscillate,

when it is in one of the peak states (’00’ or ’11’) and one of the coupled cells are in a

transition state (’01’ or ’10’); or when it is in one of the transition state and all of the

coupled cells are in one of the peak state; or when an enable input is applied. For a cell

x⊕ y (exclusive-or operation) indicates that it is in one of the transition states. So,

ei, j = xi, j⊕ yi, j⊕ Ii, j +ui, j (3.8)

gives the necessary autowave enable signal equation with the coupling scheme given

by (3.9). The generated autowave is depicted in Figure 3.14.

Ii, j = xi−1, j⊕ yi−1, j + xi+1, j⊕ yi+1, j

+ xi, j−1⊕ yi, j−1 + xi, j+1⊕ yi, j+1.
(3.9)

45

(a) (b) (c)

Figure 3.14 : Autowave propagation on Network 3 by top view of x state variables at
t = 3.8 in a, t = 3.9 in b, and t = 4.0 in c.

Autowaves can be generated by applying u = 1 pulse or y[0] 6= x[0] initial condition to

any cell, when the network is stationary in one of the peak states. Once the autowave

is generated from a cell, u signal applied to other cells does not change the source

location similarly to the situation in Network 1 and 2.

For Network 3, the autowave enable signal equation (3.8) is suitable for traveling wave

propagation, but with the coupling scheme given by

Ii, j =(yi−1, jyi+1, jyi, j−1yi, j+1)
′

·(yi−1, j + yi+1, j + yi, j−1 + yi, j+1).
(3.10)

This coupling scheme provides the information that not all of the coupled neighbors

have the same output. If I = 1, one of them has a different output state which means

a traveling wave-front is passing through the neighbor cells. According to (3.8),

switching to a transition state is enabled by I = 1, when the center cell is at any

peak state. Then, I = 0 is required to switch to other peak state from the transition

state. Under the rule of (3.10), all cells may stay in one of the peak state, e.g.

(x = 0,y = 0). If one of them changes its state to a transition state, (x = 0,y = 1),

surrounding neighbors follows it. Like the domino effect, switching to transition state

will propagate. The center cell reaches to the opposite peak state, (x = 1,y = 1), when

all coupled neighbors have output y = 1. Henceforward, the center cell becomes ready

for an opposite amplitude traveling wave. Similarly, switching to opposite peak state

also propagates. The instrument to generate a traveling wave on network staying at a

peak state is a proper input pulse.

46

Figure 3.15 depicts nested traveling waves on Network 3, generated by a moving

source with a speed of 2 cells/T . Network top view is captured at t = 4. The switching

period of digital design is set to 0.1 in simulations So, the figure is generated at the

40-th iteration.

(a) (b)

Figure 3.15 : a) Moving input in time from left to right, b) nested traveling wave
propagation on Network 3.

3.1.4 Results and comparison of networks

In order to make use of Doppler Effect on active media, effect should be sensed, stored

and served in parallel by every cell. Two different Doppler Effect sensing mechanism

are given in [71] and [70]. In [70], the wave-front passing half-period is calculated

at every zero crossing of state variable x. On the other hand, only zero crossing x

with positive derivative is used in [71]. If the temporal x waveform has the half wave

symmetry, mechanism in [70] is suitable and has 2 times more update rate. Mechanism

in [71] is safe for any waveform, but update rate is low.

Waveforms from all three networks employed in this section has half wave symmetry.

Thus, the Doppler Effect sensing mechanism has been constituted by

di, j(t) = tk− tk−1−T, tk ≤ t < tk+1 (3.11)

47

for all tk, x(tk) = 0 and T is the traveling wave half period. Relative wave-front

half-period is sampled and held by di, j(t). di, j is considered as the numerical result

of the Doppler Effect.

Although di, j update instants are not the same for all cells, as they have phase shift that

provides the traveling wave, every cell runs the Doppler Effect sensing mechanism in

parallel. Equation (3.11) have been added to the cell models for simulation and future

implementations. Three networks developed with the sensing mechanism is simulated

and the results (top view of d variables) are presented in three figures: Figure 3.16(b),

3.16(c), and 3.16(d). Before them, the wave source motion and the obstacles on the

medium is depicted in Figure 3.16(a).

(a) (b)

(c) (d)

Figure 3.16 : a) Route of the wave generating input signal, b) D matrix of Network
1, which consists of d values of the cells, c) D matrix of Network 2, d) D matrix of
Network 3.

48

The ’jet’ colormap of given figure assigns blue to the lowest observed wave half period

(the lowest d) value. Red implies the highest value. The worst result has obtained from

Network 3 in Figure 3.16(d). In almost binary image Figure 3.16(d), majority of the

cells has either blue or red color. Intermediate values are not represented as desired.

Figure 3.16(c) shows that Network 2 is able to generate 4 different d values. Network

2 generates d feature that provides further information than the one by Network 3. The

variety of d values of Network 1 shown in Figure 3.16(b) should be noticed. Network

1 outperforms other two in terms of information that generated d feature has. The

variety of values in generated d feature is evaluated as Criteria 1 to compare these

three networks.

The Second Criteria is the implementation complexity. A digital approximation of

Yalcin’s network has been implemented as a wave computer in 2009 [3]. Not the

Network 3 but its simpler version have been implemented in 2014 [72]. Although, the

novel Oscillator 2 and Network 2 have not been electronically implemented yet, all

three networks are intended to be suitable for implementation. The circuit complexity

of Network 3 seems to be the least. Due to the simpler nonlinearity of system 2, circuit

complexity of the Network 2 is less than Network 1. Digital circuit requires CMOS

gates and flip-flops. On the other side, Network 1 and Network 2 require analog

building blocks such as inverting and non-inverting amplifiers, adders, integrators,

comparators, and multiplexers.

Wave source motion information, which is encoded to the wave frequency, is carried

by the propagation of the traveling wave. Due to the finite propagation velocity of

the wave, a delay occurs between the generation of information and its reception by

the observer. The freshness of the source’s motion information may be essential for

some applications. Hence, the wave-front propagation speed of active media should

be considered as the Criteria 3. In general, fast networks are required to make the

effect useful in applications. A cell is assumed to leave a saddle point (continuous

systems) or a peak state (digital system) if its state variable x amplitude decreases

to 90%. When the three networks are compared under that assumption, Network 3

evidently has the highest wave propagation speed with 1 cell/iteration. The wave-front

speed of Network 1 is 0.158 cell/iteration. Network 2 achieves an intermediate speed

with 0.435 cell/iteration. It should be reminded that the integration step of numerical

49

method used in Network 1 and Network 2 solution is 0.1. All the values reported above

is measured on cardinal directions.

Criteria 4 to comparison networks is the speed of settling to a saddle point from the

other one. One cell should converge enough to a saddle point before going back to

the original one via the expected trajectory. In applications, traveling wave generating

input pattern should not be applied before a cell settle to a saddle point or a peak

state. Thus, speed of settling determines maximum traveling wave generation rate.

According to the measurements in this work, settling time of a cell in Network 1 is 3.7

s in Matlab simulations and 8 s in XPPAUT simulations as Oscillator 1. The numbers

for Network 2 is 4.4 s in Matlab simulations and 10 s in XPPAUT simulations for

Oscillator 2. For logic system, only network simulations are computed using Matlab

and settling time is measured as only 3 iterations.

The curvature of traveling waves, which is called Criteria 5, classifies the systems too.

Network 1 has circular, Network 2 has octagonal, Network 3 has tetragonal wave-front.

It is related by the coupling effect and cell dynamics explained above in the previous

subsections. Curvature effects the wave-front normal vector, which is essential for

applications. The best one is circular propagation. Circular propagation correctly

provides the wave-front approach angle. In octagonal and tetragonal propagation, the

angle values are quantized to 8 and 4, respectively.

3.2 1D Network with Unidirectional Coupling

Synchronization of chaos refers to a process wherein two or many chaotic systems

(either equivalent or nonequivalent) adjust a given property of their motion to a

common behavior due to a coupling [73]. Since the early work by Pecora and

Carroll [74] on synchronization phenomena of chaotic systems, the research on

synchronization has moved towards chaotic systems. This was a challenge for

synchronization because it is well-known that chaotic systems are extremely sensitive

with respect to initial conditions. To date, several synchronization schemes have

been proposed and the theoretical analysis and experimental verification of these

schemes has been given in the literature [75]. On the other hand, in [76] “anticipating

synchronization” of chaotic systems is introduced. It is claimed in [76] that it might

be possible to synchronize time-delayed master system and a coupled non-delayed

50

slave system. That is, synchronization is exhibited between drive and time-delayed

response system, so that in this manner the slave dynamics act as a predictor of the

master dynamics [77]. For an example, anticipating synchronization of the system

given in [53] is studied in [78]. In this section anticipating synchronization of the

time-delay chaotic system (2.15) is investigated. If one can couple to the state variable

of the original system, another system can be constructed to anticipate the future states

of the original system with a time difference of τ . It is also possible to increase

number of coupled systems resulting in anticipation of states of the original system for

integer multiples of τ . The 1D unidirectional coupling scheme for anticipating chaotic

synchronization of the considered system is verified with numerical simulations in this

section.

Now, let us assume that another system coupled with this one is introduced as follows

ẋ1(t) =−x1(t)+α f (x1(t− τ))
ẋ2(t) =−x2(t)+α f (x1(t)).

(3.12)

The second system is realizing x2 evolution while the first one is for x1. If x2 is delayed

by τ , the second equation will take the following form

ẋ2(t− τ) =−x2(t− τ)+α f (x1(t− τ)). (3.13)

Taking the difference between the above one and the first equation in (3.12) leads to

ė =−e (3.14)

where e is the error defined as e , x1(t)− x2(t− τ) [76]. (3.14) has a stable solution

and as time goes to infinity the error goes to zero resulting in synchronization between

x1(t) and x2(t). That is, the previous state of the response system is synchronized

to the current state of the drive system. This means that the future state of the

drive system can be predicted by the current state of the response system leading to

anticipating synchronization. Figure 3.17shows numerical simulation results verifying

this phenomenon.

It is possible to couple additional systems, in such a way that the error system is

asymptotically stable, as given in (3.15).

ẋ1(t) = −x1(t)+α f (x1(t− τ))
ẋ2(t) = −x2(t)+α f (x1(t))
ẋ3(t) = −x3(t)+α f (x2(t))

...
ẋn(t) = −xn(t)+α f (xn−1(t)) for n≥ 3.

(3.15)

51

Figure 3.17 : Evolution of x1 and x2 is plotted in time. Due to the anticipating
synchronization, the red signal which belongs to x2 occurs τ = 8 seconds before the
blue signal of x1. The first 100 seconds of the simulation is not plotted in order to
ignore the transient effect of initial conditions.

(a) (b) (c)

Figure 3.18 : The anticipating synchronization between a) x1(t)-x2(t − τ), b)
x1(t)-x3(t−2τ), c) x1(t)-x4(t−3τ).

By this way, the future state of the driver can be predicted for any integer multiple of

τ [76]. Figures 3.18a, 3.18b and 3.18c depict the Matlab simulation results showing

the anticipating synchronization for τ [x1(t) = x2(t− τ)], 2τ [x1(t) = x3(t− 2τ)] and

3τ [x1(t) = x4(t−3τ)], respectively.

52

4. IMPLEMENTATIONS

This chapter presents the electronic implementations of cells from Chapter 2

and Chapter 3. As discussed in former chapters, relaxation oscillators are

studied intensively in the form of cellular nonlinear networks, although time-delay

sampled-data system are studied individually. Analogically, implementations of

cellular nonlinear networks and individual time-delay chaotic systems are mainly

reported in this chapter. Some innovative designs, which are accompanying time-delay

system implementations, such as asynchronous delay doubler and binary low-pass

filter, are also exposed in this chapter.

The implementations in this thesis, do not include VLSI designs. For analog circuits,

a few off-the-shelf active and passive components are consumed. Thus, they result

in low frequency proof of concept implementations. On the other hand, for digital

implementations mature and modern FPGAs are employed. In one implementation,

the target device is a GPU which exhibits outstanding performance. In contrast to

analog circuits, the reader will find larger and more complex implementations for

digital designs in this chapter.

The CNN implementations for relaxation oscillators are demonstrated in Subsections

4.1.1 and 4.1.2. Section 4.2 covers the CNN implementation of a slightly modified

version of logic oscillators. Time-delay system and network implementations are

treated in Section 4.3. First, a new area-efficient binary delay line is proposed

in Subsection 4.3.1. A D-type flip-flop based delay line, the proposed delay

line and binary inverter (NOT gate) based delay line are employed in mono-scroll

attractor generating chaotic circuits in Subsections 4.3.2, 4.3.3, 4.3.4, respectively.

Then, flip-flop based delay line is employed in the chaotic circuit generating a

multi-scroll attractor in Subsection 4.3.5, one-dimensional unidirectional network with

analog integrator in Subsection 4.3.6, and with digital integrator in Subsection 4.3.7.

53

Multi-scroll attractor generating circuit has a novel delay line design in which delayed

data is encoded at the beginning and decoded at the end of the line.

4.1 Implementations for Relaxation Oscillators

This section covers the digital and software implementations of Network 1 (Subsection

3.1.1), targeting an FPGA from Xilinx Virtex2P family and a GPU form Nvidia

(Subsection 4.1.2), respectively. FPGA implementation is an ongoing research started

by [3]. The version implemented in this thesis uses fixed-point arithmetic, while its

ancestor uses half-precision floating point arithmetic. Even FPGA implementations

exhibit better results than CPU simulations, it is shown that an experimental GPU

implementation outperforms the FPGA implementation in Subsection 4.1.2.

4.1.1 Digital implementation of relaxation oscillator network

The original wave computer core is proposed in [3] which is the successor of the

design in [29]. Wave computer core is operated in path planning application [30],

and the hardware/software co-design approach is implemented in [79]. One of the

aims in this reference is to change the arithmetic design approach from floating-point

to fixed-point. The mathematical model is changed from the Chua-Yang model to

the Full Signal Range (FSR) model, and fixed-point arithmetic is used in [80]. In

[81], the output of the CNN computation is 16-bits in width and fixed-point number

representation is chosen. Another aim is to decrease the bit precision while the error

is in a reasonable level. In [82], the target is to find whether such a template exists,

and if so, what the minimal word length is. In [83], a simple algorithm is introduced

to determine the optimal fixed-point precision and maximize computing performance.

According to the research on this subject, fixed-point arithmetic satisfies the adequate

precision for representing real network dynamics.

In this subsection, the floating-point arithmetic blocks in [3] are switched by their

fixed-point arithmetic equivalents. The wave computing system composed with

fixed-point arithmetic blocks was implemented on an FPGA platform with its host

controller PC and on-line monitor, which is illustrated in Figure 4.1.

54

Figure 4.1 : The scheme of the wave computing system.

The discrete time model of Network 1 which is a obtained using Forwards Euler

method is given by

xi,j(k+1) = xi,j(k)+ τ[αxi,j(k)+βyi,j(k)

+g(xi,j(k))+ Ii,j(k)+ui,j],

yi,j(k+1) = yi,j(k)+ τ[εxi,j(k)+σyi,j(k)],

(4.1)

with the nonlinearity,

g(xi,j(k)) =


m.(xi,j(k)−λ) if xi,j(k)> λ ;

0 if |xi,j(k)| ≤ λ ;
m.(xi,j(k)+λ) if xi,j(k)<−λ ;

(4.2)

and the synaptic law,

Ii,j(k) = ai,j+1xi,j+1(k)+ai-1,jxi-1,j(k)

+ai,j-1xi,j-1(k)+ai+1,jxi+1,j(k),
(4.3)

which defines the effect of coupled neighbors of the node.

Nodal Processing Element (NPE) is the fundamental component of the design. The

mathematical model of Network 1 in (3.1) is realized by NPEs. Designed core contains

4×4 NPEs as nodes. NPEs concurrently execute iterations for a slice of the network.

In this design, these 16 NPEs constitute the Cellular Nonlinear Processor Network

(CNPN). Parameters for the mathematical model are transferred from Parameter

Register to NPE. Each NPE has two stacks called s1 and s2, and five temporary registers

called f1, f2, a1, a2, and t, as shown in Figure 4.2 and Table 4.1.

In Table 4.1, α , β , ε , and σ are the state coefficients, τ is the integration time step, a is

the coupling coefficient, m is the slope in nonlinearity, u is the input. The discontinuity

point on nonlinearity (λ) is fixed to 1 and is not loaded to the stacks.

55

Figure 4.2 : Block diagram of the Nodal Processing Element (NPE), Id: variable and
parameter inputs, Od: variable outputs, Ic: control signal inputs, Oc: control signal
outputs [3].

Table 4.1 : Parameters and state variables hold by s1 and s2 stacks in the NPE.
Parameters and variables s1(192−bit) s2(144−bit)

word 1 ai,j+1 xi,j+1(k) or xfixed
word 2 ai,j-1 xi,j-1(k) or xfixed
word 3 ai-1,j xi-1,j(k) or xfixed
word 4 ai+1,j xi+1,j(k) or xfixed
word 5 α xi,j(k)
word 6 β yi,j(k)
word 7 m ui,j
word 8 τ xi,j(k)
word 9 1 yi,j(k)
word 10 ε

word 11 σ

word 12 τ

Wave computer core as a whole includes Clock Generator, Control Circuit, Parameter

Register, CNPN Circuit, CNPN Cache and communication interfaces as shown in

Figure 4.3 [3]. The wave computer core is designed, implemented and programmed by

Xilinx ISE Design Suite. When core is programmed, initial values of nodes, control

signals and parameters are transferred to the core by using built-in communication

interfaces and Matlab functions.

All types of data which are required by the wave computer are sent by the host

computer to the control block. Control block receives the data and distributes it to

the memory block and parameter register. As shown in Table 4.1, s1 and s2 stacks are

56

loaded with 12 and 9 words, respectively, by stack loader logic in NPE circuit. Each

word is 16-bit in width and stores fixed-point number. These words are used by CNPN

circuit sequentially. The data that belongs to network slices is carried continuously

between the CNPN and the memory block, during the CNN emulation. Each one of

16 NPEs uses its parameters and state variables in order to execute iteration for its

own x and y states. When the slowest NPE completes its calculation, CNPN control

circuitry sends acknowledgement signals to make NPEs ready for the next iteration.

Simultaneously, the network image is captured by observation block and sent to the

monitor.

When compared with the previous work in [3], NPE is enhanced in order to obtain

better results in the sense of speed and resource utilization. Both designs use the same

FPGA. The motivation of this subsection is to change the number representation from

floating-point to fixed-point in the NPE operations.

Figure 4.3 : Block diagram of the wave computer core.

State variables, initial values and parameters of the system are 16-bits in width and

have Q7.9 fixed-point number format. As the represented numbers are signed, format

57

is changed to Q6.9 as 1 bit is reserved for the sign.

x[B10] =
1
2n [−2N−1bN-1 +

N−2

∑
i=0

2ibi] (4.4)

Regarding (4.4) where x[B10] represents fractional number in decimal, xmin = −2m,

xmax = 2m− 2−n, and resolution = 2−n. It can be observed that Q6.9 signed two’s

complement format gives us [−64,63.99805] value range and 1.953 · 10−3 resolution

which are used in NPE operations during CNN emulation.

Three peripheral circuits are used in the Wave Computer Core design as shown in

Figure 4.3. Clock Generator generates the low frequency clock signal required by the

Core. In this design, the whole implementation covers the 64% of the FPGA chip better

than previous work which covers 76% of the FPGA chip [3]. Routed signal paths have

high delays for onboard 100 MHz clock signal, therefore clock frequency is divided

into 4 to get 25 MHz by a frequency divider circuit. According to the timing analysis,

the maximum clock frequency is 46,70 MHz which has been recorded as 35.85 MHz

for the design in [3]. Also, in order to observe the wave evolution, simultaneously the

on-line monitor is used [3].

CNPN Cache needs 160 KB of total memory required by emulation of 16,384 nodes.

No external memory is needed as FPGA chip has 272 KB BlockRAM. 16 BlockRAM

modules each having 10 KB capacity are defined for this implementation. Words at

different addresses can be accessible at the same time because each BlockRAM has a

dual-port interface. A-ports of BlockRAMs are used to read and write data that CNPN

needs, while B-ports are used for reading the data to depict the network image onto the

on-line monitor [3].

Each NPE circuitry has two subcircuits which are Adder Circuit and Multiplier

Circuit. These arithmetic circuits work with permission_input signals coming from

related NPE and operates addition and multiplication operations combinatorially. After

addition or multiplication operation, arithmetic circuits send control signals in order to

indicate that circuits are ready for new calculation. Adder circuit and multiplier circuit

are designed specially for this fixed-point arithmetic Core implementation.

The whole design is implemented on a Xilinx XC2VP30-FF896 FPGA chip. When the

whole system operation is examined, input image is scaled to a a 128×128 matrix by a

Matlab script at the beginning. Each cell that is equal to one pixel on the network image

58

functions as a relaxation oscillator using mathematical model in Wave Computer Core

design. FPGA is programmed by using Xilinx IMPACT interface and initial values

of the network image, parameters and control signals are transferred from Matlab to

FPGA chip through RS-232 transceiver chip.

Data and signals are received by UART on the Core. UART transfers this information

to Control Circuit. Control Circuit sends parameters introduced in the mathematical

model to Parameter Register and initial values of variables of the network image

to CNPN Cache. After operating commands are received by CNPN Circuit, the

parameters and initial values are transferred to CNPN. This data is processed regarding

to mathematical model. While iterations are in progress, CNPN Cache sends

instantaneous network image to a VGA monitor for real-time observation.

Table 4.2 represents resource utilization and latencies of arithmetic circuits that are

implemented in the Core. Aim of this table is to compare adder, multiplier and NPE

circuit between fixed-point and floating-point design approaches. Table 4.3 represents

resource utilization of top-level circuits that are designed in the Core. Aim of this

table is to compare CNPN circuit and overall Core design between floating-point and

fixed-point design approaches.

Table 4.2 : Comparison of Resource Utilizations and Latencies of Arithmetic Circuits
[1].

Arithmetic Circuits Used Used Used Maximum
Slices FFs LUTs Latency

Fixed-point NPE Adder 9 1 18 2
Floating-point NPE Adder 126 128 202 20
Fixed-point NPE Multiplier 9 1 17 2
Floating-point NPE Multiplier 35 20 61 2
Fixed-point NPE Circuit 395 416 705 50
Floating-point NPE Circuit 482 590 818 271

Table 4.3 : Comparison of Resource Utilizations of Top-Level Design [1].
Components of the Core Used Used Used

Slices FFs LUTs
Fixed-point CNPN Circuit 6041 6952 10552
Floating-point CNPN Circuit 8192 10023 14745
Fixed-point Core Design 8825 9856 14295
Floating-point Core Design 10944 12444 18004

59

As represented in Table 4.2, Adder Circuit, Multiplier Circuit and NPE Circuitry are

reduced approximately to 7%, 25%, 82% of their original ones, respectively, in the

meaning of resource usage. Latencies of Adder Circuit and NPE Circuit are shrunk to

10% and 18%, respectively, while latency of Multiplier Circuit can not be decreased

any more.

In Table 4.3, it is shown that the resource usage of CNPN circuit and overall Core

design are reduced approximately to 74% and 81%, respectively. Also resolution

of the numbers was decreased to 1.95310−3. The average latency of the NPE is

decreased compared to the previous work [3]. The latencies play important role

in the performance as any pipeline has not been realized in the design. In Figure

4.4, example network images, which are depicted and emulated by the Core are

represented. Autowave illustrations in Figure 4.4(a), Figure 4.4(b) and Figure 4.4(c)

use different initial conditions and network configurations. Figure 4.4(d) illustrates a

traveling wave propagation.

4.1.2 Implementation of relaxation oscillator network on GPU

Parallelism in image processing can be traced back to Chua and Yang’s articles that

proposed Cellular Neural Networks (CNNs) in 1988 [9, 10]. Chua and Yang merged

neural networks and cellular automata’s two dimensional grid structure, as a result

analog nonlinear circuit clones came into use at the beginning of 90s. In 1993,

Chua and Roska reviewed how CNN would be applied to many different image and

video processing applications by software simulations and VLSI realizations [84].

CNN became a paradigm for image processing applications just in five years. In

the same year, the first algorithmically programmable analog array computer called

CNN-Universal Machine (CNN-UM) was proposed and implemented [13]. This

machine combines analog array and logic parts without any analog to digital or digital

to analog converters. The CNN-UM stores analog instructions that are executed on its

analog array.

Cellular nonlinear network simulations need highly parallel computing structures in

hardware to obtain practical result in real-time. Moreover, they should be flexibly

programmable to serve in many wave computing applications from video processing to

robotic locomotion. As shown in [85] and [86], using GPUs for their CNN simulation

60

(a) (b)

(c) (d)

Figure 4.4 : Autowaves and traveling wave are obtained on the network which is
emulated by the Core by using different network configurations and initial conditions
[4]: a) autowaves generated from corners, b) autowaves in medium with obstacles, c)
autowave generated by the center cell, d) traveling wave in medium with obstacles.

is better than CPU simulations. In this subsection, it is investigated whether a GPU

outperforms a CPU or the FPGA wave computer during active wave generation, and

the possibilities of using GPU in top-view based path planning application in real-time

dynamical environment.

Since Graphical Processing Units (GPU) started to be used in areas apart from visual

processing, computation intensive applications formerly could be performed on super

computers or on special hardware now can be done on GPUs. Depending on the size

of the problem, difficult computations now can be done even on a video card of a

laptop. Moreover, main GPU vendors make supercomputers using GPUs for very

large scale computations [87]. By using dedicated libraries for GPUs such as NVIDIA

CUDA [88], AMD APP SDK [89], it is easy to implement computations with just

knowing GPU basics and C programming language. If vendor dependent libraries

61

are used, obviously the code will be device dependent. Open Computing Language

(OpenCL) [5] solves device dependency problem. It is basically a C library with

some extensions like the other libraries. It was not proposed just for GPUs. Software

written with OpenCL can be run on CPU, GPU and any OpenCL compatible parallel

computing device. Since it is not dependent to any hardware it is more portable.

Besides, it has free license, which makes it possible to be used and distributed among

other software companies and researchers. As an example, Qt is a well known library

for C++ GUI applications, and it now supports OpenCL with QtOpenCL wrapper

library. This library makes code easy and short, and also introduces OpenCL to C++.

There are other commercial solutions that support GPU technologies such as Matlab.

Currently, Matlab only supports CUDA for some of NVIDIA GPUs [90].

GPUs are now commonly used for scientific computations in a wide area from

mathematical finance to physics. Spatio-temporal wave is a topic which is studied

by physicians, mathematicians and engineers for different purposes. Active wave

simulation and using it in real-time for robot navigation is one of those purposes.

Waves generated in CNN have been used for robot navigation but not restricted to

that topic. Electrical waves in the heart show similar patterns to the patterns that CNN

generates [91]. Obviously the waves in the heart move in 3D. Simulation of waves

created by CNN moving in a 3D media has been presented in [92] which employs a

software on PC and has been intended to be a first step to investigate the waves in the

heart and issues of robot navigation in 3D.

Hardware offered by GPUs and the hardware implementing CNNs, for example the

one in Subsection 4.1.1, are very similar in functionality. Multiple processors, local

memories for those processors and controllers (host) for the whole hardware are

implemented in CNN emulating hardware. These are all given by a GPU. The issue to

handle is just to program it for parallel computation. Conceptual device architecture

of OpenCL given in Figure 4.5 shows that an architecture that supports OpenCL is the

requirement for 2D and 3D active wave simulation.

Here, active waves in 2D and 3D media have been simulated on GPU. Basically,

(3.1) is implemented with forward Euler iteration considering parallel processing.

In order to create a portable implementation, it is decided to use OpenCL. By this

way, both AMD and NVIDIA GPUs may be targeted. QtOpenCL library which is a

62

Figure 4.5 : Conceptual device architecture of OpenCL with computing units. Host is
not shown. Image was redrawn from the figure in [5].

wrapper library of OpenCL has been used. Using arrays (QCLVector) and instantiating

kernels (QCLKernel) are more convenient with this library. OpenCL kernel has been

implemented to do one iteration step. As shown in Program 1, the kernel is called

more than once and just change the arguments (array pointers) to give the previous

result as an input for more iterations. argNewPtr and argOldPtr represent all the inputs

and outputs. constVal represents the constants which are used in the iteration.

Program 1: Definition and instantiations of iteration kernel function

__kernel void

autoWave(__global float ∗dataNew,

__global float ∗dataOld, //outputs and inputs

__const float constants) //constant values

{...}

//function calls

63

autoWave(argNewPtr, argOldPtr, constVal);

autoWave(argOldPtr, argNewPtr, constVal);

autoWave(argNewPtr, argOldPtr, constVal);

...

32-bit (single-precision) floating point arithmetic is used because not every GPU

supports 64-bit. Besides, according to experiments 32-bit is a sufficient precision for

this work. As seen in Program 1, argNewPtr and argOldPtr are changed between two

consecutive iterations to give previous result as an input. The numerical analysis does

not include any complicated (time consuming) functions. It just includes addition,

multiplication and comparison. However there are harder parts to solve in the

spatio-temporal wave simulation, such as boundary values. In other words, whether the

node is on the edge, corner or not. Since there is no neighbor connection to boundary

nodes, the neighbor values should be the same as the cell itself or a constant. Therefore,

in the kernel function code a location type variable as an input is put and the iterations

are computed accordingly. It is obvious that location type variables have to be saved

in an array like the other input-output values. Program 2 shows the details of one step

of the iteration of a 2D network.

Program 2: One step of the iteration

ti = a∗ (xi jOld.w+ xi jOld.x+ xi jOld.y+ xi jOld.z);

if (xOld > 1.0 f) {

tg =−m∗ (xOld−1.0 f);

}

else {

if (xOld <−1.0 f) {

tg =−m∗ (xOld +1.0 f);

}

else {

tg = 0.0 f

64

}

}

//new value of x

retval.x =

xOld +delta∗ (beta∗ yOld +al f a∗ xOld + tg+ ti);

//new value of y

retval.y =

yOld +delta∗ (−epsilon∗ yOld + epsilon∗ xOld);

In program 2, xOld and yOld are state inputs, xi jOld is the contribution (input) from

neighbors, retval.x and retval.y are outputs. ti and tg are temporary variables. Rest of

the variables are constants that are explained in (4.1). In 3D case, contribution of the

neighbors was computed as ti = a∗ (xi jOld.s0+xi jOld.s1+xi jOld.s2+xi jOld.s3+

xi jOld.s4+ xi jOld.s5) since there are bottom and top neighbors.

In this subsection, better performance is achieved than the systems that have been

implemented on FPGA [3] and CPU [93]. Table 4.4 shows the performance

comparison between GPU, CPU and FPGA implementations. Also, it should be

noted that, a larger network (256×256×256) on GPU has been simulated and 36

iterations-per-second has been achieved in 3D case.

Table 4.4 : Comparison of 128×128 sized network simulation performances of three
different platforms [2].

CPU FPGA GPU
simulation emulation simulation

Iterations per second ∼ 35 ∼ 137 ∼ 60000
Clock frequency 2.53 GHz 25 MHz 633 MHz

4.2 Partial Reconfiguration of Cellular Logic Network

In this section, a binary wave computing cellular nonlinear network is endowed

with partial reconfiguration feature. PR helps designs to exhibit less area costs on

reconfigurable logic devices [94]. The main aim is to achieve a primitive system

that promises area efficiency in order to develop a massive network that has one

65

processor to one cell mapping. The proposed Cellular Logical Network (CLN) in

this section consists of fixed and alive cells which are depicted in Figure 4.6. The

implemented network is similar to Network 3. Cells on the network are locally coupled

according to Von Neumann neighborhood. The proposed CLN is an array of 256 cells

within 16×16 regular grid form in 2-dimensional space. At the boundaries, zero-flux

boundary condition is applied.

In Figure 4.7, circuit schematic of the alive cell is given. x represents the state of the

cell, z is its buffered output, i j is the input with direction index j, and k is discrete-time

variable. Each cell has four inputs from the coupled neighbors which are i0, i1, i2, i3.

The behavior of the alive cell can be expressed as follows:

If x[k] = 0:

• z[k+1] remains 0 when every input equals to 0.

• z[k+1] becomes 1 for all input combinations except every input equals to 0.

• x[k+1] remains 0 for all input combinations except every input equals to 1.

• x[k+1] becomes 1 when every input equals to 1.

If x[k] = 1:

• z[k+1] remains 1 when every input equals to 1.

• z[k+1] becomes 0 for all input combinations except every input equals to 1.

• x[k+1] remains 1 for all input combinations except every input equals to 0.

• x[k+1] becomes 0 when every input equals to 0.

This behavior is temporally illustrated for the center cell in Figure 4.8. This cell is

functionally equivalent to Network 3 with traveling wave configuration.

Fixed cells do not effect the states of their neighbors as an excitation (wave) source.

As an example, let us consider a fixed cell and its north alive neighbor. Assuming that

state of the neighbor is 0, and its output is 1, then north input of fixed cell becomes 1.

Fixed cell sets its north output to 1, since it only reflects its inputs to its outputs. Here,

like the boundary, zero-flux boundary condition occurs for fixed cells. This reflection

66

Figure 4.6 : A regular-grid network that consists of empty Reconfigurable Partitions
(RPs) on the FPGA. The favor of partial reconfiguration is the opportunity to load the
fixed cell design or alive cell design, both fits to empty RP, whenever it is required in
run-time.

Figure 4.7 : Circuit schematic of the alive cell. The required memory is a 2-bit register.
The function generation needs a few logical gates. On an FPGA-like device, it can be
implemented by two 5-input Look-up-tables. Circuit has four single bit inputs (i0 to
i3) and a 1-bit output z.

67

Figure 4.8 : From a to j each subplot represents a 5-cell network in plus-sign formation
with zero-flux boundary condition. The initial condition is given in (a) and each
consecutive subplot shows following discrete moment. The numbers given within
the cells represent the state and the buffered output (x[k],z[k], together. As noticed,
the 1 input from the boundary affects the center cell’s output in c and propagates
immediately in d moment. When all the cells coupled to the center cell has 1 output, it
switches its state x to 1 as in e. Similar dynamics is observed when 0 is injected to the
network as in between f and j.

68

only changes the state of the cell if the other three inputs of the alive cells are all 1.

Otherwise, the alive cell’s state will keep its current value.

In this CLN with partial reconfiguration feature, not only the architecture but also

the initial states of the alive cells are important and managed in the reconfiguration

process. Therefore, states of alive cells are determined before partial reconfiguration

takes place. If an alive cell with improper state is partially reconfigured, then this cell

acts like a wave source after reconfiguration, and produces undesired behavior.

The proposed system is implemented on a Xilinx Virtex-5 ML-501 Evaluation

Platform, which has Xilinx XCVLX50FFG676 FPGA chip. The implementation

has the CLN and an UART circuitry. UART with 115200 baud rate is used to

transfer state matrix and output matrix of the network to a PC. FPGA chip used

in this implementation has 7200 slices. Each slice has 4 flip-flops and 4 six-input

look-up-tables. The proposed system uses 1517 look-up-tables and 874 flip-flops. This

corresponds to 5% of total look-up-tables, and 3% of total flip-flops available on the

FPGA chip.

Partial reconfiguration is a feature that allows users modify a region of the design

currently operating on an FPGA (See Figure 4.9). Tools that are used to design the

CLN with partial reconfiguration feature are Xilinx ISE v13.2 and PlanAhead v13.2.

Xilinx ISE is used for synthesizing design. PlanAhead is used for defining region

of reconfigurable partition, implementing design, and generating configuration files

for the target FPGA. The partial configuration files may be loaded either directly

from PC or from the configuration EEPROM connected to the FPGA via the Internal

Configuration Access Port (ICAP). ICAP is an in-FPGA circuitry which is used for

partial reconfiguration of the FPGA while the configuration process is triggered and

controlled by the system on the same FPGA. This feature can be considered as the

self reconfiguration of the FPGA. The maximum clock frequency of the 32-bit wide

ICAP module is 100 MHz which means reconfiguration by ICAP provides 3.2 Gbps

bandwidth. In this work, ICAP module is not used and partial reconfiguration is

controlled by PC, because the proof of CLN’s partial reconfiguration concept is aimed,

instead of gaining high performance output.

69

Figure 4.9 : The evolution of the network configuration in 3D spatiotemporal space.
m and n axes are vertical and horizontal axes of the 2D network, respectively. k is
the time axis. The configuration of the network can be changed any time during the
operation as illustrated by two partial reconfiguration events. Partial reconfiguration
only occurs for the cells that are decided to be swapped their function.

For the proof of the concept, an artificial scenario is composed. The goal is to change

the network structure using partial reconfiguration and exhibit wave propagation in

an obstructed medium. Therefore, the 8-th column of the CLN is defined as a

reconfigurable partition (RP). Each configuration that can be placed into this RP is

called Reconfigurable Module (RM). In this work, three different RMs have been

used. First RM consists of 16 alive cells with initial states x[k] = 0. Here, it should be

noticed that the initial time of a RM is the actual time of the design already running

on the FPGA when the reconfiguration occurs. Hence, RM may be initialized after the

initialization of other part of the design, so x[k] is used instead of x[0] in the expression.

Second RM consists of 15 fixed cells, and one alive cell. Alive cell is placed in the 8-th

row. Initial state of alive cell is 0. Third RM is same as second RM except the initial

state of its alive cell which is 1.

Figure 4.10 depicts the evolution of the design with the composed scenario. According

to the scenario, CLN that consists of only alive cells, with 0 initial states, has been

initially loaded onto FPGA. Logical 1 input is applied from the boundary input to alive

cell which is located in the first column second row. Light yellow squares represent

alive cells whose output equals to 1. Green squares represent alive cells whose output

equals to 0. Black squares represent fixed cell. Figure 4.10(a) shows the outputs of

CLN after one clock period. Figure 4.10(b) shows the outputs of CLN at the end of

5-th clock period. After five clock periods, network is stopped. Considering that, states

of all alive cells are 0 in the RP, second RM has been loaded onto FPGA. Figure 4.10(c)

shows the output of the CLN after reconfiguration takes place. After reconfiguration,

70

system runs for 25 clock periods. From Figure 4.10(d) to Figure 4.10(h), propagation

of the trigger-wave is observed. Then, third RM is loaded onto FPGA. Since initial

state of alive cell is 1, and also the states of all cells on the network are 1, no new

excitation is observed. In the following clock period, the second RM is loaded onto

FPGA again with its 0-initialized alive cell. Figure 4.10(i) shows that this causes

propagation of a zero wave generated from the alive cell in CLN. After reconfiguration,

system runs for 20 clock periods. From Figure 4.10(i) to Figure 4.10(l) propagation of

the zero-wave is depicted. According to the observed behavior of the system, it can be

noted that if a cell is reconfigured with a different state, this cell acts like wave source

in CLN. Therefore, for each partial reconfiguration, states of cells that are going to be

reconfigured must be considered to prevent undesired behaviors.

It should be noticed that assigning the 8-th column as the RP is not an obligation. It

is just a preference according to the scenario. For a full customization, each cell on

the network should be implemented as a RM, and as depicted in Figure 4.6, every

cell location can be prepared as an empty RP. However, the design-time increases

proportionally to the RP count. The designer may overcome the long design treadmill

by scripting the design tools. Certainly, all RMs for all RPs that the application requires

should be pre-synthesized and pre-implemented during the run-time.

When the partial reconfiguration feature is used in the design, the trade-off occurs

between the performance and area consumption. Obviously, the time consumed during

the reconfiguration process reduces the system performance. On the other hand, this

approach results in a better area consumption. An alternative to this design which

consists of run-time switchable cells consumes more area because the cells should

have the circuitry to emulate both the fixed and alive behavior. Moreover, the control

logic and routing are required to select the cell behavior which means additional area

cost to the design.

Partial reconfiguration feature yields more compact cell designs that increase the

network size on a single chip, since it removes the need of implementing all possible

functions for a single spot. It provides loading the required function to the spot

whenever it is required in run-time. Thus, it promises to shelve the complex

cell designs composed by all-possible functions and their multiplexing circuitries.

However, the length of exhausting design process intimidates the designer. Thus,

71

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.10 : The evolution of the trigger-wave on the Cellular Logical Network
manipulated by partial reconfiguration. 2D subplots are the snapshots of the network
output Z[k] in discrete time sequence: a) k = 1, b) k = 5, c) k = 6, d) k = 10, e) k = 15,
f) k = 18, g) k = 23, h) k = 30, i) k = 32, j) k = 36, k) k = 42, l) k = 50. In the figure,
light yellow spot represents the alive cell whose output is 1. Green spot represents
the alive cell whose output is 0. Black spots represent the fixed cells whose output is
determined by the zero-flux boundary condition.

72

the desire to the better tools which meets the needs for repetitive structure of cellular

networks is standing.

4.3 Implementations for Time-delay Chaotic System

From the implementation point of view, the complexity of the time-delay block is

the main drawback of chaotic time-delay systems. Time-delay unit is commonly

implemented using a cascade of filters, such as T-type LCL filters [20, 53] or

Bessel-type filters [95] such that required delay is set to the group delay of the network.

In [20] 30 LCL sub-circuits which is a total of 60 inductances and 30 capacitances

has been used to implement the delay line. Mykolaitisa et al. [96] have used a coaxial

transmission line which is a specialized cable to implement the time-delay unit. Bucket

brigade device which is also known as analog delay line has been used by Losson et

al. [32]. In this device, the analog delay line samples and delays the signal by storing

it in the array of capacitor circuits. Furthermore, output of the delay circuit is fed

through a Bessel-type filter. Delay part of the system can alternatively be implemented

on a digital circuit [25]. To this end, analog signal in the input of the delay block is

converted to a digital signal by an analog-to-digital converter (ADC), then this signal

is delayed on a digital circuit. The delayed signal in the digital circuit is converted

to an analog form and used in the system. From the circuit implementation point of

view, implementation methods of the time-delay block of chaotic time-delay systems

do not make chaotic time-delay systems an alternative for possible applications. Here,

the aim is to use a digital circuitry to implement delay block TDelay[·]. In order to use

a digital circuitry, the output signal of the h(·) function block might be converted into

digital form by an ADC. Note that since the function h(·) is a binary output function,

quantization and encoding operations performed in standard ADC are not required in

this implementation.

Delay devices are based on the propagation delay of any physical component. Apart

from the transmission lines for analog implementations, the fundamental delay device

is the inverting buffer (NOT gate) for digital implementations. Without propagation

delay, even flipflops can not react to the edge on the clock signal [97]. In this

section, the digitally implementable buffer chain, flip-flop chain and a asynchronous

delay circuit are discussed with their implementation in time-delay chaotic oscillator.

73

Figure 4.11a depicts a non-inverting buffer chain with NBu f f er pieces of buffers, each

providing τb amount of delay. It is assumed that the buffers are identical and has no

variation in τb. With these buffers, τ = NBu f f er · τb. In Figure 4.11b, the delay line is a

D-type flip-flop chain. These flip-flops are clocked by c(t) signal with Tc period. The

total amount of delay of these flip-flops is ND−FF ·Tc. However, the flip-flops do not

delay the signal x(t). Instead, x(tk) is delayed. x(tk) is the k-th sample of x(t) signal

and is held during the concerned c(t) period.

Figure 4.11 : Two different implementations of the binary delay line: a) Non-inverting
buffer chain, b) D-type flip-flop chain. Both chains have finite number of units. The
former chain functions asynchronously, but the latter one functions synchronously with
c(t).

The buffer chain responds to the asynchronous events on the input signal (either a

positive edge or a negative edge) in continuous-time, but the flip-flop chain responds

periodically (synchronously) sampled and held values. In spite of this difference, they

have a fundamental similarity. They have spatial discontinuity which is also called

granularity. As a result, the minimum event interval of the input signal is limited to

τmin (Figure 4.12) for proper functionality in both chains. For buffer chain, τmin equals

to τb. The input signal which has successive events with interval shorter than τmin can

not be delayed, because a buffer does not respond a second event if the previous event

does not appear at its output yet [98]. For flip-flop chains, τmin equals to Tc. Only

one event per period can be turned out at flip-flops’ output. Hence, the buffer chains

and the flip-flop chains function properly if the shortest event interval recorded on the

74

input signal is greater than τmin. There is a trade-off between the τmin limitation and the

number of delay units on the chain for a τ . If a transmission line, which is modeled by

infinitesimal distributed elements, is considered, the spatial discontinuity disappears

and τmin becomes infinitesimal.

Figure 4.12 : There is a structural discontinuity (granularity) in the delay unit chains
(Figure 4.11) which causes a limitation on the minimum event interval (pulse width) of
the binary signal to be delayed. The given waveform belongs to the output of a chain
delay line when a pulse-width sweep is applied to its input. The pulses narrower than
τmin is filtered out.

In Figure 4.13, the input signal x(t), the output signal x(t − τ) of the buffer chain

(Figure 4.11a) and the output signal x(tk− τ) of the flip-flop chain (Figure 4.11b) are

plotted. The deformation in the output signal of the flip-flop chain should be noticed.

Although it is wider in the input side, the interval between the negative edge and the

positive edge is 2Tc for the flip-flop chain. The event intervals in the output signal of

flip-flop chain are always positive integer multiplies of Tc. Consequently, the buffer

chains deform the signal if their τb is not stationary, but flip-flops deform even if Tc is

stationary. The τmin limitation can be controlled by setting Tc value for flip-flop chains.

Owing to the relatively smaller values of τb in comparison with Tc, more pieces of

buffers than the flip-flops have to be used for a same amount of delay.

It should be noted that, both flip-flop and buffer chain are suitable for the

circuit-integration. According to these properties, they are candidates in the

implementation of chaotic time-delay systems. The use of flip-flop (D-type) chain to

delay the binary output of the nonlinear feedback part of the introduced system yields

a new system which is a sampled-data feedback system [39]. And, this implementation

provides the proposed time-delay sampled-data chaotic system.

The following subsections from Subsection 4.3.1 to Subsection 4.3.7, present the

implementations for time-delay system, Oscillator 4 in Section 2.3, and its network in

Section 3.2. The value contributed to literature by this chapter is listed below.

1) Two new asynchronous delay circuits proposing area efficiency with their FPGA

75

Figure 4.13 : The input signal x(t), the output signal x(t − τ) of the buffer chain
(Figure 4.11a), the output signal x(tk − τ) of the flip-flop chain (Figure 4.11b) and
the clock signal c(t). Both outputs obey the τmin limitation. The buffer chain is able to
respond its input asynchronously and propagate the input signal always with the same
amount of delay, theoretically. The deviation of a buffer’s delay (τb) is related to the
physical implementation facts and environmental conditions. On the other hand, the
flip-flop chain samples and holds the input during the Tc period which always causes
deformation on output pulse widths.

implementations.

2) The analog compare and integrator circuit with flip-flop chain implementing

sampled-data time-delay chaotic oscillator.

3) The analog circuit with novel asynchronous delay components implementing the

time-delay chaotic oscillator.

4) 8-bit fixed-point digital implementation of time-delay chaotic system’s integrator

and comparator parts.

5) The fast digital circuit with only inverter chain for time-delay chaotic system which

can be entirely implemented on an FPGA.

6) The new delay line coding scheme for multi-scroll attractor generating chaotic

oscillator and its novel nonlinearity.

7) 1D network of sampled-data systems practicing the anticipating synchronization.

8) 1D network of digital emulators of sampled-data systems practicing the anticipating

synchronization.

76

4.3.1 Asynchronous delay doubler for binary delay lines

Implementing a τ amount of delay with a buffer chain is more area consuming than

implementing it with a flip-flop chain because of the difference in the number of units

on the chain. Besides, the asynchronous response of the buffer chain is a desired

feature. Here, the idea which is using the delay unit on the delay line more than

one time emerges [99]. This idea can be applied to a buffer chain with proper signal

routing. The buffer chain is cut into cascaded subchains at first. Then, every subchain

is equipped with a binary signal router. The router can drive the binary signal event

to the subchain at the beginning. When the event appears at the end of the subchain,

the router can drive inverse of the event to the subchain again. Inverting the event

and re-driving it to the subchain again and again can be managed by the router. The

buffer based subchains respond asynchronously; therefore this router should respond

asynchronously, too.

The Asynchronous Delay Doubler, is a simple binary signal router that activates its

slave delay line two times per event. Figure 4.14 shows the cascaded ADDs, each with

a slave delay line. The slave delay lines may be buffer chains, transmission lines or

any other binary signal delayers.

The ADD has four terminals (Figure 4.15). Two of them are for the slave unit

connection. The reminder two terminals are for the master unit connection. The ADD

is designed as a simple asynchronous finite state machine.

For preserving simplicity and preventing race conditions, ADD has only four states

shown in Figure 4.16. ADD design is based on an assumption: A second event at FM

input does not occur until previously delayed event appears at TM output. This interval

is the delay provided by the ADD with its slave, and it determines the τmin constraint.

The states are coded with two bits (S1S0) as in Figure 4.16. The inputs controlling the

state transitions and outputs are given along the arrows in the figure (FM FS / TM TS).

The state transitions occur between codes with Hamming distance 1. Possible hazards

are prevented in the ADD design. The output functions TM and TS with the transition

77

Figure 4.14 : Asynchronous Delay Doubler doubles the amount of delay using one
delay unit twice.

Figure 4.15 : The ADD is an asynchronous state machine with an input of binary
signal to be delayed from master (FM), an output of delayed binary signal to master
(TM), an output of binary signal to be delayed to slave (TS) and an input of delayed
binary signal from slave (FS).

functions S1 and S0 are given in (4.5).

T M = S1,
T S = (FM ·S0)+(FM ·S0),
S1 = (S1 ·FS)+(S1 ·S0)+(S0 ·FS),
S0 = (FM ·S0)+(S1 ·FS)+(S0 ·FS).

(4.5)

Every function in (4.5) has arguments less than five. As T M = S1, only three

4-input Look-Up Tables (LUT) are sufficient to implement an ADD. The LUT-based

schematic of the ADD is given in Figure 4.17. LUT-based implementation is

suitable for reconfigurable devices such as Field Programmable Gate Arrays (FPGAs).

Although FPGAs are designed for synchronous circuits, LUT-based ADD can also

be implemented on FPGA using some design constraints. These constraints keep the

loops (S1 and S0 lines) safe from being recognized as errors by the synthesizer tool and

preserve the buffer chains from optimization.

As mentioned, the ADD can use any binary delay line. So, an ADD can use another

ADD in a recursive way. A delay line with cascaded M recursive ADD blocks is

depicted in Figure 4.18. In this structure, the ADD Di, j is the slave of the Di, j+1 one

from j = 1 to j = Ni−1. Each ADD has a propagation delay τADD and at the bottom

of the recursive structure, there exists a buffer chain with τ i,0 amount of delay. The

overall delay provided by the structure in the Figure 4.18 is

τtotal =
M

∑
i=1

τi. (4.6)

78

Figure 4.16 : The state diagram of ADD with assigned state codes. Transitions occur
through the arrows with FM FS / TM TS signals. Don’t-care conditions by means
of the minimum input interval assumption reduce the number of states to 4, and the
number of state transitions from 16 to 10.

Figure 4.17 : The realization of the ADD is done using three 4-input look-up tables.

Each recursive block on the chain has a delay given by

τi = . . .2(2(2 · τ i,0

Ni terms︷ ︸︸ ︷
+τADD)+ τADD)+ τADD . . . (4.7)

which can be simplified as

τi = 2Ni (
τ

i,0 + τADD
)
− τADD. (4.8)

Here, the delay provided by nested ADDs increases exponentially while the LUT

consumption increases linearly. However, the cost of this efficiency is the growth in

minimum event interval limitation which is given by

τmin = max(τi). (4.9)

When the event interval occurred on TM of ADD is smaller than the τmin constraint,

the assumption is violated and the recursive ADD block malfunctions. Therefore, a

binary low-pass filter (BLPF) unit is designed to cover the recursive ADD block. The

79

Figure 4.18 : A cascaded recursive structure is constituted with ADDs. Each cascaded
block has a delay time τi related to its recursion order (Ni), the propagation delay of
ADD (τADD) and the base delay time (τ i,0).

BLPF is a pulse-width filter which filters out pulses that are narrower than the delay of

the BLPF’s slave delayer. As the ADD block runs asynchronously, the BLPF should

also run asynchronously in continuous-time. The BLPF block is used as the recursion

terminator in the recursive ADD block design. The connection of the BLPF is given in

Figure 4.19.

The BLPF has FM, FS inputs and TM, TS outputs same as ADD. When an event

occurs on the FM input of BLPF, it triggers an event on the TS output. The slave

delayer returns this event through the FS input of the BLPF after its delay time. When

the BLPF captures this returned event, it checks its FM input. If the signal at FM is at

the same level as the signal right after the first event, then it is transferred to the TM

output. Otherwise, the pulse starting with the first event is assumed to be a narrow

pulse and filtered out. This behavior is illustrated in Figure 4.20. The outputs are also

the states for BLPF design and the state transition functions are given by

T M = (S ·T S · (T M+FS))
+(S ·T S · (FS+T M))
+(T M · (FS⊕S)),

T S = (T S ·FS)+((FS+T S) · (S⊕FM)),
S = (FM ·T S · (FS+S))

+(FM ·T S · (FS+S))
+(FS · (S�FM)).

(4.10)

80

Figure 4.19 : Binary low-pass filters (F is) protecting the nested ADD blocks against
the pulses narrower than τi. These filters do not increase the amount of delay
significantly. If the blocks ideally have the same amount of delay, filter should be
applied to each block. Else, only the block having the greatest delay should have a
BLPF.

Same with the ADD, the BLPF is proper to implement using only three 4-input LUTs

on an FPGA. Its LUT based schematic is given in Figure 4.21.

4.3.2 Mono-scroll attractor using analog integrator and flip-flop chain

In order to verify the feasibility of the proposed chaotic system, Oscillator 4, a practical

circuit that realizes the model in (2.15) is designed and built using off-the-shelf

components. The diagram of the designed circuit is given in Figure 4.22 which

is implemented using one capacitor, five resistors, three voltage comparators and

two CFOAs (current feedback op amps, special op amps offering high-slew rate

performance (AD844) [100]) operating in open-loop configuration.

The subcircuit depicted within dashed lines in Figure 4.22 built around two voltage

comparators, three resistors denoted by R1, R2 and R3, and the CFOA1 realizes the

required nonlinear function 1− h(x), which is the binary inversion of h(x). The

nonlinear voltage transfer of this subcircuit is given by:

vh =−VCCR3

(
1

R1
u(vC−Vb)−

1
R2

u(vC +Vb)

)
. (4.11)

For R1 = R2, the nonlinear voltage transfer becomes

vh =
VCCR3

R1

[
1−h

(
vC

Vb

)]
. (4.12)

It should be noted that vh(t) corresponds to [1− h(x(t))], where h(x) is defined in

(2.12). Output levels of the comparator subcircuit are R3
R1

VCC and 0. Hence, it has two

stable states and it would be possible to implement TDelay[·] block with a digital circuit

after the output of the function [1−h(x)], which can be represented by the binary digits.

81

Figure 4.20 : Input signal x(t) with various pulses and glitches, and xF(t−τ) which is
the output signal of a recursive ADD block with BLPF is plotted. BLPFs filter out the
pulses narrower than the delay provided by its slave delayer, which is τ for this case.

Figure 4.21 : LUT-based schematic of the BLPF. Similar to the ADD, only three
4-input look-up tables are required to implement BLPF.

The subcircuit shown within the gray box realizes the delay function with binary

output, TDelay[·], and is composed of an FPGA based structure. The delay line is

implemented on a low-cost 100K-gate FPGA (XC3S100E-4TQ144) and clocked by

100 MHz frequency signal generated by the oscillator on the board. The length of

flip-flop chain (NFF) is set to 20,000 in order to obtain needed delay time, τ̂ = 200µs.

The output of the flip-flop chain is given by:

vd(t̂) = vh(t̂k− τ̂), (4.13)

where t̂ is the time, t̂k is the sampling time and τ̂ is the amount of delay in seconds.

82

Figure 4.22 : The experimental circuit used to realize the proposed chaotic system
(2.15).

A voltage comparator (Vr = 0.5V) which implements the block fc(·) is driven by the

output of the delay line which yields

v f (t̂) =VCC

[
2 ·u

(
VCCR3

R1

[
1−h

(
vC(t̂k− τ̂)

Vb

)]
−Vr

)
−1
]
. (4.14)

Briefly, (4.14) can be written by

v f (t̂) =−VCC f
(

vC(t̂k− τ̂)

Vb

)
. (4.15)

The output of this block (v f) is connected to CFOA2 which is used for implementation

of a voltage controlled current source. Routine analysis of the circuit (Figure 4.22)

yields to the following equation:

v̇C(t̂) =−
vC(t̂)
RC

+
VCC

R4C
f
(

vC(t̂k−NFFT̂s)

Vb

)
(4.16)

where T̂s is the flip-flop clock frequency in seconds with t̂k ≤ t̂ < t̂k + T̂s.

By defining the following normalized variables x ≡ vC/Vb, τ ≡ NFFT̂s/RC, α =

VCCR/R4, normalizing time using t = t̂/RC, and choosing Vb = 0.75V it can readily be

shown that (4.16) is equivalent to the model (2.15).

The circuit in Figure 4.22 is built using the following passive component values: C =

5nF, R1 = R2 = 50kΩ, R3 = 33kΩ and VCC is set to 5V. Hence, the voltage of delay

83

line input is in the range of [0,3.3]V. The value of R and R4 are made adjustable to set

desired RC and α values.

Agilent’s DSO6104A oscilloscope, which has 1 GHz bandwidth through its 4 Gsps

rate, is utilized to analyze the system. Time waveform of the capacitor voltage, vC(t)

corresponding to the variable x in (2.8) is captured by this digital oscilloscope. But,

the captured signal is downsampled to 1 Msps by the oscilloscope in order to reduce

the data size of the waveform. The value of adjustable resistor R is set to 5KΩ with

C = 5nF and τ̂ = 200µs to make τ = 8. A 200 ms of sampled signal record, which is

200K samples long, is taken to computer. In this system, only vC(t̂) can be measured,

because the binary signal h(vC(t̂k)) is delayed instead of vC(t̂). Therefore, vC(t̂− τ̂) is

obtained from the signal recorded and transferred to the computer. Phase portrait of a

40ms interval, which is plotted using the recorded data, is shown in Figure 4.23.

Based on the spectrum of the Lyapunov exponents on the (Ts−α)-plane (Figure 2.17),

it is possible to decrease the number of flip-flops on the delay line. The amount of the

delay is the product of NFF and Ts. With a constant proper α value, Ts can be increased,

which provides decrease in NFF, and can be still in the chaotic regime. The α values

greater than 2 yield a chaotic behavior band for Ts values smaller than approximately

0.2. As an example, for α = 2.5, the phase portraits for different Ts values are depicted

in Figure 4.24. The phase portraits on the left column of the figure are drawn with

the captured data from the circuit realization. The phase portraits on the right column

belong to the computer simulation results. Ts = 0.001 for Figures 4.24(a) and 4.24(b),

Ts = 0.020 for Figures 4.24(c) and 4.24(d), Ts = 0.250 for Figures 4.24(e) and 4.24(f)

while τ = 8 for all experiments. So, the numbers of utilized flip-flops are 8000, 400

and 32, respectively. Apparently, both the simulation and the circuit realization still

exhibit the chaotic attractor when NFF is decreased from 8000 to 32.

Moreover, experiments with smaller number of flip-flops than 32 validate Figure 2.17

with non-chaotic behavior. Although it is easy to implement chains longer than 8000

flip-flops using current FPGAs, requiring few number of flip-flops strengthens the

simplicity of the presented chaotic system.

84

Figure 4.23 : Phase portrait in vC(t̂− τ̂)− vC(t̂) plane.

4.3.3 Mono-scroll attractor using analog integrator and ADD chain

A delay line using 2048 LUT-based buffers is implemented on Xilinx XC3S500E-4

FPGA which achieves 3.68µs delay. When an ADD is used with a chain of 1024

LUT-based buffers as its slave unit, the delay is still 3.68µs. A 2-nd order nested ADD

(using 2 ADDs) with 512 LUT-based buffers also achieves 3.70µs delay. High nesting

orders of ADDs create extra delay because ADD propagation delay gains significance,

given in (4.8). The flashy result is achieved using 4 LUT-based buffers and a

10-th order nested ADD. Totally 34 LUTs provide 6.29µs amount of delay by this

configuration which is 102 times more area efficient than a chain using buffers only.

If all logical resources of the target FPGA is occupied by this 34-LUT configuration

and if they are connected in cascaded form, 1.71ms total amount of delay is achieved

which is already impossible with pure buffer chain.

The ADD design is tested within a time-delay sampled-data feedback system [101]

in which the delay line on the feedback is implemented by a D-type flip-flop chain

85

(a) (b)

(c) (d)

(e) (f)

Figure 4.24 : vC(tk− τ)− vC(t) phase portraits of circuit realization for Ts = 0.001 in
a, Ts = 0.020 in c, Ts = 0.250 in e and of simulations for Ts = 0.001 in b, Ts = 0.020 in
d, Ts = 0.250 in f. For all experiments α = 2.5 and τ = 8. This results demonstrate that
the chaotic behavior of the system can be obtained with a small number of flip-flops
down to 32 in conformity with Lyapunov exponent spectrum in Figure 2.17.

86

that functions as a sample-and-hold block. This delay line in [101] is swapped with

a cascaded 152 pieces of 9-th order recursive ADD blocks. The schematic of the

system with nested ADDs is given in Figure 4.25. At the bottom of each recursive

ADD block, a chain of 12 inverting buffers in 3 slices using LUTs and XOR gates is

used. Therefore, a continuous-time delay line with 555.6µs delay and 4.4µs minimum

interval limitation (τmin) is created and protected with binary low-pass filters which

are located at the top of each recursive ADD block. Totally, [6+(9×3)+3]×152 =

5472 LUTs and 6× 152 = 912 XOR gates are used in the delay line. The circuit

configuration (component values and parameters) are also found in Figure 4.25.

The delay line works properly and the same chaotic behavior in [101] is observed.

Figure 4.26a shows the phase portrait of the original system with flip-flop chain and

Figure 4.26b shows the phase portrait of the system with proposed ADD based delay

line. [101] The random candidate bits are sampled at the end of the delay line with

50µs period similar to the one in [6]. Recorded 4Mb string is subjected to the NIST

800-22rev1a test suite and it is observed that the bit string has successfully passed all

the tests.

More distinct advantage appears if ADD is implemented as an CMOS integrated

circuit. ADD-BLPF block chain is the most area saving one among the three binary

delay lines, flip-flop based, inverter based and ADD based ones. The circuit in [101]

should have at least 25000 D-type flip-flops (Tc = 20ns for τ = 50µs) in its delay

line in order to success NIST’s statistical test suite at 20 kbps throughput. The

classical positive-edge triggered D-type flip-flop using three SR latches needs 26

transistors, however a very simple static D-type flip-flop without reset and preset

feature is composed of 10 transistor [102]. Flip-flop based delay line, which is

required for generating the chaotic attractor and the 20 kbps random bit generation,

consumes 250,000 transistor. If only even number of inverting buffers are utilized,

500µs/3.68µs · 2048 · 2 = 556,521 transistors are required. One should notice that,

the CMOS-IC inverting buffer has quite less propagation delay than the FPGA’s LUT.

Hence, the implementation of buffer-chain delay line probably consumes much more

transistors than 556,512 for a 50µs delay. On the other hand, the similar attractor is

observed using a cascaded 152 pieces of 9-th order recursive ADD blocks and their

BLPFs. In this configuration, the total required transistor count is 92,720. Using

87

Figure 4.25 : Using ADDs on the delay line of a time-delay sampled-data system
which was proposed as a True Random Bit Generator [6]. ADD and buffer chain
based delay line converts the system from sampled-data to continuous-time. In this
implementation, VCC = 5V , VEE = −5V , Vbias = 0.5V , Vpos = 1.10V , Vneg = −0.97V ,
R1 = 2.76kΩ, R2 = 5.73kΩ, τline = 555.6µs, τmin = 4.4µs, and the bit sampling rate
is 20kHz.

Figure 4.26 : Phase portraits of chaotic signals obtained a) by the original system with
flip-flop chain, b) by the system with the proposed ADD based delay line.

88

NAND and NOT gates, BLPF can be implemented by 136 transistors, ADD by 50

transistors and the bottom delay line of each ADD block by 24 transistors. The

proposed design need the least transistor in order to generated true random bits at 20

kbps rate by its expected chaotic dynamics. Proposed design fits into 37% of flip-flop

based delay line area, and 17% of only buffer based delay line area.

On a target FPGA, the delay line constituted with recursive ADD blocks, small

buffer chains at the base, and BLPFs at the top yield such a high amount of delay

(1.71ms) that can not be produced practically using only buffers in the same FPGA.

In recursive ADD structure, the delay increases exponentially in exchange for linearly

increasing area consumption which provides outstanding area efficiency. By means of

the asynchronous design, the ADD responds its input immediately without waiting for

the clock edge, and relieves the system from being a periodic sampled-data system.

This delay line can be used in RO-based PUF designs, low-frequency time-delay

chaotic oscillators and low-frequency clock signal generators with the help of run-time

controllable delay cells that the DLL designs already include. As expressed by Roska,

the time delay of connections could play also a role when the processors of Cellular

Wave Computer are connected either locally, within a receptive field, or in a sparse

global, bus-like way [103].

4.3.4 Mono-scroll attractor using digital integrator and inverter chain

At the beginning, the sampled-data system ẋ(t) =−x(t)+ f (x(tk−τ)), tk ≤ t < tk +Ts

which is given in [101] has been discretized by forward Euler method with integration

step h, and given by

x(tk+1) = x(tk)+h(−x(tk)+ f (x(tk− τ/h))). (4.17)

Both systems have the same nonlinearity

f (x) = 4(u(x−1)+u(−x−1))−2. (4.18)

According to the original system, x(t) ∈ [−2,2]. Here, amplitude has been quantized

in System (4.17). [−4,4) range has been quantized by 8-bit digital state using 2’s

complement representation (signed Q3.5 format). System is realized by the integrate

and compare (INTCOMP) block whose schematic diagram is drawn in Figure 4.27.

89

Figure 4.27 : Schematic diagram of integrate and compare block (INTCOMP).

INTCOMP has one 8-bit state register, REG, which can be reseted to INIT value

according to RST signal. Current value of the state register is increased by either

h(−x(tk) + 2) or h(−x(tk)− 2) according to the FT signal, which is the delayed

nonlinear feedback. The CLK signal period is equal to h which is 1/4 (normalized

value) in this implementation, and multiplication by h is computed by shifting the

operand to the right by 2 bits. F output is generated by the comparator block below the

REG in the figure. Outside the INTCOMP, F is driven to the delay line.

Two delay lines are implemented. The first one (DDFF) has 36 D-type flipflops (DFF),

depicted in Figure 4.28. System obtains τ = 36h = 9 using DDFF. This structure has

also been employed in the sampled-data system implementation [101]. Delay amount

depends on the CLK signal period and jitter.

A system composed of an INCTOMP and a DDFF has 44-bit memory in total. At most

in 244 (the number of states in the state space) iterations, the system must repeat a state

which indicates that system has a periodic motion. The solution proposed by this

subsection utilizes propagation delay. Numbers of cascaded inverting buffers provide

both the delayed signal and a delay uncertainty that breaks the periodic trajectory. The

90

Figure 4.28 : Schematic diagram of D-type flipflop based delay line (DDFF).

alternative delay line with Look-up-tables (LUT) that function as non-inverting buffers

is called DLUT and depicted in Figure 4.29.

Propagation delay is based on the low-pass characteristics of digital gates. In reality,

switching takes time due to the parasitic capacitors appearing in CMOS circuits. The

voltage exponentially increases or decreases at each gate output, and it takes some time

to across the threshold voltage level of the next gate. This effect creates delay line on

the LUT chain.

The RST signal resets the flipflops in Figure 4.28 and drives the LUTs to 0 in Figure

4.29. 1024 LUTs are employed to have a delay which is obtained by 35 DFFs in Figure

4.28. For the target Field-Programmable Gate Array (FPGA), the CLK period h is set

to 8.197ns in order to equalize both delays. However, it is not possible to get a constant

delay from DLUT. Although the mean delay may be approximated to the delay gained

by DDFF, there exists a significant jitter on this line. This jitter represents the random

process which is sourced by the noise on the FPGA. INTCOMP’s chaotic basis has

sensitivity to initial conditions. Hence, INTCOMP dramatically changes its trajectory

when the delayed signal has a slight change with respect to the expected one.

System behavior is examined by a test circuit whose schematic diagram is given in

Fig 4.30. INTCOMP1 is the main sub-block which runs with DLUT1 in order to

observe the uncertainty effect. INTCOMP1 and DLUT1 generates x1(tk) (X1 in the

Figure 4.29 : Schematic diagram of Look-up-table based delay line (DLUT).

91

schematic). Evolution of X1 is compared with X2 (x2(tk)) which is the state variable

of INTCOMP2 and DDFF2 couple. INTCOMP2 and DDFF2 couple tend to have a

periodic motion, and this periodic motion will be the reference behavior of the system.

DDFF0 in the diagram is required to adjust the CLK frequency. A square wave with a

long period is generated by TSWG and driven to the DLUT1 and DDFF0 delay lines

while the CLK period is adjusted using CLKGEN block. Output of the delay lines are

stored in MEM (memory) block and sent to a computer through TX line to be analyzed.

If delay of both lines are equalized, then proper CLK period has been determined. This

process is required because DLUT is sensitive to PVT variations. However, one should

notice that a stabilization scheme like delay-locked-loop [104] is not required, as the

jitter occurred on DLUT line is vital for the intended aperiodic behavior. CU block is

the control unit and has a user interface including LEDs, buttons, and switches. MEM

does not only store the delay line outputs (FT signals), but also nonlinear function

output of INTCOMP1 (or output of TSWG), and state variables of both INTCOMPs.

Depth of MEM is 48k samples.

4.3.5 Multi-scroll attractor using analog integrator and flip-flop chain

The circuit of the proposed multi-scroll chaotic oscillator is implemented by frequently

used analog components and a low-cost reconfigurable digital device. Although the

tanh approximation is employed in numerical analysis, because the calculation of

largest Lyapunov exponents requires it, the nonlinearity of circuit is composed by

comparators. They are supposed to implement unit step functions. The system (2.16) is

composed by a Current Feedback Operational Amplifier (CFOA) which realizes analog

accumulation and integration, some analog comparators which emulate the unit step

functions in the nonlinearity, a logical priority encoder, flip-flop chains and a logical

decoder. Even it is assumed that the flip-flops run in discrete time in general, they hold

their outputs along the sampling period obviously and they switch their values in an

analog manner.

The system (2.16) shows that the evolution of x is controlled by itself and the nonlinear

function of its delayed value. The difficulty in time-delay circuit implementation is to

delay the analog state signal. At first view, the same difficulty is valid for the system

(2.16). However, the fact that both the nonlinearity and the delay operation are time

92

Figure 4.30 : Schematic diagram of top level design.

93

invariant provides a convenience. The nonlinear function and the delay operation may

be swapped. If it is assumed that a delay operation Tτ [·] satisfies Tτ [x(t)] = x(t− τ),

System (2.16) can be rewritten as

ẋ(t) =−x(t)+α fm(Tτ [x(tk)]), tk ≤ t < tk +Ts. (4.19)

By means of the time invariance, the equation takes the form

ẋ(t) =−x(t)+αTτ [fm(x(tk))], tk ≤ t < tk +Ts. (4.20)

According to (4.20), the output of the nonlinear function is delayed instead of the

analog state signal. The output of the nonlinearity (2.16) is discrete in amplitude. The

number of different output levels of the nonlinearity is dependent to the n f , w f , h f and

α parameters. It should be noticed that this number has an upper limit 2n f +2, which

is also the number of regions on the fm(x).

A digital circuit having a D-type flip-flop chain is able to delay the output of a binary

valued nonlinear functions, such as the one in [101]. The sample-and-hold behavior of

the D-type flip-flop is proper for the system (4.20), as the sampled x signal is subjected

to the nonlinear function in the model. In this implementation, D-type flip-flop chains

are utilized with a slightly different duty. At any time, the sampled state x(tk− τ) is

in one of the regions which are separated by the discontinuity points on fm(x). The

main idea is to delay the information where the sampled x(tk) is standing in. This

information is represented by a digital signal which can be delayed using parallel

flip-flop chains.

The circuit diagram is given in Figure 4.31. The pi(t) signals (i = 1,2, ...,7) are the

comparison results of the state with the discontinuity points. They indicate the region

that x(t) stands in. As x(t) can stand in only one region, the information that pi(t)s

carry can be encoded to dm(t) signals (m = 0,1,2). The number of comparators P,

which is 7 in this case, should be equal or greater than 2n f +1 to implement the desired

nonlinearity. It can be considered as a P-bit asynchronous digital signal bus. The bit

number of encoded signal bus M is dlog2(P)e. The comparator outputs are adjusted for

the digital device. High level voltage value H is set to 3.3V and low level voltage L is

0V. The priority encoder which is a combinatorial logic block runs clockless and does

not sample the pi(t) signals. But, the encoded dm(t) signals are sampled and held by

flip-flop chains that yield dm(tk− τ) signals. The decoder is also a combinatorial logic

94

block, however its outputs are also sampled-data as inherited from its inputs. Only one

of the qi(t) signals (i = 0,1, ...,7), which is indicating that x(tk−τ) is in the i-th region,

can be logically high at any time. The others remain logically low. So, in(t) current in

(4.21), which is the sum of currents flowing over the resistors Ri (i = 0,1, ...,7), only

depends on the high bit on the q-bus and the resistor connected to that bit.

in(t) =
7

∑
i=0

qi(t)
Ri

(4.21)

CFOA provides iz = in and iz(t) is integrated on the RC block. The output of the CFOA

is the state variable x(t) which also equals to the vz(t).

The brief circuit introduction should be explained in details. In general case, a priority

encoder ignores the values of inputs which are less significant than the most significant

input with high level value. If the threshold voltages are adjusted in the order Vi <Vi+1

for i = 1,2, ...,6, then the priority encoder satisfies the truth table given in Table 4.5.

Table 4.5 : Truth table of priority encoder used in the circuit.

p 7
(t
)

p 6
(t
)

p 5
(t
)

p 4
(t
)

p 3
(t
)

p 2
(t
)

p 1
(t
)

d 2
(t
)

d 1
(t
)

d 0
(t
)

L L L L L L L L L L
L L L L L L H L L H
L L L L L H H L H L
L L L L H H H L H H
L L L H H H H H L L
L L H H H H H H L H
L H H H H H H H H L
H H H H H H H H H H

Using a field programmable gate array (FPGA) makes it easy to adjust the number of

flip-flops NFF on the chains. In this implementation NFF = 1000 and the common clock

signal for all flip-flops (clk) has a period Ts = 200ns. With the given sampling period,

the delay τ obtained from each chain is 200µs. There may be differences between

dm(t− τ) and dm(tk− τ) due to the sampling phenomenon explained in Figure 2.14.

With the cooperation of a logical decoder at the output of flip-flop chains, a delay line

coding mechanism is constructed. It should be noticed that linear growth in delay line

number provides an exponential growth in scroll number with a cost of exponential

growth in p-bus and q-bus widths. Since the required flip-flop chain count is less than

95

Figure 4.31 : Circuit diagram of multi-scroll time-delay sampled-data chaotic system.
The Circuit has 7 comparators that determines the maximum number of scrolls as
6. With data coding approach, the delay line number is less that the comparator
number and increases linearly when the comparator need increases exponentially for
exponential growth in scroll number.

96

the comparator count, the proposed mechanism efficiently reduces the total component

count when the scroll number is increased.

The truth table of the decoder is given in Table 4.6. In terms of comparator threshold

voltages Vi, decoded signals qi(t) can be defined by

qi(t) =

{
3.3V, Vi ≤ x(tk− τ)<Vi+1,

0V, else,
(4.22)

Table 4.6 : Truth table of decoder used in the circuit.

d 2
(t

k
−

τ
)

d 1
(t

k
−

τ
)

d 0
(t

k
−

τ
)

q 7
(t
)

q 6
(t
)

q 5
(t
)

q 4
(t
)

q 3
(t
)

q 2
(t
)

q 1
(t
)

q 0
(t
)

L L L L L L L L L L H
L L H L L L L L L H L
L H L L L L L L H L L
L H H L L L L H L L L
H L L L L L H L L L L
H L H L L H L L L L L
H H L L H L L L L L L
H H H H L L L L L L L

if it is assumed that V0 =−∞ and V8 = ∞. The current into the z terminal of the CFOA

is given by

iz(t) =
VCC− vz(t)

R
−C

dvz(t)
dt

. (4.23)

It should be noticed that one of the terminals of the capacitor C is connected to VCC.

For CFOA, it is defined that in(t) = iz(t) which yields

dvz(t)
dt

=
−vz(t)

RC
+

[
VCC

RC
− in(t)

C

]
. (4.24)

Using (4.21) and (4.22), the state equation becomes

dvz(t)
dt

=
−vz(t)

RC
+

[
VCC

RC

−
7

∑
i=0

3.3
RiC

[
u(x(tk− τ)−Vi)−u(x(tk− τ)−Vi+1)

]]
.

The state variable x(t̂) equals to vz(t)/RC with time normalization, t = t̂RC. The

proposed system does not require an amplitude normalization. Using (2.16) and setting

97

o f = 0, the comparison between (2.16) and (4.25) reveals that

fm(x) =
1
α

[
VCC−3.3

7

∑
i=0

R
Ri

[
u(x−Vi)−u(x−Vi+1)

]]

=
(

h f −
n f w f

α

)
+

2n f

∑
i=0

[(w f

α
+(−1)i+1

(
2h f +

w f

α

))
·u
(
x+w f

(
n f − i

))]
.

The value of R is fixed to 10kΩ and the capacitor C to 1nF. For a chosen

{α,n f ,h f ,w f } set, Ris and Vi are calculated to match the numerical analysis and circuit

implementation results below.

In order to adjust the circuit parameters, the simulation parameters are selected as

follows: α = 1, n f = 3, h f = 1.5, w f = 0.5, o f = 0. As the result, the comparator

threshold voltages are calculated as V1 = −1.5V, V2 = −1.0V, V3 = −0.5V, V4 =

0.0V, V5 = 0.5V, V6 = 1.0V, V7 = 1.5V. And the values of adjustable resistors are

calculated as R0 = 6600Ω, R1 = 4125Ω, R2 = 8250Ω, R3 = 4714Ω, R4 = 11000Ω,

R5 = 5500Ω, R6 = 16500Ω, R7 = 6600Ω. When a ramp signal is applied to the

input of the comparators on the circuit which has the values given above and in which

the connection between the CFOA and the comparators is cut, the fm(x) function is

observed on the output of the CFOA. In this way, the fm(x) from the circuit is captured

by an oscilloscope and depicted in Figure 4.32a.

The circuit which implements the nonlinear function in Figure 4.32a generates the

phase portrait in Figure 4.32b with τ = 200µs, NFF = 1000, Ts = 200ns, RC = 10µs.

The normalized delay, τ/RC = 20, is equal to delay in numeric simulations in Figure

2.20 to 2.25. A 6-scroll chaotic attractor in Figure 4.32b from the circuit matches up

with the simulation result in Figure 2.19. 2-scroll and 4-scroll ones from the circuit

(Figure 4.32c and Figure 4.32d) are in agreement with the given simulation results in

Figure 2.26a and Figure 2.26b. Circuit realization highly matches up with numerical

analysis. However, one should notice that signals are influenced by random noise

generated by electrical circuit, thus the signal has a fluctuating trajectory as seen on

Figure 4.32b−d.

In this subsection, a chaotic time-delay sampled-data system which is generating

multi-scroll attractor is proposed. The system is modelled by a first-order delay

differential equation which consists of a nonlinear time-delay sampled-data feedback

98

Figure 4.32 : Results from the circuit implementation: a) The implemented nonlinear
function y = fm(x) (blue), and y = x/α line (red). Nonlinear function has 7
discontinuities which yields 6 scrolls. b−d) Phase portraits in the x(t − τ) versus
x(t) state space generated by the circuit implementation with common parameters:
α = 1, h f = 1.5, w f = 0.5, o f = 0, τ = 200µs, NFF = 1000, Ts = 200ns, RC = 10µs,
Vsupp =±3.3V, n f = 3 in b, n f = 1 in c, n f = 2 in d.

99

function. The nonlinearity is a discrete amplitude function and formed by unit step

functions. Number of scrolls can be increased by inserting additional step to the

nonlinearity. There is no limit in the number of scroll, theoretically, but in practice,

the operation range of the circuit puts realization limits. The 2, 4, 6, 8 and 10-scroll

simulation results and circuit implementation results of the first three of them are

demonstrated.

This sampled-data system removes the need for analog delay lines. Instead, delay

lines composed of simple D-type flip flops are used in the circuit implementation. The

nonlinear function with finite discrete amplitudes results in finite numbers of delay

lines. Furthermore, a binary coding method is applied to the feedback channel and the

number of delay lines are significantly decreased. As a result, the number of scrolls

increases exponentially while the number of delay lines increases linearly. Both the

nonlinear feedback function and its binary coded sampled-data delay lines are novel

contributions to the literature.

4.3.6 1D network using analog integrator and flip-flop chain

In [6], the considered time-delay chaotic system is employed to generate random

numbers. Actually, it has a binary output, which can directly be used for random

number generation. If one can couple to the signal of this original system and apply it

to another appropriately constructed system, it is possible to predict the numbers that

will be generated by the original system τ second before. This is the consequence

of the fact that time-delayed response system can be synchronized to non-delayed

drive system by making use of anticipating synchronization. It is possible to increase

number of coupled systems, therefore with a chain of oscillators prediction can be

accomplished for integer multiples of τ , i.e. 2τ , 3τ , etc. [76]. This subsection, presents

experimental verification of the idea.

The circuit realization of the original time-delay chaotic system is given in [101] and

[6]. Figure 4.33 shows the circuit implementation of four coupled systems in such a

way that they exhibit anticipating synchronization. The given implementation realizes

100

the sampled-data form of the systems as follows

ẋ1(t) = −x1(t)+α f (x1(tk− τ))
ẋ2(t) = −x2(t)+α f (x1(tk))
ẋ3(t) = −x3(t)+α f (x2(tk))
ẋ4(t) = −x4(t)+α f (x3(tk))

(4.25)

where tk is the k-th sampling-time [101]. The delay line shown in Figure 4.33 is a

flip-flop chain which delays f (x1(tk)) by sampling and shifting the binary signal. Using

single flip-flop in each system and applying the same clock signal to all makes the

nonlinear feedback signal generated by f (·) sampled-data. Again the error system

defined with

e , xn−1(t)− xn(t− τ) (4.26)

is a stable system and anticipating synchronization occurs. Considering the first

two coupled time-delay sampled-data systems, which are given in (4.25), the error

evolution is obtained as

ẋ1(t)− ẋ2(t− τ) =−[x1(t)− x2(t− τ)]+α{ f (x1(tk− τ))− f (x1(tk− τ))}. (4.27)

This shows that (3.14) is also valid for sampled-data form of the system.

The circuit in Figure 4.33 is easily built using on-the-shelf analog components and a

very low-cost Field Programmable Gate Array (FPGA) Board. Each system has four

LM311 comparators for the nonlinearity and two AD844 current-feedback OpAmps,

one for the integration and the other for the nonlinearity implementation. There exist

four potentiometers. Two of them are used for reference voltages in nonlinearity

implementation, and remaining two are for the α parameter and the time constant

of the circuit. The component values are the same as given in [6]. The delay line

and single flip-flops (sample-and-hold units) are implemented on the FPGA. Even this

low-featured FPGA is quite enough for the required flip-flop chain which provides

500µs delay with a 50MHz sampling rate.

In Figure 4.34, some qualitative measurements made on the implementation in Figure

4.33 are given. Figure 4.34a, 4.34b and 4.34c are oscilloscope screen photos. Figure

4.34a plots x1(t) vs. x2(t), Figure 4.34b plots x2(t) vs. x3(t), and Figure 4.34c plots

x1(t) vs. x3(t). The attractor observed on x1(t) vs. x3(t) state-space, which is a new

attractor, is compared with its computer simulation results which is depicted in Figure

4.34d. The realization results for this new attractor is in accord with the computer

101

Figure 4.33 : Four sampled-data feedback systems are used for the realization of the
idea. The Master System has the time-delay feedback. Slave System 1 is coupled to
the Master System in a non-delayed form. Just one D flip-flop is used to make the drive
signal sampled-data which is synchronous to the delay line. Slave System 2 and Slave
System 3 are implemented in the same manner. As a result, Slave System 3 predicts
(anticipates) the state of the Master System 3τ before.

102

simulation. Figure 4.35 depicts experimental waveforms of x1(t) = vC1(t), x2(t) =

vC2(t), x3(t) = vC3(t), and x4(t) = vC4(t) on the oscilloscope screen for τ = 500µs,

showing the anticipating synchronization for integer multiples of τ . It is seen from the

Figure 4.35 that anticipating chaotic synchronization is maintained for τ , 2τ , and 3τ

such that x1(t) = x2(t− τ) = x3(t− 2τ) = x4(t− 3τ) in ideal conditions. This can be

seen from the highlighted parts of the waveforms given in Figure 4.35 with some effect

of the electrical noise exposed in the implementation.

4.3.7 1D network using digital integrator and flip-flop chain

In Subsection 4.3.6, one master and three slave systems have been implemented and

anticipated signals have been demonstrated. In this subsection, the slave systems are

the ones discretized using forward Euler method and implemented as digital circuits.

The delayed signal is expressed by a linear time invariant delay operator, x(tk− τ) =

Tτ [x(tk)]. Then changing the order of the nonlinearity f (·) and the time operator Tτ [·]

yields f (x(tk− τ)) = Tτ [f (x(tk))]. This provides the binary output of the nonlinearity

to be delayed, instead of the analog state variable itself. The required delay line for

Oscillator 4 in (2.15) samples the binary signal from the nonlinearity and hold it along

the sampling period. The previous samples in the delay line moves one step all together

towards output at each sampling moment. This structure is simply constructed using

fundamental memory element for the digital circuits, delay-type (D-type) flipflop, and

called shift register in digital electronic field. Figure 4.11b depicts the D-type flipflop

chain used in this implementation as the delay line.

In this implementation, p is selected as 3. Integration step of discrete systems h is

selected as Ts, which is 0.125 in the model. Delay (τ) is 10. The discrete-time slave

systems with the sampled-data master system is given in (4.28) with the coupling

scheme.
ẋ0(t) =−x0(t)+Tτ

[
f
(
x0(tk)

)]
x1(tk +Ts) = (1−Ts)x1(tk)+Ts f (x0(tk))
x2(tk +Ts) = (1−Ts)x2(tk)+Ts f (x1(tk))
x3(tk +Ts) = (1−Ts)x3(tk)+Ts f (x2(tk))

(4.28)

If the feedback in the Oscillator 4 is broken and f is considered as an input, the solution

of sampled-data system becomes

x(tk +Ts) = e−Tsx(tk)+(1− e−Ts) f (tk). (4.29)

103

(a) (b)

(c) (d)

Figure 4.34 : a) x1(t) vs. x2(t) plot, b) x2(t) vs. x3(t) plot, c) x1(t) vs. x3(t) captured
on an analog oscilloscope screen, d) x1(t) vs. x3(t) plot drawn by computer simulation.

Figure 4.35 : Digital oscilloscope screen captures depicting x1(t) (blue), x2(t) (red),
x3(t) (green) and x4(t) (purple) synchronously. The yellow box is shifted τ second left
at each channel and used for focusing a short-time signal record that is seen on every
system’s output.

104

Using α = e−Ts , the general solution is given by

x(nTs) = α
nx(0)+

n−1

∑
r=0

α
n−1−r(1−α) f (tr). (4.30)

Similarly, the forward Euler integration provides the solution of the discretized system

by

xD(nTs) = β
nxD(0)+

n−1

∑
r=0

β
n−1−r(1−β) f (tr), (4.31)

where β = (1− h)Ts/h. As α < 1 and β < 1, the zero-input solution of both systems

asymptotically converges to 0. If the error is defined as e(nTs) = xD(nTs)−x(nTs), and

the input applied f (tr) is ±2 to both systems, 0 < e(nTs) ≤ emax = 0.097082, when

h = Ts = 1/8. Input signal is defined ±2 in order to simulate the nonlinear function in

(2.8), as α = 2 in Subsection 2.3.1. Selecting h = Ts = 1/8 gives a very rough digital

approximation.

The discrete-time (digital) system resembles the original sampled-data system in the

error range given above. Simulations show that digital system’s state variable may

incorrectly pass the thresholds in the f function due to the error, and generate faulty

f values for finite sampling periods. This reduces the anticipating synchronization

performance of the digital systems while p is increasing. However, for p = 3 as in this

implementation, the 3-rd slave signal successfully predicts the master systems state

signal. Synchronization performance may be polished by smaller h values in exchange

for implementation complexity. The preferred feature is the simplicity of slave system,

thus the system is implemented as explained below with h = 1/8.

The System (4.28) is implemented by a mixed signal circuit whose block diagram

is drawn in Figure 4.36. The red blocks are analog (continuous time, continuous

amplitude signal) circuits. The green blocks in the Field Programmable Gate Array

(FPGA) region are digital (discrete-time, quantized amplitude signal) circuits. FPGA

is a configurable digital device, that you can build the designed digital circuit using

its functional blocks and programmable interconnections. One should note that,

the discrete-time systems hold their signal value between the sampling moments.

Therefore, the digital Delay Line acts the sample and hold role for the analog S0

system, which is integrating the Delay Line output signal in continuous time. The time

constant of analog S0 system, which is used as the time normalization factor, is 10µs.

The real delay is 100µs that means τ = 10 in the implementation. Ts equals to 1250ns

105

(equal to 1/8 before time normalization), so the flipflop count on the delay line is 80.

Digital S1, S2, and S3 circuits iterate at the beginning of each Ts period, and generate

the signals from f (x1(tk)) to f (x3(tk)). Their states (x1(tk) to x3(tk)) are not observable

in the proposed implementation. In order to observe these states, they are re-generated

outside the digital device (FPGA) using the drive signals (f (x0(tk)) to f (x2(tk))) by

analog integrators. The analog integrators are simple serial RC circuits. The voltage

signal over the capacitors of these RC couples represent the internal (non-observable)

x1, x2, and x3 states.

Figure 4.37 have four phase portraits which are generated by the given implementation.

The original attractor in [101] that exist on the x(t − τ)-x(t) state space has the

shape like the letter ‘V’. The same attractor is observed on x0(t)-x1(t) plane (Figure

4.37(a)), on x1(t)-x2(t) plane (Figure 4.37(b))on x2(t)-x3(t) plane (Figure 4.37(c)),

and on x3(t)-x4(t) plane (Figure 4.37(d)). Recorded signals over time using an analog

oscilloscope have been plotted in Figure 4.38. From top to bottom, each signal is

anticipated by the one below, 100µs before. The time shift between the signals equals

to the delay line length (100µs).

106

Figure 4.36 : Block diagram of coupled systems for anticipating synchronization. S1,
S2, and S3 are digital slave systems whose states are hidden. In order to measure the
hidden states, integrators (S1, S2, and S3) are employed. They work like sampled data
system, as they continuously integrate the sampled and held binary signal.

107

(a) Chaotic attractor on
x0(t)-x1(t) plane.

(b) Chaotic attractor on
x1(t)-x2(t) plane.

(c) Chaotic attractor on
x2(t)-x3(t) plane.

(d) Chaotic attractor on
x3(t)-x4(t) plane.

Figure 4.37 : The chaotic attractors observed by an analog oscilloscope. Phase planes
used for observation have been noted below subfigures.

Figure 4.38 : From top to bottom, x0(t) (blue), x1(t) (red), x2(t) (yellow), x3(t) (green)
in a 2ms-long record. Each have 100µs left-shift in reference to the one up signal.

108

5. APPLICATIONS

This chapter covers application examples of the cells, the networks, and their

implementations given in Chapter 2−4 to the real world problems.

Feedback Motion Planning, which is introduced in Section 5.1, has novel contributions

which are proposed in the same section. Doppler Effect observed on Cellular Nonlinear

Networks, based on both relaxation-oscillators and logic oscillator, comes in useful

when predicting the future location of target in 2D motion planning problem. The

details of employing the effect to extract a new feature from the network has been

presented in Subsection 5.1.2. Before, the classical feedback motion planning methods

employing Network 1 (Subsection 3.1.1) has been given in Subsection 5.1.1. Two

methods, called Wavefront Diffusion Based Algorithm and Wave Accumulation and

Gradient Based Algorithm, are included. Functional properties of two methods are

unified and a reference classical method is built in order to compare with the predictive

method in Subsection 5.1.2. Test simulations prove that the prediction based on

Doppler Effect really satisfies the expectation.

Applications of CNNs are followed by True Random Bit Generators (TRBGs).

TRBGs are introduced in Section 5.2. The previously proposed circuit of time-delay

sampled-data system and the circuits derived from it have been tested as TRBG.

Original circuit with analog integrator/comparator and flip-flop base delay line

performs good statistical results at low throughput, which is enhanced by EXOR

operation. The circuit with digital integrator/comparator and inverter based delay line

is exhibited in aperiodic behavior, which acts a key-role for generating random bits

using only an FPGA. The original circuit, its enhanced configuration, and aperiodic

digital implementation are covered by Subsection 5.2.1.

Moreover, the network given in Subsection 4.3.6 is employed in an attack

to the proposed TRBGs. Especially, attack on the TRBG utilizing analog

integrator/comparator has been investigated in Subsection 5.2.2. A correlation between

109

number of anticipating slave systems on the network and the anticipated bit error rate

has also been reported.

5.1 Feedback Motion Planning

Motion planning, which has applications from robotics, biochemistry [105], video

animations, artificial intelligence [106], to autonomous vehicle navigation [107], is the

name of producing a plan that moves object form an initial configuration to a desired

configuration while obeying the movement constraint [108]. A state (or configuration)

space, either discrete or continuous, which includes all possible values of the variables,

such as positions, orientations, velocities of objects like robots, targets, obstacles,

is the first fundamental requirement of motion planning. Time is the following

requirement. Implicit time definition (having just the order of event sequence) or

explicit time definition (having quantities as functions of time) should be provided.

State transforming operators, which are called actions, are also required in order to

compose a plan to evolve an initial state to the desired one. Henceforth, two criteria are

considered to evaluate any algorithm if it is a motion planner. The first one, feasibility,

is the indication of success to arrive at the goal state, without efficiency consideration.

The second is optimality, which is the indication of a feasible plan which optimizes

performance in a clearly specified way. In general, the effort for proposing a feasible

solution is more than for an optimal solution in robotics and related fields [108].

In today’s applications, sampling-based motion planning, one of the two main

approaches in continuous state spaces, is much more referred than combinatorial

motion planning, due to its short running times and implementation simplicity

[108]. Both methods need geometric modeling of application’s world, and associated

geometric transformations. On the other hand, without geometric representation, the

simplest planning algorithms on discrete state space lie at the base of many complex

methods or inspire them. Simplicity arises from not only the lack of geometric

representations, but also the lack of support for differential equations and uncertainty.

To build such a motion planner, every unique situation of the world is mapped to a

discrete state. The set constituted by those discrete states are called the state space. A

state transition function is created, whose inputs are the current state and the action,

and output is the next state. A search algorithm which is capable of recording the

110

state transitions is proposed such that the result is a sequence of actions that draws

a feasible plan [108]. For an optimal solution, a cost function is defined for actions.

Then, algorithm is enhanced in order to seek for the minimum cost of plan, for example

Dijkstra’s algorithm and A* algorithm [109].

The continuous paths generated by both sampling-based and combinatorial motion

planning require a feedback controller in real world applications, because errors and

deviations are taken into account. Discrete space motion planning steps forward

when embedding such a feedback control to the core of the planner. That planner

is called feedback motion planner and produces a feedback plan that involves feasible

paths avoiding obstacles by giving an action for every single state. Therefore, any

unpredictable deviation in the state of the real world that the planner interacts can be

healed by the feedback plan [108]. Potential function Φ, which is a function from

the discrete state space to [0,∞] can be called a navigation function if it satisfies three

conditions as follows. 1) Φ(x) = 0 for all x in the goal states set, 2) Φ(x) = ∞ if and

only if no point in the goal set is reachable from x, 3) and the local operator gives

a next state whose potential is less than the current state for every state excluded the

goal set. The local operator may be a minimization operator like the negative gradient

operator in continuous space. Navigation function defines a feedback plan if the action

is determined by the local operator [108].

Special Cellular Nonlinear Networks (CNNs) serve as feedback motion planners, in

the case of R2 state space, where the states represent the discrete positions on a

2D Euclidean plane, not the velocity or acceleration, and the only action defined on

this state space is 2D translation of a point object. CNN promises a computation

style beyond Boolean logic [103], which is handled by wave computers [110],

while algorithmic researches develop algorithms that runs sequentially on Boolean

processor or runs in parallel on reconfigurable logic [111]. Wave-front propagation

algorithm, maximum clearance algorithm, and Dial’s algorithm in literature yield

optimal feedback plans [108]. This phenomenon is also observed in propagation

of nonlinear waves, which is also called active waves and spatio-temporal waves.

Three different types of wave propagating nonlinear grid network, which are also

called active media, are defined as follows. The first one is excitable networks whose

elements (cells) have one stable equilibrium point. Any excitements from outside

111

and from the coupled cells bring the cell out of stable equilibrium, then the cell

evolves back to the initial stable state, while the excitation wave is propagating on the

network. The second one is bistable networks whose cells have two stable equilibrium

points. Excitement brings the cell out of a stable state and evolves to the other stable

state. The product wave is called traveling wave or switching wave. The last one is

self-oscillatory networks with cells without any stable equilibrium point. The cells

typically have a limit cycle in phase portraits causing a periodic oscillation. In this

type networks, cells usually synchronize to each other with a proper coupling scheme,

and a spatio-temporal event, called autowave, propagates on the network. CNN can

properly represent those system and propagate active waves [112]. Systems capable of

propagating binary traveling waves (triggering waves) are also suitable for feedback

motion planning [67].

The fact that wave propagation directly generates the feedback plan or the navigation

function is not stated in many CNN based motion planning studies. CNN is a

functional tool for planning. An early work has been published in 1993 that declares a

two dimensional grid array of Chua’s circuit is capable of finding optimal path which

needs the least energy even the ground level is wrinkled using different coupling

resistors [113]. A simple CNN based wave propagation algorithm, which has been

proposed for real time robot control, works as a backward search algorithm in which

the solution starts form the target point of the searched path [114]. The continuation

of that work demonstrates a gathering application of multiple robots [115], which

is an easy problem after producing the feedback plan using wave-front propagation.

Another CNN which is capable of contracting autowaves as well as propagating them

is proposed in [116]. This network does not generate feedback plan as the cells do

not have memory to save the wave propagation vector. Instead of this, propagated

wave is contracted with two fixed endpoint. At the end of contraction, the shortest

path is revealed. In 2010, the similar results from a FitzHugh-Nagumo network

have been announced by [117]. Not only electronic implementations, also chemical

setups coupled with electronically implemented active mediums are researched for

solving the shortest path problem. In [118] and [65], reaction-diffusion mediums are

realized by chemical processors with collaborating Cellular Automata (CA) and CNN,

respectively. A Cellular Logic Network (CLN) for binary traveling (trigger) wave

112

propagation is designed and applied for morphological image processing in [119],

and [66]. The CLN is also proper for motion planning [72]. Moreover, the architecture

of CLN and CA resemble each other [120]. A recent paper demonstrates that planning

with CA performs both optimality and the time efficiency in a better way than other

planning methods [121]. A distance propagation dynamic system [122] which is

an algorithm for robot navigation for dynamic environment has been developed and

formalized as a CNN in [123].

CNN serves exceptionally well for discrete motion planning and the Doppler Effect

supports the success of CNN with providing new feature generating ability. Before

explaining how this happens,the Doppler Effect is reviewed. It is the change in

frequency of a periodic event, such as wave, for an observer in a motion relative

to the source. In 1982, Christian Doppler, who is the eponymous physicist of the

effect, defined the frequency shift effect based on the colorful light observation of

moving stars [124]. By means of Doppler’s proposal, binary stars who are star

systems consisting of two stars rotating around their common center of mass are

clarified. Although the origin of Doppler’s proposal is about the visible bandwidth of

electromagnetic waves, it is a phenomenon for all kind of periodic events. If one keeps

the propagation speed of an event constant and generates that periodic event in different

spatial points, any observer who is stationary in reference to the origin of the space in

which the event occurs observes the Doppler Effect. The general form of observed

frequency fo is given by fo =
c−vo
c−vs

fs, where c is the propagation speed of event, vo is

the observer’s radial velocity, vs is the source’s radial velocity, fs is the frequency of the

event at source. Doppler Effect also serves when detecting the speed of atmospheric

objects. Doppler radars solve this problem by transmitting electromagnetic wave

to the target object, then sensing the frequency shift of the reflected and received

signal. Electromagnetic waves employed for Doppler Radar may be continuously

transmitted or be a repeated pulse [125]. Doppler Effect occurred in sound waves

derives applications about flow measurement. In Acoustic Doppler Velocimetry, signal

is transmitted to a flowing liquid in a cylindrical pipe and using four receivers, the

instant velocity is measured [126]. Echocardiogram employs ultrasonic waves to

determine the speed and direction of blood flow [127]. Laser Doppler Velocimetry

113

overcomes the difficult conditions such as high pressure or high temperature [128].

Some optical computer mice are also based upon the Laser Doppler Velocimetry.

As is given, Doppler Effect of physical waves in the real world has various applications.

However, this section resumes the Doppler Effect research of non-linear waves on

active media. The shape and amplitude of autowaves remain constant during he

propagation. They do not reflect at the medium boundaries and two colliding

autowaves annihilate each other [69]. The source of autowave generates successive

wave-fronts without a periodic input. Traveling waves, which is another kind of

nonlinear waves, is triggered by an input. Then, only one or a few wave-fronts are

generated and propagated in the medium. Successive traveling waves produced by a

periodic input may have pattern similar to an autowave. Another kind of nonlinear

waves is spiral wave that has a special self synchronization. The researches show

that the Doppler Effect may modulate the wavelength and the amplitude of the spiral

waves in a reaction-diffusion medium [129]. In the literature, it is possible to find

solutions to robot navigation problem that uses the Doppler Effect of acoustic waves in

a bio-inspired way [130]. Navigation applications using the Doppler Effect are mainly

improved on known sonar techniques. Scientific surveys about the Doppler Effect on

active media are performed particularly in physics and medicine. A paper represents

that it is possible to modulate the frequency of the autowaves in chemical active media

by the change in light intensity [131]. Obtained results from these fields of science

cause excitement about exercising the Doppler Effect on CNN-based active media.

Utilizing the Doppler Effect on active media for path planning and navigation is one

of the novelties of this thesis.

5.1.1 Generating feedback plan by relaxation oscillator networks

The fundamental questions are if there is any path for a robot that takes it to the target

point, and which one is the shortest if there are more than one path. To solve these

problems two path planning algorithms are presented in this subsection. The first one

is Wavefront Diffusion Based Algorithm and the second one is Wave Accumulation

and Gradient Based Algorithm. Traveling waves are employed in both algorithms. In

Subsection 5.1.2, they are called classical algorithm as they are solving the shortest

114

Figure 5.1 : Reference map.

path problem without any prediction. In Figure 5.1 a reference map is presented which

will be used to describe and test the algorithms.

Traveling wave-front itself offers a solution for path planning problem. To use this

solution, the history of propagating wave can be recorded and processed. Ito et al.

[64] expressed a method based on this phenomena in 2006. For Wavefront Diffusion

Based Algorithm, all y-state and u-input values are set to 0s. Initial x-state matrix

has three different nodes: fixed nodes, active non-source nodes and an active source

node. The map, which is shown in Figure 5.1, have these nodes. Fixed nodes which

are represented with gray color in Figure 5.1 form the obstacles and boundaries, and

during wave computing they get the constant value xfixed = 0. The dark-gray node

which has a flag on the reference map is the target point. In other word it is the source

of the wave and gets the initial value xsource = −1.122. All other nodes including the

white ones and black ones are active non-source nodes and they get the initial value

xinitial = 0. The black colored start points on the reference map get their difference than

the white colored nodes at the end of the wave propagation step. At the initialization

step these black colored start points are ignored and assumed to be white. The state

115

coefficients are set as α = 4, β = 0, ε = 0 and σ = 0. The weights of the synaptic law

are ai, j+1 = 0.8, ai−1, j = 0.8, ai, j−1 = 0.8 and ai+1, j = 0.8. The slope of the function

g(·) is m =−20, and its limit value is limit = 0.90.

Figure 5.2(a) shows the source node and its neighbors at the beginning of the iterations.

The x state variables of these nodes get the values shown in Figure 5.2(b) at the end

of the first iteration. Also, the second iteration values are given in Figure 5.2(c). At

each iteration, nodes which are touched by the wave are determined. The threshold

value for the wave is set to 0. The traveling wave appears on the node whose x-state

value is smaller than 0. Therefore, only the source node (60,60) holds the wave at the

beginning. Then the wave propagates to its 4-neighbors. Because of the synaptic law,

the diagonal neighbors do not affected directly by the center node. The wave image

is constructed by thresholding the x-state matrix. The wave image of the previous

iteration is also kept. A pixel-wise exclusive-or operation are performed using the

previous and the current wave images, and then the wave-front image is generated.

This wave-front image highlights the nodes which are newly touched by the wave.

At this step the direction of the wave must be computed. The neighbors of a newly

touched node carries the direction information. For this algorithm, the direction of the

wave-front propagation is represented by a vector which starts from the neighbor node

which has the maximum absolute x value and finishes at the newly touched node.

In Figure 5.3(a) the node (56,45) has not been touched by the wave yet. It has got the

value −0.001 in Figure 5.3(b), so the wave has propagated to this node. Because the

east neighbor has bigger absolute value than the north neighbor, the wave propagation

(a) (b) (c)

Figure 5.2 : x state values of the nodes surrounding the source node during the first two
iterations: a) initial values, b) the first iteration results, c) the second iteration results.

116

direction for the node (56,45) is determined from east to this node, that is a west

directional vector. Figure 5.3(c) shows the following iteration results.

In this wise, traveling wave covers all of the active nodes and vectors which show

the propagation directions for all nodes are calculated. After the wave propagation

finishes, a vectorial image is generated as shown in Figure 5.4(d) and using this image,

the path from starting node to the target node is computed. The starting node can be

any of the nodes but the target node is always the source node. The path is the sum of

vectors multiplied by −1 from starting node to the target node, through the neighbors

which are shown by the vector multiplied by −1. The outputs of this algorithm on the

reference map in Figure 5.1 are given in Figure 5.5.

The history of wave propagation is recorded in previous algorithm. In Wave

Accumulation and Gradient Based Algorithm, the history is recorded on the Cellular

Nonlinear Network itself. Like previous algorithm, all y-state and u-input values are

set to 0s. Initial x-state matrix again has three different nodes: fixed nodes, active

non-source nodes and an active source node as shown on reference map in Figure

5.1. For this algorithm each node accumulates the values of its x-state during whole

emulation and stores it on y-state. To achieve this, the state coefficients are set to α = 0,

β = 0, ε = 1 and σ = 0. The weights of the synaptic law are ai, j+1 = 1, ai−1, j = 1,

ai, j−1 = 1 and ai+1, j = 1. The slope of the g(·) function is m =−20, and its limit value

is limit = 1. Source node gets the initial value xsource =−1.122 and other active nodes

gets the value xinitial = 0. Differently from the previous algorithm, fixed boundary and

obstacle nodes are set to xfixed = 0.00005 at initialization. With this initial values the

(a) (b) (c)

Figure 5.3 : x state values of the nodes surrounding the node (56,45) during the
iterations 103 to 105: a) at iteration 103, b) at iteration 104, c) at iteration 105.

117

(a) (b)

(c) (d)

(e)

Figure 5.4 : Output vectorial images of wavefront diffusion based algorithm with
sequencing iterations numbers: a) step 100, b) step 200, c) step 300, d) step 527 which
is the final step, e) the vector legend.

118

Figure 5.5 : Traces found by the Wavefront Diffusion Based Algorithm.

network is emulated for 750 iterations. This iteration number gives sufficient time to

the wave while covering the whole network.

As shown in Figure 5.6, traveling wave is generated by the node (60,60) and it

propagates on the x-states. The y-states are the integral of the x-states as presented

in (3.1). At each iteration, the sum of current x-state values and current y-states values

are stored on the y-states. Because the initial value of the source node is negative, the

y-state of this node becomes smaller at each iteration. Also that makes the neighbors

become smaller but they do not exceed the source node. This rule is valid for all

nodes. y-states decrease for all nodes, but none of them exceeds its neighbor which

the wave is propagated by. So, the source node always has the minimum y-state value.

When the wave covers the whole network, y-state matrix becomes a topographical

map. The lowest point on this map is the source node. The highest points are the

obstacles and boundaries. Then, the node which is touched last by the wave, is the

second highest point on the map. Figure 5.7 shows the wave propagation and three

dimensional topographical map evolution step by step. In this configuration, cell’s of

Network 1 behaves as 1-st order stable systems, state equation for y is removed form

the cell dynamics and it is employed for just integrating the state variable x.

119

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.6 : x and y state values of the nodes surrounding the source node during the
first three iterations: a) initial x-states, b) x-states at the 1st iteration, c) x-states at the
2nd iteration, d) x-states at the 3rd iteration, e) initial y-states, f) y-states at the 1st
iteration, g) y-states at the 2nd iteration, h) y-states at the 3rd iteration.

After the propagation ends, the coefficients and weights are updated and gradients of

this topographical map are computed. To do this 4 final iterations are executed. The

first final iteration copies the y-states onto x-states, the second one computes only the

horizontal gradients of the map, the third one swaps y-states and x-states and the last

one computes only the vertical gradients of the topographical map. The horizontal and

vertical gradient components are given in Figure 5.8(a) and Figure 5.8(b), respectively.

To execute the first final iteration the parameters are set to α =−1, β = 1, ε = 0, σ = 0,

ai, j+1 = 0, ai−1, j = 0, ai, j−1 = 0, ai+1, j = 0, and m = 0. The horizontal gradient is

computed at the second final step by using the same parameters except β = 0, ai−1, j =

−1, and ai+1, j = 1. The third iteration swaps the states by using the same parameters

except β = 1, ε = 1, σ = −1, ai, j+1 = 0, ai−1, j = 0, ai, j−1 = 0, and ai+1, j = 0. The

last iteration which computes the vertical gradients are executed after the parameters

are set to β = 0, ε = 0, σ = 0, ai, j−1 = −1, and ai, j+1 = 1 while others remain the

same.

The horizontal and vertical gradient components, which are computed for any active

node, are used to draw the path for this algorithm. Following these vectors form

starting point guides the robot to target point. Also, giving the initial value xfixed =

0.00005 to the boundaries and obstacles makes a positive accumulation effect to their

120

(a) step 100 (b) step 200 (c) step 300

(d) step 400 (e) step 500 (f) step 600

(g) step 700 (h) step 700 detailed

Figure 5.7 : Accumulation images of Wave Accumulation and Gradient Based
algorithm with sequencing iterations numbers: a−g) from top view, h) step 700
detailed with labels.

121

(a) (b)

Figure 5.8 : Output gradient images of Wave Accumulation and Gradient Based
algorithm: a) only horizontal gradient (∆x), b) only vertical gradient (∆y).

neighbors and the output gradient vectors move away from them. In Figures 5.8(a)

and 5.8(b), strong horizontal vectors can be seen next to the vertical walls and strong

vertical vectors can be seen next to the horizontal walls. This makes the robot avoid

from obstacles easily.

Reference map in Figure 5.1 has 12 start points. Both algorithms ignore these points

and consider them as white active nodes while wave propagation. After vectorial data

has been produced the software draws the path from a determined start point to the

target point by using these vectors. In Figure 5.5, the paths from the given 12 start

points to the same target point are found by Wavefront Diffusion Based Algorithm and

drawn on the same map.

In Figure 5.9, the paths are found by Wave Accumulation and Gradient Based

Algorithm and again drawn on the same map. The Wave Accumulation and Gradient

Based Algorithm produces shorter, smoother paths than the first algorithm. Also its

paths do not touch the walls while the paths of Wavefront Diffusion Based Algorithm

are touching. In the Wavefront Diffusion Based Algorithm, the hardware requires

sending each iteration result to the Host Computer over the serial communication

line. Because communication bandwidth is not large enough, this algorithm is

slower than the Wave Accumulation and Gradient Based Algorithm. The speed of

Wave Accumulation and Gradient Based Algorithm is proper to use the algorithm in

real-time robot navigation algorithm. The proposed algorithms in this subsection show

122

that the cellular nonlinear network model given by Network 1 in Subsection 3.1.1 is

suitable to use in path planning applications.

5.1.2 Predictive planning in 2D discrete space

Doppler Effect brings information about target’s velocity by propagating wave-fronts.

In this subsection, CNNs are further investigated for nonlinear wave-front propagation

based feedback motion planning method. For the first time, a prediction ability is

added to the investigated networks using the Doppler Effect. Three different networks,

Network 1, Network 2 and Network 3, perform satisfying results at a chasing scenario.

One should note that information about target’s velocity, transported by wave-fronts,

should be still recent when received by the tracker or other observers on the network. In

order to take advantage of Doppler Effect in motion planning, fast evolving networks

are desired. When simulating, network process time is dependent on the simplicity

of the cells and networks. When implementing, the simplicity effects the utilized

component/transistor/gate count. Three cell models in this subsection are foreseen

to be easily implemented as electronic circuits, like the example implementations of

wave computers [3], [15].

From one point of view, network simulators and network implementations may be

evaluated as feature generators. Then, motion planning algorithm becomes the

consumer of those features as a decision block and outputs the actions, similar to

the structures in odor processing [132] and image processing [66] examples. If the

network ability is just the generation of a feedback plan or the shortest path, then

the motion planning is assumed to be completed by the network. On the other hand,

network generating more than the feedback plan as in Section 3.1 should cooperate

with a separate decision block that evaluates generated features. In this subsection, a

prediction performed and action is selected according to this prediction by a motion

planner using the feedback plan and frequency values provided by the network. This

modular organization allows to interchange networks and develop new planners using

the same networks. The most suitable role for the networks is being a feature

generator co-processor array next to a main processor which is running the motion

planning algorithm. This role is still valid for simulations. The network model runs

123

Figure 5.9 : Traces found by the Wave Accumulation and Gradient Based Algorithm.

for generating gradient, angle and period features. In this subsection a simple yet

successful motion planning algorithm is presented using these features.

In the test scenario, target moves on a predetermined route in an environment with

stationary obstacles depicted in Figure 5.10. Target route starts at the blue cell on

the upper left corner. Light blue cells are followed by the target. The final location

is the west neighbor of the red cell. Red cell is the initial location of the tracker.

There are three different speed values to test. Both target and tracker move at 1 cell/T

speed in the first one. In the second one, target moves at 2 cell/T speed and in the

third one, tracker moves at 2 cell/T speed. Proposed motion planning algorithm using

Doppler Effect is tested at given speed values against the classical algorithm which

is a mixture of Wavefront Diffusion Based Algorithm and Wave Accumulation and

Gradient Based Algorithm in Subsection 5.1.1. The calculation of gradient function

in Wave Accumulation and Gradient Based Algorithm is embedded to the cells and

carried of at every iteration by the cells whom touched by the wave as in Wavefront

Diffusion Based Algorithm. The slight modification to build the classical algorithm

provides a good reference for the comparison.

The feature generator consists of a two layer active media as depicted in Figure 5.11.

In one layer, traveling wave source location is the target location. In other layer,

124

Figure 5.10 : Scenario: Obstacles and the predetermined route of the target.

wave source location is the tracker location. They are called target layer and tracker

layer, respectively. Both layers are equipped with Doppler Effect sensing mechanism,

wave-front gradient sensing mechanism and wave-front normal angle calculator in

cells.

The gradient and angle features are calculated based on the methods in Subsection

5.1.1. Wave-front gradient sensing mechanism is constituted by two simple nonlinear

equations given by

vi, j =−sign(ẋi, j)(xi−1, j− xi+1, j),

hi, j =−sign(ẋi, j)(xi, j−1− xi, j+1),
(5.1)

where hi, j is the horizontal, vi, j is the vertical wave gradient on (i, j)-th cell. For

Network 3, instead of −sign(ẋi, j) term, (xi, j[k]− xi, j[k+1]) is used.

Wave-front normal angle calculation starts with finding raw angle value â using

arctan(·) function given by

âi, j = arctan(
−hi, j

vi, j
). (5.2)

Then, the exact angle is determined using Table 5.1.

Actually, wave-front normal angle calculation is not as essential as gradient sensing.

It is employed to have better visualization in this algorithm. Only gradient vectors

provide the information that the algorithm needs.

In this scenario, obstacles are stationary. Methods using reinitialization may update the

obstacle pattern at every reinitialization process. Nonetheless, it causes a discontinuity

in wave evolution that wipe out the Doppler Effect. Thus, methods in this subsection

125

Figure 5.11 : Mapping real world to network layers.

Table 5.1 : Exact angle values using horizontal, vertical gradients and temporary angle.
Gradient vectors Exact angle value
h < 0,x < 0 a = π + â
h < 0,x = 0 a = π/2
h < 0,x > 0 a = â
h = 0,x < 0 a = π

h = 0,x = 0 a = not available
h = 0,x > 0 a = 0
h > 0,x < 0 a = π + â
h > 0,x = 0 a = 3π/2
h > 0,x > 0 a = 2π + â

are not suitable for reinitialization and the obstacles in real world are assumed to be

stationary.

Two layers are initialized by switching the cells that correspond to the obstacles to

the boundary cells that realize zero-flux boundary condition. Hence, any obstacle

does not become an undesired wave source. The rest of the network’s cell states are

initialized to a saddle point (continuous systems) or a peak state (digital system). All

inputs are set to 0. According to the measured cell settling time values, T is set to 5.

Continuous-time systems are discretized by Forward Euler Method and the integration

step h is set to 0.1. At the same time, h is the clock period for the digital network. All

network parameters used in these simulations are the ones given in Subsection 3.1.1 to

Subsection 3.1.3.

126

At every T seconds, the target location is updated according to the route given in Figure

5.10. A traveling wave generating input signal, specific to the network type, is applied

to the cell at the target’s location on the target network. The target network evolves by

updating the target location successively and propagates nested traveling waves whose

wave-front updates the gradients (h,v), normal angles (a) and relative half-periods (d)

as the features.

On the tracker network, the wave evolution continues similarly to the target network.

Same type of features are generated. However, deciding the next location of tracker

is the duty of motion planning algorithm. Features are fed to the algorithm, and it

generates the next location. As illustrated in Figure 5.11, there is a loop closed by the

motion planning algorithm.

The proposed motion planning algorithm is simple. At the end of every T seconds,

features from the two layers are sampled to the planner. Planner separates the network

grid into three regions. Region 1 consists of cells that both target and tracker are

approaching on opposite directions. Region 2 consists of cells that only target is

approaching but the tracker is receding again on opposite directions. Region 3 is

the rest of the grid. Regions do not have to be connected components. Then, the

planner computes the centroid of Region 1 and Region 2. For Region 3, the current

location of the target is used instead of its centroid. The priority of computed points

decreases from Region 1 to 3. If Region 1 exists and the calculated centroid is not

on any obstacle, then planner assign that centroid as the temporary target location.

Unless Region 1 exists, then centroid of Region 2 is assigned as the temporary target

location. The target’s current location is used if Region 1 and Region 2 do not exist.

The paths from any cell of the tracker layer to the tracker are solvable due to the angle

(or gradient) information provided by tracker network. Angles from tracker network

forms the feedback plan. The last step of planner is determining the route from the

temporary target location to the tracker location. Planner moves the tracker on the

determined route depending on the tracker speed.

Proposed motion planner aims to drive the tracker to predicted meeting point instead of

target itself by giving the highest priority to the Region 1. Region 2 gives opportunity

to consider an important route alternative. Having a region that approaching target and

receding tracker wave-fronts are on opposite directions is a strong indicator that some

127

of the Region 2 cells may turn into Region 1 cells if tracker starts to move on opposite

direction. Without these two predictions, aiming at the targets current location is the

classical method and usually means just tagging behind and no catching.

Figure 5.12 exhibits the motion planning algorithm results in time. The network

employed in the simulation is Network 2. Region 1 is painted with green, and Region 2

is painted with yellow. Dark blue squares show the executed part of the predetermined

route steps of the target. Dark red dots are the previous tracker positions. Brighter

blue and red dots are the current positions of the target and the tracker, respectively.

Obstacles are black and Region 3 is white. The temporary target is indicated by with a

red square frame. Subfigures belong form t = 20 to t = 120. Tracker catches the target

and the final routes are shown in Figure 5.14(b).

Figure 5.13, 5.14, 5.15 show the results fo test scenario simulations in which Network

1, 2, and 3 are employed, respectively. The network type, object speeds and motion

planning algorithm vary in their subfigures. In both three figures, objects speeds vary

from top to bottom as follows. In the first row, both target and the tracker has 1 cell/T

speed. In second row, target has the same but the tracker has 2 cell/T speed. In the

third row, target has 2 cell/T and tracker has 1 cell/T speed. The first column shows

the results using classical planner, while the second row shows results for the proposed

planner. Consequently, simulation results have been exhibited in order to compare

network successes.

According to those figures, trackers using classical planner are not able to catch the

target before it reaches to its destination, if their speeds are equal (Figures 5.13(a),

5.14(a), 5.15(a)). The tracker routes are different from each other which is a result of

different network dynamics. The trackers using classical planner unexceptional catches

the tracker when they move 2 times faster than the target (Figure 5.13(c), 5.14(c),

5.15(c)). In all three simulations, the meeting point does not change too much. It is

total opposite if the target speed is faster. The tracker is mostly unsuccessful (Figure

5.13(e), 5.14(e)) with an exceptions. In Figure 5.15(e), the slowly moving tracker

meets with the target around its initial position, because the destination of the target is

almost initial location of tracker. It should be noted that, even a stationary tracker has

a very small chance to meet the target.

128

(a) (b)

(c) (d)

(e) (f)

Figure 5.12 : Simulation snapshots of proposed predictive motion planning. Both are
at equal velocities. Region 1 is green, Region 2 is yellow, Region 3 is white. Blue
points are the steps of target. Red steps belong to the tracker.

129

(a) (b)

(c) (d)

(e) (f)

Figure 5.13 : Simulation results of Network 1.

130

Simulations show that, proposed motion planner succeeds in every situation. Using

Network 1 (Figures 5.13(b), 5.13(d), 5.13(f)) and Network 2 (Figures 5.14(b), 5.14(d),

5.14(f)), tracker catches the target without passing redundant cells. The significant

result is that the catching time is smaller when Network 2 is used instead of Network

1, in all situations. Even though Network 3 has the least settling time, the highest

wave propagation speed, and seemingly the simplest implementation; the tagging

performances are not so satisfying. In the equal speed situation, catching time is longer

than the others (Figure 5.15(b)). The worst behavior occurs when the tracker is faster

than the target and the planner employs Network 3 (Figure 5.15(d)). In this situation

tracker passes many redundant cells before the meeting. Affirmatively, solution using

Network 3 resembles the ones using other two networks (Figure 5.15(f)).

According to the simulation results, if the only choice is the classical planner, then the

tracker should be faster than its target. On the other hand, utilizing the Doppler Effect

gives the opportunity to predict a meeting point and catch the target at equal speed.

If Doppler Effect will be utilized, then the proposed planner with Network 2 is the

optimum solution among the three network. It is simpler than Network 1, catches faster

than Network 1, has less redundancy than Network 3. One should choose Network 3,

if the least computational cost is desired.

5.2 Random Bit Generation

Random number generators (RNGs) are employed in a variety of applications such

as stochastic optimization, computer simulation, cryptography, etc. In these areas, a

good random number generation is essential for cryptographic security. The security

of cryptographic algorithms relies on generating secret quantities, which are produced

by RNGs. Random numbers can be generated by a random bit generator, which can be

defined as a device or algorithm whose output is a sequence of statistically independent

and unbiased binary digits. To ensure that an RNG is secure, its output must be

computationally indistinguishable from a true random sequence [133]. Practically,

NIST’s test suite SP 800-22rev1a is used as an up-to-date tool for qualification of

RNGs [134]. Besides the NIST’s test suite, others such as DIEHARD [135] and TestU1

exist in the randomness testing field [136].

131

(a) (b)

(c) (d)

(e) (f)

Figure 5.14 : Simulation results of Network 2.

132

(a) (b)

(c) (d)

(e) (f)

Figure 5.15 : Simulation results of Network 3.

133

In cryptography, there are true RNGs (TRNGs) and pseudo RNGs (PRNGs). TRNGs

are based on measuring unpredictable natural processes, for example thermal noise,

frequency instability of an oscillator, elapsed time between emission of particles during

radioactive decay and variations in systems response times. On the other hand, PRNGs

are based on deterministic processes and they generate a series of outputs from an

initial seed state. TRNGs are generally costly and slow responding devices when

compared with PRNGs. But, the actual entropy of the PRNG output can never exceed

the entropy of the seed, because the output is a function of the seed state, [137].

Hence, the randomness level of the pseudo-random numbers depends on the level of

randomness of the seed [133].

It is reported in the literature that physical noise can be used as the entropy source in

random number generation. An RNG structure based on this idea is given in [138]. On

the other hand, sensitivity with respect to the initial conditions causes unpredictability

in chaotic systems. They produce irregular signals with a noise-like spectrum [139].

Therefore, one possible way to generate random numbers is to use chaotic signal

(instead of physical noise) as the unpredictable source. There are many chaos based

RNGs reported in the literature [140–143].

To generate chaotic dynamics, systems defined by delay-differential equations can also

be used. The paper by Mackey and Glass [19] is an early work in the area of time-delay

chaotic systems. Since then, there has been a growing interest in delay-differential

equations for the generation of chaotic signals because of their simple model. There

are many time-delay chaotic systems reported in the literature [19, 21, 52, 53].

In Subsection 5.2.1, the promising circuit realization in Subsection 4.3.2 is tested as a

random bit generator. First, it is demonstrated that the sampled binary sequence on the

feedback has successfully passed the statistical tests. Then, two instances of the same

circuit have been employed in order to enhance throughput of the random bit generator.

The third component of the section is employing the digital implementation of the

same system in Subsection 4.3.4 as a TRBG. In Subsection 5.2.2, the quantification of

anticipating synchronization is given by bit error since the coupled systems produce

binary outputs. It is treated in the frame of an attack on the TRBG in Subsection 5.2.1.

134

5.2.1 True random bit generator

Today, the well accepted test suite for randomness is the NIST’s 800-22rev1a Statistical

Test Suite. Therefore, the bit strings recorded from the given circuit’s delay line has

been examined using this test suite for this subsection. An auxiliary FPGA-based

implementation samples 40 million bits with Tb period from the output of the last

flip-flop on the delay-line and transfers them to a computer in order to apply the tests.

R1, R2, Vpos, Vneg, τ and Tb are the dimensions of the configuration space of the

circuit. Tentative searches were made on this configuration space to gain the best

statistical results. To speed-up the investigation, FIPS-140-1 Test Suite, which is

the predecessor of the 800-22, is firstly applied to some 20-thousand bit parts of the

long bit strings. There is a correlation between the Poker test results in FIPS-140-1

and general NIST 800-22rev1a success. Computer controlled investigations on τ

and Tb parameters’ effect with manually adjusted resistor and voltage values yield

very successful test results. When the given circuit was configured with VCC = 5V,

VEE = −5V, Vbias = 0.5V, Ts = 20ns, C = 5.6nF, R1 = 2.78kΩ, R2 = 5.78kΩ,

Vpos = 1.12V, Vneg = −0.81V, τ = 500µs and Tb = 50µs, the best Poker test results

are recorded. Then, the NIST’s 800-22rev1a tests are applied to a 40 million bits

long string which is recorded in the given configuration. The test suite partitions the

string into 100 sub-strings. It has been observed that the 40Mbit string passed all of

the NIST 800-22rev1a tests. Table 5.2 shows the pass proportion of the sub-strings

and the p-values. It is accepted that the whole string passes the statistical test with

a sub-string success proportion equal or greater than 96/100. The Non Overlapping

Template, Random Excursions and Random Excursions Variant tests are the worst

results of actually applied series of statistical tests with the same name.

This subsection proposes the novel easily implementable circuit in Subsection 4.3.2

performs very well in random bit generation. Based on the statistical test results, this

true random bit generator’s discrete component based version ensures a 20000 bit per

second throughput. The spectrum of the recorded x(t) signal is also analyzed and

observed that %99 of the signal power stands in the 62 kHz bandwidth. It is estimated

135

Table 5.2 : The NIST 800-22rev1a tests’ summary results for a 40 Mbit string sampled
at 20Mbit/s rate.

Statistical Test p-value Success Proportion Result
Frequency 0.275709 100/100 Pass
BlockFrequency 0.657933 99/100 Pass
CumulativeSums 0.455937 100/100 Pass
CumulativeSums 0.401199 97/100 Pass
Runs 0.085587 99/100 Pass
LongestRun 0.304126 100/100 Pass
Rank 0.181557 100/100 Pass
FFT 0.162606 96/100 Pass
NonOverlappingTemplate 0.678686 96/100 Pass
OverlappingTemplate 0.383827 98/100 Pass
Universal 0.191687 96/100 Pass
pproximateEntropy 0.637119 100/100 Pass
RandomExcursions 0.330628 42/43 Pass
RandomExcursionsVariant 0.460664 42/43 Pass
Serial 0.262249 97/100 Pass
Serial 0.334538 99/100 Pass
LinearComplexity 0.455937 99/100 Pass

a much better throughput can be achieved if the VLSI implementation of the circuit

with a wider bandwidth is studied.

The circuit realization in Subsection 4.3.2 has been improved by employing two

circuits with an EXOR operator. It is shown above that a single circuit can generate bits

at a rate of 20000 bps which pass the NIST 800-22rev1a Statistical Test Suite [134].

Nevertheless, the generated bits fail in the test suite when the bit capture period Tb is

decreased from 50µs. For an example, the statistical test results are given in Table

5.3 for a 40Mbit record which has Tb = 20µs capture period. The complete parameter

values of this record are given as VCC = 5V, VEE = −5V, Vbias = 0.5V, VH = 3.3V,

Ts = 20ns, C = 5.6nF, R1 = 2.78kΩ, R2 = 5.78kΩ, Vpos = 1.12V, Vneg = −0.81V,

and τ = 500µs. It also should be noticed that the system exhibits a strange attractor

behavior in the x(t)− x(t− τ) state space as shown in Figure 5.16. On the other hand,

there should be a strong relation between the randomness of the generated bits and

the non-periodicity of the phase portrait of this system. With given component values,

the time constant equals to 15.568µs which results in 10.23kHz cut-off frequency of

passive RC filter connected to the U2 for x-integration. Observation on recorded x(t)

data sampled with 1MHz shows that 99% of the signal energy is in 65kHz bandwidth.

The following part proposes a solution to make the generated bits clearly pass the

136

randomness tests by doubling the signal source with another circuit and utilizing this

twin in an unsynchronized manner.

Firstly, a second circuit which is identical to the first one is prepared. For the analog

part, a new circuit board is printed, but the digital part is implemented next to the

first one on the same FPGA. Figure 5.17 depicts the circuit pair with the common

bit recording buffer. Here, the bits generated by each circuit are subjected to a

logical EXOR operation. Hence, a statistically better sequence is obtained from

two bit sequences. Still, the FPGA has a single bit record buffer. This buffer

captures the output of the EXOR gate. The EXOR operation could be considered

as a post-processing operation.

As expected, this new configuration obtains better NIST 800-22rev1a test results. The

recorded 40Mbit strings with Tb = 20µs sampling period clearly pass the statistical

tests. Table 5.4 shows the success in tests with numerical results for an example bit

string. The similar successful statistical results are achieved with many bit strings

recorded by the same setup.

The predecessor of NIST test suite is the FIPS 140-1 tests. Exactly, the Poker sub-test

of this old suite, which is an easily implementable fast statistical test, is applied

primarily. The average Poker test results of single and double circuit setup for different

bit sampling rates are given in Figure 5.18. The black horizontal line on the graph

indicates the maximum Poker result to pass. When the second circuit is joined, better

Poker results are achieved. In spite of good Poker results, the NIST tests’ results do

not match at considerable lower sampling periods than ones indicated by vertical lines

on the same figure. The relation between the success in NIST tests and other metrics

should be analyzed in the future works.

Expanding the TRBG system from one to two first order nonlinear subsystems

yields two continuous states (x1(t), x2(t)) and a 2D continuous state space. The

unsynchronized behavior of the entire system can be observed by examining the

trajectory of the system state in this state-space. Figure 5.19 shows the screen-shot

of an analog oscilloscope which is depicting x1(t)−x2(t) space. The homogeneity and

the symmetry of the trajectory in this state-space is clearly seen. The trajectory pattern

can be observed as a qualitative analysis on the system behavior. The pattern in Figure

137

Table 5.3 : The NIST 800-22rev1a Test Suite’s summary results for a 40Mbit string
generated by single circuit at 40Mbit/s rate.

Statistical Test p-value Success Proportion Result
Frequency 0.000000 58/80 Fail
BlockFrequency 0.000000 58/80 Fail
CumulativeSums 0.000000 61/80 Fail
CumulativeSums 0.000000 57/80 Fail
Runs 0.000000 0/80 Fail
LongestRun 0.000000 0/80 Fail
Rank 0.048716 79/80 Fail
FFT 0.000000 0/80 Fail
NonOverlappingTemplate 0.000000 15/80 Fail
OverlappingTemplate 0.000000 43/80 Fail
Universal 0.000000 60/80 Fail
ApproximateEntropy 0.000000 0/80 Fail
RandomExcursions 0.834308 20/22 Pass
RandomExcursionsVariant 0.017912 22/22 Pass
Serial 0.000000 0/80 Fail
Serial 0.509162 80/80 Pass
LinearComplexity 0.739918 79/80 Pass

Figure 5.16 : The strange attractor observed on the x(t)− x(t− τ) plane.

138

Figure 5.17 : The block diagram of the unsynchronized circuit pair, the EXOR gate
and the bit recording buffer.

Table 5.4 : The NIST 800-22rev1a Test Suite’s summary results for a 40Mbit string
co-generated by a pair of circuits at 50Mbit/s rate.

Statistical Test p-value Success Proportion Result
Frequency 0.941144 79/80 Pass
BlockFrequency 0.986869 77/80 Pass
CumulativeSums 0.739918 79/80 Pass
CumulativeSums 0.258961 79/80 Pass
Runs 0.484646 78/80 Pass
LongestRun 0.012650 78/80 Pass
Rank 0.764655 79/80 Pass
FFT 0.371101 79/80 Pass
NonOverlappingTemplate 0.023149 77/80 Pass
OverlappingTemplate 0.764655 80/80 Pass
Universal 0.275709 79/80 Pass
ApproximateEntropy 0.663130 78/80 Pass
RandomExcursions 0.407091 35/36 Pass
RandomExcursionsVariant 0.100508 35/36 Pass
Serial 0.764655 77/80 Pass
Serial 0.350485 79/80 Pass
LinearComplexity 0.141256 79/80 Pass

139

Figure 5.18 : The average Poker Test results for 2µs ≤ Tb ≤ 60µs interval for single
(red) and double (blue) circuit forms.

5.19 can be interpreted as a proof of unsynchronized and unbiased dynamic behavior

which has positive contribution to the randomness.

Using two identical time-delay sampled-data feedback systems as independent bit

sources and combining their outputs using an EXOR gate increases the throughput

by 2.5 times. The randomness of the generated bit strings are tested by the

up-to-date statistical test suite NIST 800-22rev1a. Exactly, increasing the number of

unsynchronized circuits will yield much entropy, then better statistical characteristics,

so the proposed system can be expanded by utilizing more identical subsystems to

achieve higher random bit generation rates. It is also expressed that the proposed

system can be easily integrated on a silicon chip, owing to the digital delay line and

simple analog part. Decrease in the time constant value of the integrator and using

faster operational amplifiers will widen the bandwidth of the analog circuits and also

the random bit generation rate as well.

The third and the last TRBG proposed in this thesis is the digital implementation

of the Oscillator 4, explained in Subsection 4.3.4. Target FPGA is Xilinx

XC6SLX45-2CSG324 in implementation of the design in Figure 4.30. According

to [144], the propagation delay for one LUT is 0.26ns. Average LUT delay with

its routing has been experimented as 0.28ns. INTCOMP and DLUT couple utilize

9 D-type flipflops and 1039 LUTs on the target FPGA. Due to the LUT-intense

140

Figure 5.19 : The observed phase portrait of the two circuit system on x1(t)− x2(t)
state space.

implementation, FPGA may house 26 INTCOMP-DLUT couples without auxiliary

blocks in Figure 4.30. The total consumption of test circuit is 284 D-type flipflops,

1757 LUTs, 960kb BlockRAM, 1 DSP48, and 3 BUFGs.

As expected, INTCOMP2 and DDFF2 generate a periodic signal. The period has been

detected as 9608 CLK cycles by the signal analyzing process on computer. Moreover,

the behavior of INTCOMP1 and DLUT1 seem to be random. INTCOMP1 visits the

states which are on the periodic trajectory of INTCOMP2, but this happens in an

aperiodic way. It is also observed that the aperiodic system’s trajectory has states which

are excluded by the periodic trajectory. Figure 5.20 depicts the periodic trajectory

by INTCOMP2 in black and the aperiodic trajectory by INTCOMP1 in red. Black

trajectory is plotted over the red one, but does not cover it, which means that the

red trajectory visits the states which are unreached by the black one. Furthermore,

aperiodic system performs a different trajectory at each measurement.

The periodic FT2 signal is subjected to EXOR operation, like the circuit in Figure

5.17, with periodic FT0 signal (using INTCOMP1 and DDFF0) and aperiodic FT1

signal (using INTCOMP1 and DLUT1). In both cases, 950272 bits (48k bits in

Subsection 4.3.4) are stored in MEM after a slight modification of the MEM block.

The stored bits are transferred to computer and NIST’s SP800-22rev1a Statistical Test

Suites is applied. Table 5.5 shows the statistical test result. All measurements from the

141

Figure 5.20 : Overlapping phase portraits. Black trajectory which belongs to the
periodic system employing DDFF has been plotted over red trajectory which belongs
to the aperiodic system employing DLUT.

aperiodic+periodic circuit configuration have passed all sub-test of the suite except

the Universal test. However, two periodic circuits are not able to pass some test when

their outputs are subjected to EXOR operation like the previous one. The proposed

system provides 250kbps throughput which is statistically suitable for cryptographic

applications. This rate is 5 times better than the one in Figure 5.17, and 12.5 times

better than its single circuit version above.

As a result, digital circuit modeling a chaotic system has to be periodic, because

its state space is finite. Employing propagation based delay lines in digital

implementations contributes the complex behavior of time-delay chaotic systems. This

subsection has demonstrated how a time-delay chaotic system turns into a periodic

oscillator when it is digitalized, then how it escapes back to the aperiodic behavior, and

the statistical properties of different implementations and configurations. The proposed

circuits in Figure 2.15, and Figure 4.30 are proper for random bit generation according

to the statistical tests. As a future work, the relation may be investigated between the

unique physical properties of the target device and the trajectory of proposed system

in order to realize a physically unclonable function.

142

Table 5.5 : NIST’s SP800-22rev1a statistical test results. The effect of time-variant
delay in DLUT (buffer chain delay line) is shown on the second column.

Two DDFF DDFF & DLUT
Statistical Name Configuration Configuration
Frequency (F) 33/50 47/50
BlockFrequency 49/50 50/50
CumulativeSums (F) 31/50 47/50
Runs (F) 45/50 50/50
LongestRun 50/50 50/50
Rank 49/50 50/50
FFT 50/50 50/50
NonOverlappingTemp. (F) 0/50 50/50
OverlappingTemplate 50/50 50/50
ApproximateEntropy (F) 46/50 47/50
Serial 49/50 50/50
LinearComplexity 50/50 49/50

5.2.2 Attack on true random bit generator

The circuit in Figure 4.33 generates binary signals of f (x1(tk − τ)), f (x1(tk)),

f (x2(tk)), and f (x3(tk)) with the similar relation f (x1(tk)) = f (x2(tk−τ)) = f (x3(tk−

2τ)) = f (x4(tk − 3τ)) as explained in Subsection 4.3.6. In Figure 5.21, a snapshot

of binary signals are plotted. But, small differences in real component values and

behaviors of the subcircuits in Figure 4.33 and also the electrical interference generates

some error in the bit sequences. Here, the proposed attack to the original system,

generating random bits from f (x1) signal, occurs when the anticipated (predicted)

future values of f (x1) is obtained with some error by coupled slave circuits.

These binary f (xi) signals are recorded and quantification of anticipating synchroniza-

tion is given by the bit errors as shown in Figure 5.22. In Subsection 5.2.1, it is shown

that the circuit in Figure 2.15 is capable of a random bit generation at 20000bps rate.

For this reason, the signals depicted in Figure 5.21 is sampled at 20kbps. The strings

with 106 bits, which are recorded and shifted proportional to the anticipation time,

are compared. The Figure 5.22a shows the histogram of the erroneous bits between

f (x2(tp− τ)) and f (x1(tp)). Here, tp is the p-th sampling time of the binary signal

with 20kHz sampling frequency. To calculate the histogram the string is split into

1000 substrings with 1000 bits. Similar to Figure 5.22a, Figure 5.22b shows the

histogram of the erroneous bits between f (x3(tp−τ)) and f (x2(tp)). And, Figure 5.22c

143

Figure 5.21 : Similar to x signals, digital oscilloscope screen captures depicting
f (x1(tk − τ)) (blue), f (x1(tk)) (red), f (x2(tk)) (green) and f (x3(tk)) (purple)
synchronously. The yellow box is shifted τ second left at each channel and used for
focusing a short-time signal record that is seen on every system’s output.

belongs to the erroneous bits between f (x4(tp− τ)) and f (x3(tp)). The mean value of

the erroneous bits proportion to the substring length is approximately 5% which is

reasonable because the analog part of the circuit has component with a tolerance of

5%. Hence, it can be claimed that the attack to the master system’s bit sequence by

anticipating synchronization achieves 95% success τ before, 90% success 2τ before,

and a 85% success 3τ before the sequence occurrence. The error rate increases linearly

according to the prediction length.

Experimental verification of the attack to a TRBG using anticipating synchronization

has been presented in this subsection. The quantification of synchronization, given by

the bit error between the bit streams generated by the original and coupled systems,

has showed that the cumulative error increases 5% at each τ step. Thus, the attack on a

time-delay sampled-data chaos-based RNG using anticipating synchronization seems

to be successful taking into account the tolerances of the elements in the non-ideal

implementations.

144

(a) (b) (c)

Figure 5.22 : Distribution of erroneous bits between strings of f (x2(tp − τ)) and
f (x1(tp)) in a, f (x3(tp−τ)) and f (x2(tp)) in b, f (x4(tp−τ)) and f (x3(tp)) in c. String
length is 1000 bits.

145

146

6. CONCLUSION

This thesis is concluded with the following two sections: First, the results obtained

from the studies are exposed in Obtained Results section. The second section, Open

Research Fields, suggests future works inspired by the thesis.

6.1 Obtained Results

Instead of the section order, which is cells, networks, implementations and

applications, the hypotheses order is preferred in this section to report the results.

Thesis covers a novel relaxation oscillator model, Oscillator 2 given in Section

2.1.2. This model employs only one signum function as nonlinearity, which can be

electronically implemented by a simple analog voltage comparator. Yalcin’s model

(Oscillator 1) had been the simplest relaxation oscillator model since 2008. However,

Oscillator 2 outperforms Oscillator 1 from the implementation viewpoint.

The simplest oscillating logic circuit includes an inverter and an artificial delay

component which determines the oscillation period. This logic oscillator is constructed

by the closed-loop circuit of these two components. For synchronous sequential

circuits, required components are one flip-flop and a NOT gate, which yields a 2-state

oscillator. If one mimic the relaxation oscillation in another circuit, at least four states

have to be defined, two for peaks and two for transitions. Thus, a simple 4-state

logic oscillator with a control input (Oscillator 3) is studied to construct Cellular Logic

Networks in this thesis.

Thesis evolves Oscillator 1 to Network 1 with known coupling scheme and parameters.

Yet, Network 2 has a new different coupling scheme which occurs in the arguments

of the nonlinear function. Although Network 1 and Network 2 need change only in

parameter values in order to propagate autowave or traveling wave, Network 3 need to

change the coupling scheme. Network 3 with these two coupling schemes is a novel

proposal.

147

All three networks are capable of propagating nested traveling waves. Moreover, the

location of traveling wave is controlled by the location of the cell where the input

signal is applied. In this case, Doppler Effect emerges on the traveling wave-fronts.

Doppler Effect, which is the frequency modulation of wave sources velocity, is useful

as the source motion information is propagated to entire network by wave-fronts. Cells

on the networks have a new feature extraction duty which is carried out measuring

the temporal wave period. Hence, this thesis utilizes Doppler Effect, in making a

prediction for the wave source’s future state (position). According to the results

in Section 5.1.2, the optimum solution is employing Network 2, in novel predictive

feedback motion planning algorithm, which is also proposed by this thesis. Although,

obtained simplicity in cell dynamics loses the curvature quality of the propagated

wavefront, the wave propagation speed on Network 2 is higher than Network 1.

Furthermore, as cell’s settling to a stationary state on Network 2 is faster than the

ones on Network 1. Actually, Network 3 is the fastest one. But, it has a tetragonal

wave-front pattern which causes to generate undesired feedback plans. All three

networks, which reveal the Doppler Effect, support the hypothesis as they successfully

predict the future positions of the target in motion planning test.

The second hypothesis, generating random bit sequences is successfully carried out

by a time-delay chaotic system with a binary feedback function. This feedback

function, enables using logic components on their binary delay lines, which simplifies

the implementation of the systems. Moreover, mono-scroll chaotic attractor by the

binary output nonlinearity has been generalized by a quantized output nonlinearity.

This generalization which yields a multi-scroll chaotic attractor is one of the novel

contributions of the thesis. An asynchronous delay circuit, for delay line composition

is first proposed by this thesis. This circuit is able to double the delay amount acquired

from a delay line. Thus, area efficient delay line implementation has successfully

demonstrated. Both flip-flops and logic NOT gates are employed in the implementation

of the time-delay chaotic circuits. A sampled-data model for the system has been

realized by analog integrator and comparator circuits accompanying to flip-flop based

delay line. The sampled-data modeling approach is also one of the contributions of the

thesis.

148

The bit sequences generated by implemented time-delay chaotic systems has been

analyzed using up-to-date NIST’s Statistical Test Suite. The output of the binary

feedback line is directly used for capturing the candidate bits. Tests prove that system

provides true random bits proper to cryptographic applications. On the other hand,

an attack to TRBG has also been achieved using anticipating synchronization. Thesis

includes one throughput enhancement method and an all-digital implementation on a

single FPGA. It has been presented that even all-digital implementation is successful

in true random bit generation if its dynamics is supported by jitter.

6.2 Publications on The Thesis

Implementation of Network 1 on GPU has been presented in [2] and on an FPGA using

fixed-point arithmetic modules and presented in [1]. Dynamical partial reconfiguration

of logic network (Network 3) has been presented in [72, 145].

Two conference papers have been presented till now about the Doppler Effect

observation on nonlinear waves propagated by Network 1 [70, 71]. Network 2,

systematic construction of Network 3, predictive feedback motion planning algorithm

and result gained by employing Network 1−3 have been submitted to [146].

Oscillator 4, which is the time-delay sampled-data chaotic oscillator has been

investigated and in [101]. True random bit generation using Oscillator 4 has been

exhibited in [6]. In [147], throughput enhancement using two Oscillator 4 has been

achieved. Oscillator 5 generating multi-scroll chaotic attractor has been recently

submitted to [148]. An asynchronous digital circuit which provide area efficiency in

implementing binary delay line has is now under revision [149].

Network structure, implementation and application of Network 4, which causes

anticipating synchronization between time-delay chaotic cells, have been published in

[150]. Anticipating synchronization phenomenon in Network 4 has been implemented

using digital approximation of Oscillator 4 and presented in [151]. The book chapter

[152] includes the details for Oscillator 4, its TRBG application and throughput

enhancement circuit.

149

6.3 Open Research Fields

Time-variant systems (especially varying coupling weights) can be investigated in

future works of relaxation oscillator based CNNs. Using unidirectional coupling,

moving obstacles without reinitialization may be possible. The boundaries of the

obstacle may evolve under the coupling with active cells. On the other side, the active

cells still obey the zero-flux boundary condition and are not effected by the obstacle.

When the obstacle is moved by 1 cell, the new active cells will be ready to oscillate

along with the currently active ones.

Proposed predictive motion planning technique in real-world robotics application may

need to study adaptive control of tracker speed, which provides the energy-efficiency

in a robot’s motion. As well as, wave computer implementations, a unified digital

system with relaxation based CNNs and feedback motion planner can be designed and

implemented on a single FPGA, then integrated in robots.

The curvature of the propagated wave-front effects the paths generated by motion

planner. Hence, the state number of logic oscillator can be increased. Then, the high

propagation speed may be supported with octagonal or circular wave-front a proper

coupling scheme and a new digital oscillation dynamics. This solution may outperform

the best results acquired from Network 2.

Reconfigurable configuration studies may focus on single-cell reconfigurability. Also,

reconfiguration overhead needs to be decreased. Developing FPGAs with strong

support for dynamic reconfiguration and developing new methodologies and tools for

dynamic reconfiguration are also open research fields.

A possible cellular network composed of time-delay chaotic cells (Oscillator 4 and 5)

may exhibit complex synchronization phenomena. These kinds of networks may be

studied in order to solve problems via synchronization. Defining the problem set that

can be solved by this kind of network is an open research field.

The proposed Asynchronous Delay Doubler, in this thesis, is open to develop. It

functions based on an assumption which defines the minimum pulse width which can

be delayed. A complex asynchronous state machine may record the positive edge or

negative edge received on the input and than delay them more than one times. This

state machine should track the events received, events delayed, and events sent to

150

output. This approach may enhance the minimum pulse width constraint and may

provide more area efficiency.

151

152

REFERENCES

[1] Karakaya, B., Yeniceri, R. and Yalcin, M.E. (2015). Wave computer core
using fixed-point arithmetic, Circuits and Systems (ISCAS), 2015 IEEE
International Symposium on, pp.1514–1517.

[2] Tukel, M., Yeniceri, R. and Yalcin, M.E. (2012). Nonlinear spatio-temporal
wave computing for real-time applications on GPU, Cellular Nanoscale
Networks and Their Applications (CNNA), 2012 13th International
Workshop on, pp.1–5.

[3] Yeniceri, R. and Yalcin, M.E. (2009). An emulated digital wave computer
core implementation, Circuit Theory and Design, 2009. ECCTD 2009.
European Conference on, pp.831–834.

[4] Yeniceri, R., (2009). Yol Bulma Uygulamaları için Bir Hücresel Yapay Sinir
Ağının Sayısal Tasarımı ve Gerçeklenmesi, Master’s thesis, Istanbul
Technical University.

[5] Khronos Group, (2012), The open standard for parallel programming of het-
erogeneous systems, http://www.khronos.org/opencl/, date
retrieved 02.08.2015.

[6] Yeniceri, R. and Yalcin, M.E. (2013). True random bit generation with time-delay
sampled-data feedback system, Electronics Letters, 49(8), 543–545.

[7] Balsi, M., Marongiu, A. and V., C. (1995). Electromagnetic Field Simulation
using 3D Cellular Neural Networks, Proc. of 1995 European Conference
on Circuit Theory and Design (ECCTD95), pp.987–990.

[8] Roska, T., Chua, L.O., Wolf, D., Kozek, T., Tetzlaff, R. and Puffer, F. (1995).
Simulating nonlinear waves and partial differential equations via CNN.
I. Basic techniques, Circuits and Systems I: Fundamental Theory and
Applications, IEEE Transactions on, 42(10), 807–815.

[9] Chua, L.O. and Yang, L. (1988). Cellular neural networks: theory, Circuits and
Systems, IEEE Transactions on, 35(10), 1257–1272.

[10] Chua, L.O. and Yang, L. (1988). Cellular neural networks: applications, Circuits
and Systems, IEEE Transactions on, 35(10), 1273–1290.

[11] Wolfram, S. (1896). Theory and Applications of Cellular Automata, volume 1 of
Advanced Series on Complex Systems, World Scientific.

[12] Rekeczky, C., Szatmari, I., Foldesy, P. and Roska, T. (2002). Analogic cellular
PDE machines, Neural Networks, 2002. IJCNN ’02. Proceedings of the
2002 International Joint Conference on, volume 3, pp.2033–2038.

153

http://www.khronos.org/opencl/

[13] Roska, T. and Chua, L.O. (1993). The CNN universal machine: an analogic array
computer, Circuits and Systems II: Analog and Digital Signal Processing,
IEEE Transactions on, 40(3), 163–173.

[14] Liñán, G., Espejo, S., Domínguez-Castro, R. and Rodríguez-Vázquez, A.
(2002). ACE4k: An analog I/O 64×64 visual microprocessor chip
with 7-bit analog accuracy, International Journal of Circuit Theory and
Applications, 30(2-3), 89–116.

[15] Rodriguez-Vazquez, A., Linan-Cembrano, G., Carranza, L., Roca-Moreno,
E., Carmona-Galan, R., Jimenez-Garrido, F., Dominguez-Castro, R.
and Meana, S.E. (2004). ACE16k: the third generation of mixed-signal
SIMD-CNN ACE chips toward VSoCs, Circuits and Systems I: Regular
Papers, IEEE Transactions on, 51(5), 851–863.

[16] Nagy, Z. and Szolgay, P. (2003). Configurable multilayer CNN-UM emulator on
FPGA, Circuits and Systems I: Fundamental Theory and Applications,
IEEE Transactions on, 50(6), 774–778.

[17] Malki, S. and Spaanenburg, L. (2004). On the packet-switched implementation
of a discrete-time CNN, Digital System Design, 2004. DSD 2004.
Euromicro Symposium on, pp.234–241.

[18] Yildiz, N., Cesur, E. and Tavsanoglu, V. (2010). A new control structure for the
pipelined CNN processor arrays, Cellular Nanoscale Networks and Their
Applications (CNNA), 2010 12th International Workshop on, pp.1–4.

[19] Mackey, M.C. and Glass, L. (1977). Oscillation and chaos in physiological
control systems, Science, 197(4300), 287–289.

[20] Namajunas, A., Pyragas, K. and Tamasevicius, A. (1995). An electronic analog
of the Mackey-Glass system, Physics Letters A, 201(1), 42 – 46.

[21] Lu, H. and He, Z. (1996). Chaotic behavior in first-order autonomous
continuous-time systems with delay, Circuits and Systems I: Fundamental
Theory and Applications, IEEE Transactions on, 43(8), 700–702.

[22] Lu, H., He, Y. and He, Z. (1998). A chaos-generator: analyses of complex
dynamics of a cell equation in delayed cellular neural networks, Circuits
and Systems I: Fundamental Theory and Applications, IEEE Transactions
on, 45(2), 178–181.

[23] Tamasevicius, A., Mykolaitis, G. and Bumeliene, S. (2006). Delayed feedback
chaotic oscillator with improved spectral characteristics, Electronics
Letters, 42(13), 736–737.

[24] Buscarino, A., Fortuna, L., Frasca, M. and Sciuto, G. (2011). Design of
Time-Delay Chaotic Electronic Circuits, Circuits and Systems I: Regular
Papers, IEEE Transactions on, 58(8), 1888–1896.

[25] Pham, V.T., Fortuna, L. and Frasca, M. (2012). Implementation of chaotic
circuits with a digital time-delay block, Nonlinear Dynamics, 67(1),
345–355.

154

[26] Yalcin, M.E. (2008). A Simple Programmable Autowave Generator Network for
Wave Computing Applications, Circuits and Systems II: Express Briefs,
IEEE Transactions on, 55(11), 1173–1177.

[27] Wang, D., (1999). Relaxation Oscillators and Networks, volume 18 of
Encyclopedia of electrical and electronic engineers, chapter 1, John Wiley
& Sons, Inc., pp.396–405.

[28] van der Pol, B. (1940). Biological Rhythms Considered as Relaxation Oscillations,
Acta Medica Scandinavica, 103(S108), 76–88.

[29] Yeniceri, R. and Yalcin, M.E. (2008). An implementation of 2D locally coupled
relaxation oscillators on an FPGA for real-time autowave generation,
Cellular Neural Networks and Their Applications, 2008. CNNA 2008. 11th
International Workshop on, pp.29–33.

[30] Yeniceri, R. and Yalcin, M.E. (2009). Path planning on cellular nonlinear network
using active wave computing technique, Bioengineered and Bioinspired
Systems IV, 7365(1), 736508.

[31] an der Heiden, U. and Mackey, M.C. (1982). The Dynamics of production and
destruction: Analytic insight into complex behavior, J. Math. Biology, 16,
75–101.

[32] Losson, J. and Mackey, M.C. (1993). Solution multistability in first-order
nonlinear differential delay equations., Chaos, 3(2), 167.

[33] Lu, J.G. and Hill, D.J. (2008). Global asymptotical synchronization of chaotic
Lur’e systems using sampled data: a linear matrix inequality approach,
Circuits and Systems II: Express Briefs, IEEE Transactions on, 55(6),
586–590.

[34] Chen, W.H., Wang, Z. and Lu, X. (2012). On Sampled-Data Control for
Master-Slave Synchronization of Chaotic Lur’e Systems, Circuits and
Systems II: Express Briefs, IEEE Transactions on, 59(8), 515–519.

[35] Barajas-Ramírez, J.G., Chen, G. and Shieh, L.S. (2003). Hybrid Chaos
Synchronization, International Journal of Bifurcation and Chaos, 13(05),
1197–1216.

[36] Wagemakers, A., Buldú, J.M. and Sanjuán, M.A.F. (2008). Experimental
demonstration of bidirectional chaotic communication by means of
isochronal synchronization, EPL (Europhysics Letters), 81(4), 40005.

[37] Márquez, B.A., Suárez-Vargas, J.J. and Ramírez, J.A. (2014). Polynomial
law for controlling the generation of n-scroll chaotic attractors in an
optoelectronic delayed oscillator, Chaos: An Interdisciplinary Journal of
Nonlinear Science, 24(3), 033123.

[38] Farmer, J.D. (1982). Chaotic attractors of an infinite-dimensional dynamical
system, Physica D: Nonlinear Phenomena, 4(3), 366–393.

155

[39] Astrom, K. and Wittenmark, B. (1984). Computer Controlled Systems: Theory
and Design, Prentice-Hall, N.J.

[40] Chua, L.O. (1994). Chua’s circuit 10 years later, International Journal of Circuit
Theory and Applications, 22(4), 279–305.

[41] Suykens, J. and Vandewalle, J. (1993). Generation of n-double scrolls (n=1, 2,
3, 4, ...), Circuits and Systems I: Fundamental Theory and Applications,
IEEE Transactions on, 40(11), 861–867.

[42] Chen, D., Sun, Z., Ma, X. and Chen, L. (2014). Circuit implementation and
model of a new multi-scroll chaotic system, International Journal of
Circuit Theory and Applications, 42(4), 407–424.

[43] Elwakil, A. and Kennedy, M. (2001). Construction of classes of
circuit-independent chaotic oscillators using passive-only nonlinear
devices, Circuits and Systems I: Fundamental Theory and Applications,
IEEE Transactions on, 48(3), 289–307.

[44] Yalcin, M., Ozoguz, S., Suykens, J.A.K. and Vandewalle, J. (2001). n-scroll
chaos generators: a simple circuit model, Electronics Letters, 37(3),
147–148.

[45] Yalcin, M.E., Suykens, J.A., Vandewalle, J. and Ozoguz, S. (2002). Families
of scroll grid attractors, International Journal of Bifurcation and Chaos,
12(01), 23–41.

[46] Lü, J., Han, F., Yu, X. and Chen, G. (2004). Generating 3-D multi-scroll chaotic
attractors: A hysteresis series switching method, Automatica, 40(10), 1677
– 1687.

[47] Lu, J., Chen, G., Yu, X. and Leung, H. (2004). Design and analysis of multiscroll
chaotic attractors from saturated function series, Circuits and Systems I:
Regular Papers, IEEE Transactions on, 51(12), 2476–2490.

[48] Deng, W. and Lü, J. (2006). Design of multidirectional multiscroll chaotic
attractors based on fractional differential systems via switching control.,
Chaos (Woodbury, N.Y.), 16(4), 043120.

[49] Elwakil, A. and Ozoguz, S. (2006). Multiscroll Chaotic Oscillators: The
Nonautonomous Approach, Circuits and Systems II: Express Briefs, IEEE
Transactions on, 53(9), 862–866.

[50] Trejo-Guerra, R., Tlelo-Cuautle, E., Jiménez-Fuentes, M., Muñoz-Pacheco,
J.M. and Sánchez-López, C. (2013). Multiscroll floating gate–based
integrated chaotic oscillator, International Journal of Circuit Theory and
Applications, 41(8), 831–843.

[51] Yu, S., Tang, W.K.S., Lü, J. and Chen, G. (2010). Generating 2n-wing attractors
from Lorenz-like systems, International Journal of Circuit Theory and
Applications, 38(3), 243–258.

156

[52] Wang, L. and Yang, X. (2006). Generation of multi-scroll delayed chaotic
oscillator, Electronics Letters, 42(25), 1439–1441.

[53] Yalcin, M.E. and Ozoguz, S. (2007). n-scroll chaotic attractors from a first-order
time-delay differential equation, Chaos: An Interdisciplinary Journal of
Nonlinear Science, 17(3), 033112.

[54] Kilinc, S., Yalcin, M.E. and Ozoguz, S. (2010). Multiscroll Chaotic Attractors
From A Hysteresis Based Time-Delay Differential Equation, International
Journal of Bifurcation and Chaos, 20(10), 3275–3281.

[55] Srinivasan, K., Raja Mohamed, I., Murali, K., Lakshmanan, M. and Sinha, S.
(2011). Design of time delayed chaotic circuit with threshold controller,
International Journal of Bifurcation and Chaos, 21(03), 725–735.

[56] Liu, X., (Sherman) Shen, X. and Zhang, H. (2012). Multi-scroll Chaotic
and Hyperchaotic Attractors Generated From Chen System, International
Journal of Bifurcation and Chaos, 22(02), 1250033.

[57] Sprott, J. (2007). A simple chaotic delay differential equation, Physics Letters A,
366(4-5), 397 – 402.

[58] Zhang, H., Liu, X., Shen, X. and Liu, J. (2012). A family of novel chaotic
and hyperchaotic attractors from delay differential equation, Dynamics of
Continuous, Discrete and Impulsive Systems Series B: Applications and
Algorithms, 19(3), 411–430.

[59] Sandri, M. (1996). Numerical calculation of Lyapunov exponents, Mathematica
Journal, 6(3), 78–84.

[60] Sprott, J.C. (2003). Chaos and time-series analysis, Oxford University Press,
Oxford, New York.

[61] Benettin, G., Galgani, L., Giorgilli, A. and Strelcyn, J.M. (1980).
Lyapunov Characteristic Exponents for smooth dynamical systems and
for hamiltonian systems; A method for computing all of them. Part 2:
Numerical application, Meccanica, 15(1), 21–30.

[62] Stefański, A. and Kapitaniak, T. (2003). Estimation of the dominant Lyapunov
exponent of non-smooth systems on the basis of maps synchronization,
Chaos, Solitons and Fractals, 15(2), 233–244, cited By 34.

[63] Cesur, E., Yildiz, N. and Tavsanoglu, V. (2010). Architecture of The
Next Generation Real Time CNN Processor RTCNNP-v2, International
Symposium on Nonlinear Theory and its Applications (NOLTA’2010),
Krakow, Poland, pp.1–4.

[64] Ito, K., Hiratsuka, M., Aoki, T. and Higuchi, T. (2006). A Shortest Path Search
Algorithm Using an Excitable Digital Reaction-Diffusion System, IEICE
Trans. Fundam. Electron. Commun. Comput. Sci., E89-A(3), 735–743.

157

[65] Adamatzky, A., Arena, P., Basile, A., Carmona-Galan, R., Costello,
B.D.L., Fortuna, L., Frasca, M. and Rodriguez-Vazquez, A. (2004).
Reaction-diffusion navigation robot control: from chemical to VLSI
analogic processors, Circuits and Systems I: Regular Papers, IEEE
Transactions on, 51(5), 926–938.

[66] Lopich, A. and Dudek, P. (2011). Asynchronous cellular logic network as a
co-processor for a general-purpose massively parallel array, International
Journal of Circuit Theory and Applications, 39(9), 963–972.

[67] Rekeczky, C. and Chua, L.O. (1999). Computing with Front Propagation: Active
Contour And Skeleton Models In Continuous-Time CNN, J. VLSI Signal
Process. Syst., 23(2/3), 373–402.

[68] Munuzuri, A., Perezmunuzuri, V., Gomezgesteira, M., Chua, L. and
Perezvillar, V. (1995). Spatiotemporal Structures in Discretely-coupled
Arrays of Nonlinear Circuits: A Review, International Journal of
BIifurcation and Chaos, 5(1), 17–50.

[69] Yalcin, M.E. and Suykens, J.A.K. (2006). Spatiotemporal pattern formation in
the ACE16k CNN chip, International Journal of Bifurcation and Chaos,
16(05), 1537–1546.

[70] Yeniceri, R. and Yalcin, M.E. (2012). A new CNN based path planning algorithm
improved by the Doppler Effect, Cellular Nanoscale Networks and Their
Applications (CNNA), 2012 13th International Workshop on, pp.1–5.

[71] Yeniceri, R. and Yalcin, M.E. (2013). The Doppler effect with input driven
autowaves, Circuit Theory and Design (ECCTD), 2013 European
Conference on, pp.1–4.

[72] Yeniceri, R., Abtioglu, E., Govem, B. and Yalcin, M.E. (2014). A
16×16 Cellular Logical Network with partial reconfiguration feature,
Cellular Nanoscale Networks and their Applications (CNNA), 2014 14th
International Workshop on, pp.1–2.

[73] Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L. and Zhou, C.S. (2002).
The synchronization of chaotic systems, Physics Reports, 366(1-2),
1–101.

[74] Pecora, L. and Carroll, T. (1990). Synchronization in chaotic systems, Physical
Review Letters, 64(8), 821–824.

[75] Yalcin, M., Suykens, J. and Vandewalle, J. (2005). Cellular Neural Networks,
Multi-Scroll Chaos And Synchronization, volume 50 of World Scientific
Series on Nonlinear Science, Series A, World Scientific.

[76] Voss, H.U. (2000). Anticipating chaotic synchronization, Phys. Rev. E, 61(5),
5115–5119.

[77] Huijberts, H., Nijmeijer, H. and Oguchi, T. (2007). Anticipating synchronization
of chaotic Lur’e systems, Chaos: An Interdisciplinary Journal of
Nonlinear Science, 17(1), 013117.

158

[78] Kilinc, S., Yalcin, M.E. and Ozoguz, S. (2008). Synchronization of first-order
time-delay systems generating n-scroll chaotic attractors, Circuits
and Systems, 2008. ISCAS 2008. IEEE International Symposium on,
pp.756–759.

[79] Ergunay, S., Yeniceri, R. and Yalcin, M.E. (2010). Hardware-Software
Co-design of Nonlinear Active Wave Generator with Microblaze Soft Core
Processor, Nonlinear Theory and its Applications, 2010. NOLTA 2010.
International Symposium on, pp.157–160.

[80] Zarandy, A., Keresztes, P., Roska, T. and Szolgay, P. (1998). CASTLE: an
emulated digital CNN architecture design issues, new results, Electronics,
Circuits and Systems, 1998 IEEE International Conference on, volume 1,
pp.199–202.

[81] Malki, S. and Spaanenburg, L. (2003). CNN Image Processing on a Xilinx
Virtex-II 6000, Proceedings of the 16th European Conference on Circuit
Theory and Design, ECCTD’03, pp.261–264.

[82] Fang, W., Wang, C. and Spaanenburg, L. (2006). In search for a robust digital
CNN system, V. Tavsanoglu and S. Arik, editors, Proceedings of the
2006 10th IEEE International Workshop on Cellular Neural Networks
and Their Applications, IEEE, 345 E 47TH ST, NEW YORK, NY 10017
USA, pp.328–333, 10th IEEE International Workshop on Cellular Neural
Networks and Their Applications, Istanbul, TURKEY, AUG 28-30, 2006.

[83] Nagy, Z., Vörösházi, Z. and Szolgay, P. (2006). Emulated digital CNN-UM
solution of partial differential equations, International Journal of Circuit
Theory and Applications, 34(4), 445–470.

[84] Chua, L.O. and Roska, T. (1993). The CNN paradigm, Circuits and Systems
I: Fundamental Theory and Applications, IEEE Transactions on, 40(3),
147–156.

[85] Soos, B., Rak, A., Veres, J. and Cserey, G. (2008). GPU powered CNN simulator
(SIMCNN) with graphical flow based programmability, Cellular Neural
Networks and Their Applications, 2008. CNNA 2008. 11th International
Workshop on, pp.163–168.

[86] Dolan, R. and DeSouza, G. (2009). GPU-based simulation of cellular neural
networks for image processing, Neural Networks, 2009. IJCNN 2009.
International Joint Conference on, pp.730–735.

[87] Nvidia Coorp., TESLA High Performance Computing, http://www.
nvidia.com/object/tesla-supercomputing-solutions.
html, date retrieved 02.08.2015.

[88] Nvidia Coorp., Compute Unified Device Architecture (CUDA), https://
developer.nvidia.com/cuda-zone, date retrieved 02.08.2015.

[89] Advanced Micro Devices, Inc., APP SDK, A Complete
Development Platform, http://developer.

159

http://www.nvidia.com/object/tesla-supercomputing-solutions.html
http://www.nvidia.com/object/tesla-supercomputing-solutions.html
http://www.nvidia.com/object/tesla-supercomputing-solutions.html
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/

amd.com/tools-and-sdks/opencl-zone/
amd-accelerated-parallel-processing-app-sdk/,
date retrieved 02.08.2015.

[90] The MathWorks, Inc., Matlab GPU computing support for Nvidia
CUDA-enabled GPUs, http://www.mathworks.com/
discovery/matlab-gpu.html?BB=1, date retrieved 02.08.2015.

[91] Sato, D., Xie, Y., Weiss, J., Qu, Z., Garfinkel, A. and Sanderson, A. (2009).
Acceleration of cardiac tissue simulation with graphic processing units,
Medical and Biological Engineering and Computing, 47, 1011–1015,
10.1007/s11517-009-0514-4.

[92] Kilic, V. and Yalcin, M.E. (2011). An active wave computing based path finding
approach for 3-D environment, Circuits and Systems (ISCAS), 2011 IEEE
International Symposium on, pp.2165–2168.

[93] Kilic, V., Yeniceri, R. and Yalcin, M.E. (2010). A new active wave
computing based real time mobile robot navigation algorithm for dynamic
environment, Cellular Nanoscale Networks and Their Applications
(CNNA), 2010 12th International Workshop on, pp.1–6.

[94] Becker, J., Hubner, M., Hettich, G., Constapel, R., Eisenmann, J. and Luka,
J. (2007). Dynamic and Partial FPGA Exploitation, Proceedings of the
IEEE, 95(2), 438–452.

[95] Lindberg, E., Mykolaitis, G., Bumelien, S., Pyragien, T., Tamaseviius, A.,
Tamaseviit, E. and Kirvaitis, R. (2010). Higher-order chaotic oscillator
using active bessel filter, Journal of Circuits, Systems and Computers,
19(4), 859–869.

[96] Mykolaitisa, G., Tamaseviciusa, A., Cenysa, A., Bumelien, S., Anagnos-
topoulosb, A.N. and Kalkanc, N. (2003). Very high and ultrahigh
frequency hyperchaotic oscillators with delay line, Chaos, Solitions &
Fractals, 17(2-3), 343–347.

[97] Razmdideh, R. and Saneei, M. (2014). Two novel low power and very high
speed pulse triggered flip-flops, International Journal of Circuit Theory
and Applications, n/a–n/a.

[98] Schell, B. and Tsividis, Y. (2008). A Low Power Tunable Delay Element Suitable
for Asynchronous Delays of Burst Information, Solid-State Circuits, IEEE
Journal of, 43(5), 1227–1234.

[99] Chang, H.H. and Liu, S.I. (2005). A wide-range and fast-locking all-digital
cycle-controlled delay-locked loop, Solid-State Circuits, IEEE Journal of,
40(3), 661–670.

[100] Toumazou, C., Lidgey, F.J. and Haigh, D. (1990). Analogue IC design: the
current-mode approach, Peter Peregrinus Ltd.

160

http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://www.mathworks.com/discovery/matlab-gpu.html?BB=1
http://www.mathworks.com/discovery/matlab-gpu.html?BB=1

[101] Yalcin, M., Yeniceri, R. and Ozoguz, S. (2014). A chaotic time-delay
sampled-data system and its implementation, International Journal of
Bifurcation and Chaos, 24(3), 1450039.

[102] Mazin, M. and Engeler, W., (1984), CMOS latch cell including five transistors,
and static flip-flops employing the cell, uS Patent 4,484,087.

[103] Roska, T. (2007). Circuits, computers, and beyond Boolean logic, International
Journal of Circuit Theory and Applications, 35(5-6), 485–496.

[104] Xing, N., Shin, W.Y., Jeong, D.K. and Kim, S. (2010). High-resolution
time-to-digital converter utilising fractional difference conversion scheme,
Electronics Letters, 46(6), 398–400.

[105] Latombe, J.C. (1999). Motion Planning: A Journey of Robots, Molecules,
Digital Actors, and Other Artifacts, The International Journal of Robotics
Research, 18(11), 1119–1128.

[106] LaValle, S. (2011). Motion Planning, Robotics Automation Magazine, IEEE,
18(1), 79–89.

[107] Koyuncu, E., Ure, N. and Inalhan, G. (2010). Integration of Path/Maneuver
Planning in Complex Environments for Agile Maneuvering UCAVs,
Journal of Intelligent and Robotic Systems, 57(1-4), 143–170.

[108] LaValle, S.M. (2006). Planning Algorithms, Cambridge University Press, New
York, NY, USA, 1 edition.

[109] Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (2009). Introduction
to Algorithms, The MIT Press, Cambridge, Massachusetts, 3 edition.

[110] Roska, T. (2007). Cellular wave computers for nanotera- scale
technology–-beyond Boolean, spatial-temporal logic in million processor
devices, Electronics Letters, 43(8), 427–429.

[111] Atay, N. and Bayazit, B. (2006). A motion planning processor on reconfigurable
hardware, Robotics and Automation, 2006. ICRA 2006. Proceedings 2006
IEEE International Conference on, pp.125–132.

[112] Chua, L.O., Hasler, M., Moschytz, G.S. and Neirynck, J. (1995). Autonomous
cellular neural networks: a unified paradigm for pattern formation and
active wave propagation, Circuits and Systems I: Fundamental Theory and
Applications, IEEE Transactions on, 42(10), 559–577.

[113] Perez-Munuzuri, V., Perez-Villar, V. and Chua, L.O. (1993). Autowaves for
image processing on a two-dimensional CNN array of excitable nonlinear
circuits: flat and wrinkled labyrinths, Circuits and Systems I: Fundamental
Theory and Applications, IEEE Transactions on, 40(3), 174–181.

[114] Gacsadi, A., Maghiar, T. and Tiponut, V. (2002). A CNN path planning for a
mobile robot in an environment with obstacles, Cellular Neural Networks
and Their Applications, 2002. (CNNA 2002). Proceedings of the 2002 7th
IEEE International Workshop on, pp.188–194.

161

[115] Gavrilut, I., Tiponut, V., Gacsadi, A. and Grava, C. (2007). CNN Processing
Techniques for Multi-robot Coordination, Signals, Circuits and Systems,
2007. ISSCS 2007. International Symposium on, pp.1–4.

[116] Munuzuri, A.P. and Vazquez-Otero, A. (2008). The CNN solution to
the shortest-path-finder problem, Cellular Neural Networks and Their
Applications, 2008. CNNA 2008. 11th International Workshop on,
pp.248–251.

[117] Vazquez-Otero, A. and Munuzuri, A.P. (2010). Navigation algorithm for
autonomous devices based on biological waves, Cellular Nanoscale
Networks and Their Applications (CNNA), 2010 12th International
Workshop on, pp.1–5.

[118] Adamatzky, A. and Costello, B.D. (2003). Reaction-diffusion path planning in
a hybrid chemical and cellular-automaton processor, Chaos Solitons &
Fractals, 16(5), 727–736.

[119] Dudek, P. (2006). An asynchronous cellular logic network for trigger-wave image
processing on fine-grain massively parallel arrays, Circuits and Systems II:
Express Briefs, IEEE Transactions on, 53(5), 354–358.

[120] Tzionas, P.G., Thanailakis, A. and Tsalides, P.G. (1997). Collision-free path
planning for a diamond-shaped robot using two-dimensional cellular
automata, Robotics and Automation, IEEE Transactions on, 13(2),
237–250.

[121] Ahmed, S., Akhter, A. and Kunwar, F. (2012). Cellular automata based real
time path planning for mobile robots, Control Automation Robotics Vision
(ICARCV), 2012 12th International Conference on, pp.142–147.

[122] Willms, A.R. and Yang, S.X. (2008). Real-Time Robot Path Planning via a
Distance-Propagating Dynamic System with Obstacle Clearance, Systems,
Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 38(3),
884–893.

[123] Cao, Y., Zhou, X., Li, S., Zhang, F., Wu, X., Li, A. and Sun, L. (2010). Design
of path planning based Cellular Neural Network, Intelligent Control and
Automation (WCICA), 2010 8th World Congress on, pp.6539–6544.

[124] Eden, A. (1992). The Search for Christian Doppler, Springer-Verlag Wien, 1
edition.

[125] Schetzen, M. (2006). Airborne Doppler Radar : Applications, Theory, and
Philosophy, American Institute of Aeronautics and Astronautics.

[126] Eckert, S. and Gerbeth, G. (2002). Velocity measurements in liquid sodium by
means of ultrasound Doppler velocimetry, Experiments in Fluids, 32(5),
542–546.

[127] Garcia, M., Thomas, J. and Klein, A. (1998). New Doppler echocardiographic
applications for the study of diastolic function, Journal of the American
College of Cardiology, 32(4), 865–875.

162

[128] Albrecht, H.E., Damaschke, N., Borys, M. and Tropea, C. (2003). Laser
Doppler and Phase Doppler Measurement Techniques, Springer-Verlag
Berlin Heidelberg, 1 edition.

[129] Brusch, L., Torcini, A. and Bar, M. (2003). Doppler effect of nonlinear waves
and superspirals in oscillatory media, Physical Review Letters, 91(10).

[130] Carmena, J.M. and Hallam, J.C.T. (2004). The use of Doppler in Sonar-based
mobile robot navigation: inspirations from biology, Information Sciences,
161(1–2), 71–94.

[131] Muñuzuri, A.P., Davydov, V.A., Gómez-Gesteira, M., Pérez-Muñuzuri, V.
and Pérez-Villar, V. (1996). Frequency-modulated autowaves in excitable
media, Phys. Rev. E, 54(6), –5921.

[132] Ayhan, T., Yeniceri, R., Ergunay, S. and Yalcin, M.E. (2012). Hybrid processor
population for odor processing, Circuits and Systems (ISCAS), 2012 IEEE
International Symposium on, pp.177–180.

[133] Yalcin, M.E., Suykens, J.A.K. and Vandewalle, J. (2004). True random bit
generation from a double-scroll attractor, Circuits and Systems I: Regular
Papers, IEEE Transactions on, 51(7), 1395–1404.

[134] Bassham III., L.E., Rukhin, A.L., Soto, J., Nechvatal, J.R., Smid, M.E.,
Barker, E.B., Leigh, S.D., Levenson, M., Vangel, M., Banks,
D.L., Heckert, N.A., Dray, J.F. and Vo, S. (2010). SP 800-22 Rev.
1a: A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications, Technical Report, U.S.
National Institute of Standards and Technology, Gaithersburg, MD,
United States, http://csrc.nist.gov/groups/ST/toolkit/
rng/documents/SP800-22rev1a.pdf.

[135] Marsaglia, G., (1995), The Marsaglia Random Number CDROM including the
Diehard Battery of Tests of Randomness, on-line, http://www.stat.
fsu.edu/pub/diehard/, accessed July 15, 2014.

[136] L’Ecuyer, P. and Simard, R. (2007). TestU01: A C Library for Empirical Testing
of Random Number Generators, ACM Trans. Math. Softw., 33(4).

[137] Jun, B. and Kocher, P. (1999). The Intel Random Number Generator, White
paper, Cryptography Research, Inc., http://www.cryptography.
com/public/pdf/IntelRNG.pdf.

[138] Petrie, C.S. and Connelly, J.A. (2000). A noise-based IC random number
generator for applications in cryptography, Circuits and Systems I:
Fundamental Theory and Applications, IEEE Transactions on, 47(5),
615–621.

[139] Fang, X., Wetzel, B., Merolla, J.M., Dudley, J., Larger, L., Guyeux, C.
and Bahi, J. (2014). Noise and Chaos Contributions in Fast Random Bit
Sequence Generated From Broadband Optoelectronic Entropy Sources,
Circuits and Systems I: Regular Papers, IEEE Transactions on, 61(3),
888–901.

163

http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
http://www.stat.fsu.edu/pub/diehard/
http://www.stat.fsu.edu/pub/diehard/
http://www.cryptography.com/public/pdf/IntelRNG.pdf
http://www.cryptography.com/public/pdf/IntelRNG.pdf

[140] Gerosa, A., Bernardini, R. and Pietri, S. (2002). A fully integrated chaotic
system for the generation of truly random numbers, Circuits and Systems
I: Fundamental Theory and Applications, IEEE Transactions on, 49(7),
993–1000.

[141] Callegari, S., Rovatti, R. and Setti, G. (2005). Embeddable ADC-based
true random number generator for cryptographic applications exploiting
nonlinear signal processing and chaos, Signal Processing, IEEE
Transactions on, 53(2), 793–805.

[142] Addabbo, T., Alioto, M., Fort, A., Rocchi, S. and Vignoli, V. (2006). A
feedback strategy to improve the entropy of a chaos-based random bit
generator, Circuits and Systems I: Regular Papers, IEEE Transactions on,
53(2), 326–337.

[143] Pareschi, F., Setti, G. and Rovatti, R. (2010). Implementation and Testing of
High-Speed CMOS True Random Number Generators Based on Chaotic
Systems, Circuits and Systems I: Regular Papers, IEEE Transactions on,
57(12), 3124–3137.

[144] Xilinx, Inc., (2015). Spartan-6 FPGA Data Sheet: DC and Switching Char-
acteristics, 3.1.1 edition, http://www.xilinx.com/support/
documentation/data_sheets/ds162.pdf.

[145] Yeniceri, R., Abtioglu, E. and Yalcin, M.E. (2015). Cellular Network of
Networks on Dynamically Partial Reconfigurable FPGA, Proceedings of
22nd European Conference on Circuit Theory and Design (ECCTD2015),
Trondheim, Norway, pp.1–4.

[146] Yeniceri, R. and Yalcin, M.E. (2015). Predictive Feedback Motion Planning in
2D Space using Nonlinear Waves with Doppler Effect, IEEE Transactions
on Circuits and Systems-I: Regular Papers, submitted to.

[147] Yeniceri, R., Ustaoglu, B. and Yalcin, M.E. (2013). Throughput enhancement
for a new time-delay sampled-data system based True Random Bit
Generator, Circuit Theory and Design (ECCTD), 2013 European
Conference on, pp.1–4.

[148] Yeniceri, R. and Yalcin, M.E. (2015). Multi-scroll Chaotic Attractors from A
Generalized Time-delay Sampled-data System, International Journal of
Circuit Theory and Applications, submitted to.

[149] Yeniceri, R. and Yalcin, M.E. (2015). Asynchronous Delay Doubler and Binary
Low-pass Filter for A Time-delay Chaotic Circuit, International Journal
of Circuit Theory and Applications, submitted to.

[150] Yeniceri, R., Kilinc, S. and Yalcin, M.E. (2015). Attack on a Chaos-Based
Random Number Generator Using Anticipating Synchronization, Inter-
national Journal of Bifurcation and Chaos, 25(02), 1550021.

[151] Yeniceri, R. and Yalcin, M.E. (2015). Anticipating Synchronization Between
Sampled-Time Master And Discrete-Time Slave Chaotic Systems,

164

http://www.xilinx.com/support/documentation/data_sheets/ds162.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds162.pdf

Proceedings of 7th International Scientific Conference on Physics and
Control (PhysCon 2015), Istanbul, Turkey, pp.1–4.

[152] Yeniceri, R., Ozoguz, S. and Yalcin, M.E., (2014). A Chaotic Time-Delay
Sampled-Data Systems with Applications, chapter 3, Physics Research
and Technology Series, Nova Science Publishers, New York, pp.59–72.

165

166

CURRICULUM VITAE

Name Surname : Ramazan Yeniçeri

Place and Date of Birth : Denizli, 1985

E-Mail : yenicerir@itu.edu.tr

EDUCATION:

• B.Sc.: 2007, Istanbul Technical University, Electrical-Electronics Faculty,
Electronics and Communication Engineering Department

• M.Sc.: 2009, Istanbul Technical University, Electronics and Communication
Engineering Department, Electronics Engineering Master Program

PROFESSIONAL EXPERIENCE AND REWARDS:

• 2009–2015: Research and Teaching Assistant in the Department of Electronics and
Communication Engineering at Istanbul Technical University.

• 2014: Visiting researcher with a scholarship from Scientific and Technological
Research Council of Turkey (TUBITAK) at University of Notre Dame, IN.

• 2009–2014: National Scholarship Programme for Ph.D. Students of TUBITAK.

PUBLICATIONS/PRESENTATIONS ON THE THESIS

• Abtioglu, E., Yeniceri, R., and Yalcin, M. E. “Cellular Network of Networks on
Dynamically Partial Reconfigurable FPGA,” 22nd European Conference on Circuit
Theory and Design (ECCTD2015), Trondheim, Norway, August 24-26, 2015.

• Karakaya, B., Yeniceri, R., and Yalcin, M. E. “Wave Computer Core Using
Fixed-point Arithmetic,” 2015 IEEE International Symposium on Circuits and
Systems (ISCAS), Lisbon, Portugal, May 24–27, 2015.

• Tukel, M., Yeniceri, R., and Yalcin, M. E. “Nonlinear spatio-temporal wave
computing for real-time applications on GPU,” Cellular Nanoscale Networks and
Their Applications (CNNA), 2012 13th International Workshop on, August 29-31,
2012, Turin, Italy.

• Yalcin, M. E., Yeniceri, R., and Ozoguz, S. “A chaotic time-delay sampled-data
system and its implementation,” International Journal of Bifurcation and Chaos,
vol.24, no.3, 2014. DOI: 10.1142/S0218127414500394

167

• Yeniceri, R., Abtioglu, E., Govem, B., Yalcin, M. E. “A 16×16 Cellular Logical
Network with partial reconfiguration feature,” Cellular Nanoscale Networks and
Their Applications (CNNA), 2014 14th International Workshop on, July 29-31,
2014, Notre Dame, IN, USA.

• Yeniceri, R., Kilinc, S., and Yalcin M. E. “Attack on a Chaos-Based Random
Number Generator Using Anticipating Synchronization,” International Journal of
Bifurcation and Chaos, vol.25, no.2, 2015. DOI: 10.1142/S0218127415500212

• Yeniceri, R., Ozoguz, S., and Yalcin, M. E. “A Chaotic Time-Delay Sampled-Data
Systems with Applications,” New Research Trends in Nonlinear Circuits: Design,
Chaotic Phenomena and Applications, ed. Kyprianidis I., Stouboulos I., and Volos
C., chapter 3, Physics Research and Technology Series, pp.59-72, Nova Science
Publishers, New York, 2014, ISBN: 978-1-63321-406-4.

• Yeniceri, R., Ustaoglu, B., and Yalcin, M. E. “Throughput enhancement for a
new time-delay sampled-data system based True Random Bit Generator,” Circuit
Theory and Design (ECCTD), 2013 European Conference on, September 8-12,
2013, Dresden, Germany.

• Yeniceri R., and Yalcin, M. E. “A new CNN based path planning algorithm
improved by the Doppler Effect,” Cellular Nanoscale Networks and Their
Applications (CNNA), 2012 13th International Workshop on, August 29-31, 2012,
Turin, Italy.

• Yeniceri, R., and Yalcin, M. E. “The Doppler effect with input driven autowaves,”
Circuit Theory and Design (ECCTD), 2013 European Conference on, September
8-12, 2013, Dresden, Germany.

• Yeniceri, R., and Yalcin, M. E. “True random bit generation with time-delay
sampled-data feedback system,” Electronics Letters, vol.49, no.8, pp.543–545,
2013. DOI: 10.1049/el.2012.3448

• Yeniceri, R., and Yalcin, M. E. “Anticipating Synchronization Between
Sampled-Time Master And Discrete-Time Slave Chaotic Systems,” 7th Interna-
tional Scientific Conference on Physics and Control (PhysCon 2015), Istanbul,
Turkey, August 19-22, 2015.

• Yeniceri, R., and Yalcin, M. E. “Asynchronous Delay Doubler and Binary
Low-pass Filter for A Time-delay Chaotic Circuit,” International Journal of Circuit
Theory and Applications, online, 2015. DOI: 10.1002/cta.2158

• Yeniceri, R., and Yalcin, M. E. “Multi-scroll Chaotic Attractors from A
Generalized Time-delay Sampled-data System,” International Journal of Circuit
Theory and Applications, online, 2015. DOI: 10.1002/cta.2160

• Yeniceri, R., and Yalcin, M. E. Predictive Feedback Motion Planning in 2D Space
Using Nonlinear Waves with Doppler Effect, submitted to IEEE Transactions on
Circuits and Systems-I: Regular Papers.

168

OTHER PUBLICATIONS:

• Ayhan, T., Yeniceri, R., Ergunay, S., Yalcin, M. E. “Hybrid Processor Population
for Odor Processing,” 2012 IEEE International Symposium on Circuits and Systems
(ISCAS 2012), Seoul, Korea, May 20–23, 2012.

• Csaba, G., Papp, A., Yeniceri, R., Porod, W. “Non-Boolean Computing Based
on Linear Waves and Oscillators,” accepted to 45th European Solid-State Device
Conference, Graz, Austria, September 14-18, 2015.

• Ergunay, S., Yeniceri, R., and Yalcin, M. E. “Hardware-Software Co-design of
Nonlinear Active Wave Generator with Microblaze Soft Core Processor,” 2010
International Symposium on Nonlinear Theory and its Applications (NOLTA2010),
Krakow, Poland, Sept. 5–8, 2010.

• Kilic, V., Yeniceri, R., and Yalcin, M. E. “A New Active Wave Computing Based
Real Time Mobile Robot Navigation Algorithm for Dynamic Environment,” 12th
International Workshop on Cellular Nanoscale Networks and Applications (CNNA
2010) Berkeley, USA, February 3-5, 2010.

• Yeniceri, R., and Yalcin, M. E. “An Implementation of 2D Locally Coupled
Relaxation Oscillators on an FPGA for Real-time Autowave Generation,” 11th
International Workshop on Cellular Neural Networks and their Applications
(CNNA 2008), Santiago de Compostela, Spain, July 14-16, 2008.

• Yeniceri, R., and Yalcin, M. E. “An Emulated Digital Wave Computer Core
Implementation,” European Conference on Circuit Theory and Design 2009
(ECCTD’09), Antalya, Turkey, August 23-27, 2009.

• Yeniceri, R., and Yalcin, M. E. “Path Planning on Cellular Nonlinear Network
Using Active Wave Computing Technique,” Bioengineered and Bioinspired
Systems IV, Proc. SPIE, vol. 7365, Dresden, Germany, May 3-5, 2009.

169

170

	FOREWORD
	TABLE OF CONTENTS
	ABBREVIATIONS
	LIST OF TABLES
	LIST OF FIGURES
	SUMMARY
	ÖZET
	1. INTRODUCTION
	Purpose of Thesis
	Literature Review
	Hypothesis and Contributions
	Organization

	2. CELLS
	Relaxation Oscillators
	Oscillator using absolute value nonlinearity
	Oscillator using signum nonlinearity

	Logic Oscillator
	Time-delay Sampled-data Chaotic System
	Generating mono-scroll attractor
	Generating multi-scroll attractor

	3. NETWORKS
	Cellular Nonlinear Networks
	Network using absolute nonlinearity
	Network using signum nonlinearity
	Cellular logical network
	Results and comparison of networks

	1D Network with Unidirectional Coupling

	4. IMPLEMENTATIONS
	Implementations for Relaxation Oscillators
	Digital implementation of relaxation oscillator network
	Implementation of relaxation oscillator network on GPU

	Partial Reconfiguration of Cellular Logic Network
	Implementations for Time-delay Chaotic System
	Asynchronous delay doubler for binary delay lines
	Mono-scroll attractor using analog integrator and flip-flop chain
	Mono-scroll attractor using analog integrator and ADD chain
	Mono-scroll attractor using digital integrator and inverter chain
	Multi-scroll attractor using analog integrator and flip-flop chain
	1D network using analog integrator and flip-flop chain
	1D network using digital integrator and flip-flop chain

	5. APPLICATIONS
	Feedback Motion Planning
	Generating feedback plan by relaxation oscillator networks
	Predictive planning in 2D discrete space

	Random Bit Generation
	True random bit generator
	Attack on true random bit generator

	6. CONCLUSION
	Obtained Results
	Publications on The Thesis
	Open Research Fields

	REFERENCES
	CURRICULUM VITAE

