Microprocessor System Design FHB432F

Lecture -5

Prof. Dr. Müştak E. Yalçın

Istanbul Technical University

mustak.yalcin@itu.edu.tr

Prof. Dr. Müştak E. Yalçın (İTÜ)

January, 2016 1 / 22

Memory

Write ability/ storage permanence

- Traditional ROM/RAM distinctions
 - ROM read only, bits stored without power
 - RAM read and write, lose stored bits without power
- Traditional distinctions blurred
 - Advanced ROMs can be written to e.g., EEPROM
 - Advanced RAMs can hold bits without power e.g., NVRAM
- Write ability
 - Manner and speed a memory can be written
- Storage permanence
 - ability of memory to hold stored bits after they are written

Memory

- Stores large number of bits
 - mxn: m words of n bits each
 - $k = log_2(m)$ address input signals
 - or $m = 2^k$ words e.g., 4,096x8 memory: 32,768 bits, 12 address input signals, 8 input/output data signals
- Memory access
 - r/w: selects read or write
 - enable: read or write only when asserted
 - multiport: multiple accesses to different locations simultaneously

Prof. Dr. Müştak E. Yalçın (İTÜ)

January, 2016 2 / 22

Memory

Prof. Dr. Müştak E. Yalçın (İTÜ) January, 2016

Memory

Ranges of write ability:

- High end [processor writes to memory simply and quickly, e.g., RAM]
- Middle range [processor writes to memory, but slower e.g., FLASH. EEPROM]
- Lower range [special equipment, "programmer", must be used to write to memory e.g., EPROM, OTP ROM]
- Low end [bits stored only during fabrication e.g., Mask-programmed ROM]

Range of storage permanence

- High end [essentially never loses bits e.g., mask-programmed ROM]
- Middle range [holds bits days, months, or years after memory's power source turned off e.g., NVRAM]
- Lower range [holds bits as long as power supplied to memory e.g., SRAM]
- Low end [begins to lose bits almost immediately after written e.g., DRAM]

Prof. Dr. Müştak E. Yalçın (İTÜ)

Mask-programmed ROM

- Connections "programmed" at fabrication(mask)
- Lowest write ability (once)
- Highest storage permanence

OTP ROM: One-time programmable ROM

- Connections "programmed" after manufacture by user
- Very low write ability (typically written only once and requires ROM) programmer device)
- Very high storage permanence
- Commonly used in final products

► Atmel: OTP EPROM

EPROM: Erasable programmable ROM

- Programmable component is a MOS transistor
- Better write ability (can be erased and reprogrammed thousands of times)
- Reduced storage permanence (program lasts about 10 years)
- Typically used during design development

ROM: "Read-Only" Memory

- Nonvolatile memory
- Can be read from but not written to, by a processor in an embedded system
- Traditionally written to. "programmed". before inserting to embedded
- Uses
 - Store software program for general-purpose processor
 - Store constant data needed by system
 - Implement combinational circuit (BLG 231E Digital Circuits)

Prof. Dr. Müştak E. Yalçın (İTÜ)

A datasheet, data sheet, or spec sheet is a document that summarizes the performance and other technical characteristics of a product, machine, component (e.g., an electronic component), material, a subsystem (e.g., a power supply) or software in sufficient detail to be used by a design engineer to integrate the component into a system. • Wikipedia

WAVEFORMS	INPUTS	OUTPUTS
	MUST BE STEADY	MUST BE STEADY
	MAY CHANGE FROM H TO L	WILL BE CHANGE FROM H TO L
	MAY CHANGE FROM L TO H	WILL BE CHANGE FROM L TO H
	DON'T CARE ANY CHANGE PERMITTED	CHANGE STATE UNKNOWN
⋙ ≪≪	DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE OFF STATE

Prof. Dr. Müştak E. Yalçın (İTÜ) January, 2016

27C64

64K (8K x 8) CMOS EPROM

FEATURES PACKAGE TYPES High speed performance 120 ns access time available CMOS Technology for low power consu 20 mA Active current 100 μA Standby current Factory programming available Auto-insertion-compatible plastic packa Auto ID aids automated programming Senarate chin enable and output enable control High speed "express" programming algorithr Organized 8K x 8: JEDEC standard pinouts

Flash Memory

- Extension of EEPROM
 - Same gate principle, write ability and storage permanence
- Fast erase
 - Large blocks of memory erased at once, rather than one word at a time Blocks typically several thousand bytes large
- Writes to single words may be slower
 - Entire block must be read, word updated, then entire block written back
- Used with embedded systems storing large data items in nonvolatile memory

EEPROM: Electrically erasable programmable ROM

- Programmed and erased electronically
 - typically by using higher than normal voltage
 - can program and erase individual words
- Better write ability
 - can be in-system programmable with built-in circuit to provide higher than normal voltage
 - writes very slow due to erasing and programming
 - can be erased and programmed tens of thousands of times
- Similar storage permanence to EPROM (about 10 years)
- Far more convenient than EPROMs, but more expensive

→ Atmel EEPROMs → Datasheet:Atmel AT28C010

→ Datasheet:Atmel 24AA32A

Prof. Dr. Müstak E. Yalçın (İTÜ)

January, 2016 10 / 22

Random-access memory (RAM)

- Typically volatile memory
 - bits are not held without power supply
- Read and written to easily by embedded system during execution
- Internal structure more complex than ROM
 - a word consists of several memory cells, each storing 1 bit
 - each input and output data line connects to each cell in its column
 - rd/wr connected to every cell
 - when row is enabled by decoder, each cell has logic that stores input data bit when rd/wr indicates write or outputs stored bit when rd/wr indicates read

Prof. Dr. Müştak E. Yalçın (İTÜ) January, 2016 11 / 22 Prof. Dr. Müstak E. Yalçın (İTÜ) January, 2016 12 / 22

- SRAM: Static RAM
 - Memory cell uses flip-flop to store bit
 - Requires 6 transistors
 - Holds data as long as power supplied
- DRAM: Dynamic RAM
 - Memory cell uses MOS transistor and capacitor to store bit
 - More compact than SRAM
 - "Refresh" required due to capacitor leak
 - dynamic memory cells must be repeatedly read and restored, this process is called memory refresh.
 - Typical refresh rate 15.625 microsec.
 - Slower to access than SRAM

→ YouTube :RAMs → YouTube:SRAM → YouTube:DRAM

Circuit Diagram

Prof. Dr. Müştak E. Yalçın (İTÜ)

January, 2016 13 / 22

DRAM Architecture

- Address bus multiplexed between row and column components
- Row and column addresses are latched in, sequentially, by strobing ras and cas signals, respectively
- Refresh circuitry can be external or internal to DRAM device
 - strobes consecutive memory address periodically causing memory content to be refreshed
 - refresh circuitry disabled during read or write operation

Prof. Dr. Müştak E. Yalçın (İTÜ) January, 2016 15 / 22

➤ YouTube: Raed ➤ YouTube: Refresh ➤ YouTube: Write

► KM41464 Samsung, Datasheet

256 rows and 256 cols., 256 rows refresh in 4ms therefore $15\mu s$ per row!

- Refresh cycle shown needs an external DRAM controller to step through the rows and supply refresh signals at
- More modern method is "CAS before RAS" refresh (memory uses the otherwise unused CAS before RAS input to initiate a refresh cycle) which is associated with an internal refresh address counter. DRAM controller only chooses

Prof. Dr. Müştak E. Yalçın (İTÜ) January, 2016 17 / 22 • DRAMs commonly used as main memory in processor based embedded systems (high capacity, low cost)

- Many variations of DRAMs proposed
 - FPM DRAM: fast page mode DRAM

- EDO DRAM: extended data out DRAM
- SDRAM/ESDRAM: synchronous and enhanced synchronous DRAM
 - SDRAM latches data on active edge of clock
 - Eliminates time to detect ras/cas and rd/wr signals
 - A counter is initialized to column address then incremented on active edge of clock to access consecutive memory locations

→ MT48LC32M8A2 Micro, Datashee

Prof. Dr. Müştak E. Yalçın (İTÜ) January, 2016 18 / 22