
Introduction to Embedded Systems EHB 326E HW#2

(/ø) g=7h5. 040170208

SOFTWARE PART:

The problem I have to solve for my software part is: Given a non negative integer number num. For
ĞǀĞƌǇ�ŶƵŵďĞƌƐ�ŝ�ŝŶ�ƚŚĞ�ƌĂŶŐĞ�Ϭ�ч�ŝ�ч�ŶƵŵ�ĐĂůĐƵůĂƚĞ�ƚŚĞ�ŶƵŵďĞƌ�ŽĨ�ϭΖƐ�ŝŶ�ƚŚĞŝƌ�ďŝŶĂƌǇ�ƌĞƉƌĞƐĞŶƚĂƚŝŽŶ�
and return them as an array.

On the left of Figure 1, you can see the solution with C ++ from the LeetCode site and the answer for
the num value of 15. On the right, you can see the version written in assembly language on Fidex.
The input and output ports are visible on the right side of the Fidex interface. For input 15, the
output "00,01,01,02,01,02,02,03,01,02,02,03,02,03,03,04" is seen, respectively. Also, the registers
and scratchpad RAM used are shown on the left side of the interface. As a result, it seems that the
outputs match and are correct.

Figure 1: LeetCode and Fidex screen for problem.

In Figure 2, only assembly code is given:

x First of all, "num" variable was named s0, it was requested from port 0x01 with RDPRT.
A "< num + 1" loop will be created so that the num value also returns the number 1 it
contains.

x The value i is kept at s1 and reset to zero, the sF value is given to 0a as a stack pointer.

x Algorithm works differently for odd and even numbers. The number 1 contained in the
binary state of even numbers is equal to what half contains, because multiplying by 2
means adding 0 to the end of the binary number. However, it is different for odd numbers,
after finding the half, it is necessary to add by 1. For example, half of the number 7 is 3
species, the number 3 contains 2 numbers 1. Adding 2 with 1, we find the number 1
contained in 7, which is equal to 3.

x Taking the value of the half of the number means to take the SP to the address where half
of the number is recorded, therefore first the number i (s1) is transferred to the different
register (s2) to avoid confusion, then s2 is shifted to the right and half of the SP goes back
half, reads the value here (RDMEM) and loads it to register s5.

x SP is brought back to its old address and saves the value it read halfway to this address. It
scrolls to the empty address to go to the new step.

x i (s1) is compared with num (s0). If it is small, Carry (C) is set, it moves to one loop
according to this value. If equal, the Zero (Z) flag is set and proceeds to exit.

x There are 2 different operations in a single loop, the first one is the addition in row 55.
Since going backwards, 1 more SP is shifted. For example, 5 will be read from 2 but 5-2 =
3 SP is shifted. The other is the addition in row 58, where 1 is added to the value of the
half for odd numbers as mentioned above.

x In the out1 branch, SP is taken to 0 so that the values in the ram can be read from
beginning to end.

x In the out branch, all values are read one by one from the ram (RDMEM) and given to the
exit port (WRPRT) until the value of i (s1) is reset.

Figure 2: Assembly code.

