Introduction to Embedded Systems EHB 326E HW#2

ELIF OZTURK 040170208

SOFTWARE PART:

The problem I have to solve for my software part is: Given a non negative integer number num. For
every numbers i in the range 0 < i < num calculate the number of 1's in their binary representation
and return them as an array.

On the left of Figure 1, you can see the solution with C ++ from the LeetCode site and the answer for
the num value of 15. On the right, you can see the version written in assembly language on Fidex.

The input and output ports are visible on the right side of the Fidex interface. For input 15, the
output "00,01,01,02,01,02,02,03,01,02,02,03,02,03,03,04" is seen, respectively. Also, the registers
and scratchpad RAM used are shown on the left side of the interface. As a result, it seems that the
outputs match and are correct.

| @lel=|
&]
1 Uygulamalar [ifl ITO Ogrenci isleri D...

oD

‘ & LeetCode ExpISE— Problems Mock Contest

& Descr. ® Discu

338. Counting Bits

Medium d 3392 & 186 Q Add to List
Given a non negative integer number num.
For every numbers i in the range 0 < i <
num calculate the number of 1's in their
binary representation and return them as

an array.

Example 1:

Input: 2
Output: [0,1,1]
Example 2:

Input: 5
Output: [0,1,1,2,1,2]

Follow up:

* ltis very easy to come up with a
solution with run time
O(n*sizeof(integer)). But can you
do it in linear time O(n) /possibly in
asingle pass?

* Space complexity should be O(n).

* Canyou do it like a boss? Do it
without using any builtin function
like _builtin_popcount in c++ or in
any other language,

Submissions 463.4K

x @aole|es|2[&0|s|SM|

& leetcode.com/problems/counting-bits/

o

o»@

(@ +
~@®O0 ~ ©

@ ILKCRNSUBMITLL @ ILK CRN SUBMITSIZ

class Solution {
public:
vector<int> countBits(int num) {

Your previous code was restored from your local storage. Reset to defa

Accepted

Your input

Output

vector<int> v(num + 1);

vle] =
for(int 54 <num+ 15 i) {

V[i] = v[i>> 1] +i ¥ 2;
return v;

Run Code Result Debuaaer
15
10,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4]
[0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4]

Expected

(B4 FIDEx - toplama.fidex (Title: toplama, Project version: 0.1) - o X
Configuration Fle Edit Navigation Assembler Simulator Tooks Help
H DAE P XD D - @’” Gﬁ" G‘;‘ é" RsT ¥ INT RUN] »‘1 ’]' "] DEC HEX ocT
per
» |y SourceNavigator | Processor core . e e © Ewist hep Processorports
PC: 025 PAGED HWBuild: 00 0x000(37 RDPRT sb, 6X61 ;num input from port W Fifo v | | Add | |Removeall
0x062(39 w8
: 0x002(39 LOAD sl, @ - =
Carry 0 zero 1 1ot M 0x00340 LOAD SF. 6x00 addr ut v 04 wr + O
0x004(41 evenloop: LOAD s2, sl 0 00
Bank: [A v 00054 SRO s2 B or
0 10 s0 0x006(43 suB sF, s2 302
s1 00 si 0x007|44 RDMEM s6, (sF) 401
s2 08 s2 0x008(45 LOAD s5, sb 2 g;
o 6x009|4 ADD sF, s2 703
s5 04 s5 0x00a(47 WRMEM s5, (sF) ;save to next locatio gg;
e 0x00b|48 ADD sF, 1 10 02
% o 0x06¢|49 D sl 1 10
9 0 x00d|50 coMP s1, s zo
oo 0x00e|51 JUMP C, oddloop 1 03
sC 00 0x00f|52 Jump NC, outl L b
:E gg 0x010(53 oddloop: LOAD s2, sl
i 0x011|54 SRE s2 ;yarisini bulup onun
0x012|55 ADD s2, 1
0x00 00 01 01 02 01 02 02 03 gxgﬁ gg ::BE sk 5‘2: Addr: G 001
0x08 01 02 02 03 02 03 03 04 X MEM 6, (s -
0x10 00 00 00 00 00 00 00 00 (sF)
0x18 00 00 00 00 00 00 00 00 e . s6, 1
0x20 00 00 00 00 00 00 00 00 0x016(59 LOAD s5, sb
0x28 00 00 00 00 00 00 00 00 0x017|60 ADD sF, s2
0x30 00 00 00 00 00 00 00 0O
g A A 6x018|61 WRMEM S5, (sF) ave to ne ati
0x019(62 ADD sF, 1
0x01a(63 ADD sl, 1
0x01b|64 comp sl, sé
0x01c|65 JUMP C, evenloop
0x01d|66 Jump NC, outl
0x01e(67 outl: LOAD sF, 0
0x01f(68 out: RDMEM s6, (sF)
0x020(69 WRPRT s6, 01
0x021(70 ADD sF, 1
0x022(71 SuB sl, 1
0x023(72 comp sl, 0
0x024(73 Jump NZ, out
0x025[74 end Jump end ©

<

Messages 10 device map viewer

External program 1 (locked by license)

Processor callstack

Level Program counter Carry flag

Zero flag

Called label

> Ry

Fontsize: 1ipt Mode: Insert | Valueformat: HEX Clock counl 101188 docks Time cour 101188e+0i ns | Clear

Figure 1: LeetCode and Fidex screen for problem.

In Figure 2, only assembly code is given:

Release: 2016-1.1 License: Free,limited Expire date: —

e First of all, "num" variable was named s0, it was requested from port 0x01 with RDPRT.

A "<num + 1" loop will be created so that the num value also returns the number 1 it

contains.
o The value i is kept at s1 and reset to zero, the sF value is given to Oa as a stack pointer.

Algorithm works differently for odd and even numbers. The number 1 contained in the
binary state of even numbers is equal to what half contains, because multiplying by 2
means adding 0 to the end of the binary number. However, it is different for odd numbers,
after finding the half, it is necessary to add by 1. For example, half of the number 7 is 3
species, the number 3 contains 2 numbers 1. Adding 2 with 1, we find the number 1
contained in 7, which is equal to 3.

Taking the value of the half of the number means to take the SP to the address where half
of the number is recorded, therefore first the number i (s1) is transferred to the different
register (s2) to avoid confusion, then s2 is shifted to the right and half of the SP goes back
half, reads the value here (RDMEM) and loads it to register s5.

SP is brought back to its old address and saves the value it read halfway to this address. It
scrolls to the empty address to go to the new step.

1 (s1) is compared with num (s0). If it is small, Carry (C) is set, it moves to one loop
according to this value. If equal, the Zero (Z) flag is set and proceeds to exit.

There are 2 different operations in a single loop, the first one is the addition in row 55.
Since going backwards, 1 more SP is shifted. For example, 5 will be read from 2 but 5-2 =
3 SP is shifted. The other is the addition in row 58, where 1 is added to the value of the
half for odd numbers as mentioned above.

In the outl branch, SP is taken to 0 so that the values in the ram can be read from
beginning to end.

In the out branch, all values are read one by one from the ram (RDMEM) and given to the
exit port (WRPRT) until the value ofi (s1) is reset.

36

37 RDPRT s6, 0X01 ;num input from port ©x01

38 ADD s0, 1 ;nun 1 l1ik loop yapiyor

39 LOAD sl, ©

40 LOAD sF, 0x00

41 evenloop: LOAD s2, sl

42 SRO s2

43 SuB sF, s2

44 RDMEM s6, (sF)

45 LOAD s5, s6

46 ADD sF, s2 1
47 WRMEM s5, (sF)

48 ADD sF, 1

49 ADD sl, 1

50 CoMP sl, sO

51 JumMP C, oddloop

52 JUMP Z, outl

53 oddloop: LOAD s2, sl

54 SRO s2

55 ADD s2, 1 i gide
56 SsuB sF, s2

57 RDMEM s6, (sF)

58 ADD s6, 1 +1=2 gibi
59 LOAD s5, sb6

60 ADD sF, s2 ;tekrar kaydedilecegi yere gotarul

61 WRMEM s5, (sF) ;save to next location in stach

62 ADD sF, 1

63 ADD sl, 1

64 CoMP sl, soO

65 JumMpP C, evenloop

66 JUMP Z, outl

67 outl: LOAD sF, © t

68 out: RDMEM s6, (sF)

69 WRPRT s6, 01

70 ADD sF, 1

71 SuB sl, 1 iril
72 COMP sl, @

73 JUMP NZ, out

74 end: JumMP end

Figure 2: Assembly code.

