Basic of Electrical Circuits EHB 211E

Prof. Dr. Müştak E. Yalçın

Istanbul Technical University
Faculty of Electrical and Electronic Engineering

mustak.yalcin@itu.edu.tr

Lecture 10

Contents I

- Loop Current Method (Mesh Current Method)
- Generalized Mesh Current Method

Loop Current Method (Mesh Current Method)

The number of equations to be solved are equal to the number of independent loops. There exists a tree such that the meshes are Fundamental loops*. In this method KVL equations for the meshes (Mesh equations) will be used and the mesh currents will be the unknown variables!

- Oraw the circuit graph and assign the loop currents.
- ② Write mesh equations are obtained from KVL which is applied to each of the loop: Bv = 0 It can also be written such as

$$Bv = B_1v_R + B_2v_k = 0$$

where v_k and v_R voltages of independent voltage sources and resistors, respectively.

- 3 Write the ohm law for the resistors: $v_R = \mathbf{R}i_R$
- Substitute the equations in Step 3 into the equations in Step 2.

$$[B_1 \ B_2]v = B_1\mathbf{R}i_R + B_2v_k = 0$$

Resistors's currents are written in terms of the mesh currents:

$$i_R = B_1^T i_c$$

Substitute the equation in step 5 into step 4:

1. The loop currents are assigned.

2. Mesh equations:

$$V_2 + V_3 - V_1 = 0$$

 $V_4 + V_5 - V_3 = 0$

3. Substitute the $v_R = Ri_R$ equations into the equations in Step 2:

$$R_2 i_2 + R_3 i_3 - V_1 = 0$$

$$R_4 i_4 + R_5 i_5 - R_3 i_3 = 0$$

4. Resistors's currents are written in terms of the mesh currents:

$$i_2 = i_{c1}$$
 $i_3 = i_{c1} - i_{c2}$
 $i_4 = i_{c2}$
 $i_5 = i_{c2}$

5. Substitute the equation in step 4 into step 3:

$$R_2 i_{c1} + R_3 (i_{c1} - i_{c2}) - V_1 = 0$$

 $R_4 i_{c2} + R_5 i_{c2} - R_3 (i_{c1} - i_{c2}) = 0$

6. In matrix form:

$$\begin{bmatrix} R_2 + R_3 & -R_3 \\ -R_3 & R_3 + R_4 + R_5 \end{bmatrix} \begin{bmatrix} i_{c1} \\ i_{c2} \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} V_1 = 0$$

- Oraw the circuit graph and assign the loop currents.
- Write mesh equations.

$$Bv = B_1v_R + B_2v_2 + B_3v_3 = 0$$

where v_1 resistors, v_2 voltage sources and v_3 other elements's voltages.

- **3** Write the ohm law for the resistors: $v_1 = \mathbf{R}i_1$
- Substitute the equations in Step 3 into the equations in Step 2.

$$B_1 \mathbf{R} i_1 + B_2 v_1 + B_3 v_3 = 0$$

Resistors's currents are written in terms of the mesh currents:

$$i_1 = B_1^T i_c$$

6 Substitute the equation in step 5 into step 4:

Srep 6: Write v - i relations of the other elements

$$M_3i_3+N_3v_3=Ti_3$$

and i_3 is written in the term of the mesh currents

$$M_3 B_3^T i_c + N_3 v_3 = Ti_3$$

together with

$$B_1 \mathbf{R} B_1^T i_c + B_2 v_2 + B_3 v_3 = 0$$

Equations can be presented in matrix form:

$$\begin{bmatrix} B_1 \mathbf{R} B_1^T & B_3 \\ M_3 B_3^T & N_3 \end{bmatrix} \begin{bmatrix} i_c \\ v_3 \end{bmatrix} = - \begin{bmatrix} B_2 \\ 0 \end{bmatrix} v_2 - \begin{bmatrix} 0 \\ Ti_3 \end{bmatrix}$$

The unknown variables : mesh currents and voltages of the current sources!

1. The loop currents are assigned.

2. Mesh equations:

$$V_2 + V_3 - V_1 + V_k = 0$$

 $V_4 + V_5 - V_6 - V_3 = 0$

3. Substitute the $v_R = Ri_R$ equations into the equations in Step 2:

$$R_2 i_2 + R_3 i_3 - V_1 + V_k = 0$$

$$R_4 i_4 + R_5 i_5 - V_6 - R_3 i_3 = 0$$

4. Resistors's currents are written in terms of the mesh currents:

$$i_2 = i_{c1}$$
 $i_3 = i_{c1} - i_{c2}$
 $i_4 = i_{c2}$
 $i_5 = i_{c2}$

5. Substitute the equation in step 5 into step 4:

$$R_2 i_{c1} + R_3 (i_{c1} - i_{c2}) - V_1 + V_k = 0$$

$$R_4 i_{c2} + R_5 i_{c2} - V_6 - R_3 (i_{c1} - i_{c2}) = 0$$

Additional equation:

$$i_k = i_{c1}$$

6. Unknown mesh current:

$$(R_4 + R_5 + R_3)i_{c2} - R_3i_k - V_6 = 0$$