e Basic Modeling Elements
— Resistance
— Capacitance
— Inertance
— Pressure and Flow Sources

* |Interconnection Relationships
— Compatibility Law
— Continuity Law



Fluid System Building Blocks

In fluid systems there are three basic building blo cks:
Resistance , and inertance

Fluid systems can be considered to fall into two categories:
Hydraulic : the fluid is liquid (assume to be incompressible)

. It IS a gas and can be compressed and shows a density change
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Figure 10.13 Hydraulic examples: (a) resistance, (b) capacitance, (c) inertance



Hydraulic Fluid system Building Blocks

* Fluid Resistance

Describes any physical element
with the characteristic that the
pressure drop, Ap , across the
element is proportional to the
volume flow rate, q.

Pr +Ap - P2 + Ap - 0
7

P1

R R q

—> o0 o

q

Ap=p.=p, =P, =Rlq
1 1

=—Ap=—
q R P Rp12

— Qrifices, valves, nozzles and
friction in pipes can be
modeled as fluid resistors.

q= k\/ P2




Hydraulic Fluid system Building Blocks

e Fluid Capacitance

Describes any physical element
with the characteristic that the
rate of change in pressure, p, in
the element is proportional to the
difference between the input flow
rate, q,, . and the output flow rate,

Qour - Dy b po -
— Pc a
AN four qIN'_q(;UT C
C
d _ _
CE Pc ~ P = CLpe =an ~ Your
bCr__J

— Hydraulic cylinder chambers,
tanks, and accumulators are
examples of fluid capacitors.

Ex: Consider an open tank with a constant
cross-sectional area, A:

Pr

— Pc —
Oin GouT

p.= pgh+p = p,=pgh

Gy —Chyr = %(Volum): (Ah) = A

P = poh .
— C= Oin ._qOUT — Ah. — A
Per pgh  pg




Hydraulic Fluid Capacitance Examples

Pr
M
— Pc
Oin
pC:/Ogh+pr+Mg/A:> pCr:pgh-l_M%\
On ~Cour = %(Volum) :%(Ah) = Ah

On ~ Qout — Ah. — A
Per pgh  pg




Hydraulic Fluid system Building Blocks

* Fluid I nertance (Inductance)

Describes any physical element with the

characteristic that the pressure difp,
across the element is proportional to the

rate of change of the flow rate, F=Ap, P. * 40~ p F=Ap,
21+Ap_ 2o TP L , A
q | e L
d . - _[F - A —
Ap:plz:(pl‘pz):|aq:|m ZF_Fl , = AP~ P,) = Ap,,
L ong pipes ar e examples of fluid m= pLA "y 40 q
Inertances. AD.. = pAL —¥ = AL—(—)
% Iimf—‘dt P dt\ A
_pLdg”
12 Adt
I
= I ='0—L
A

| is the hydraulic inertance



Pneumatic Fluid system Building Blocks

* Pneumatic hasthe samethree basic building
blocks with hydraulic systems.

o Gasesdiffer from ligquidsin being
compressiblei.e. change in pressure causes
change in volume and hence density:

e Thebasic blocksare:
e Pneumatic Resistance,
 Pneumatic capacitance, &



Pneumatic Fluid system Building Blocks

e Pneumatic Resistance

e ltis defined in terms of
the mass rate of flow

m: mass of the gas; P1-P2: pressure difference; R: resistance



Pneumatic Fluid system Building Blocks

* Pneumatic capacitance C: Is due to compressibility
of the gas in some volume

Rate of change of mass inside the container Is:

(d’m]/df (i dmg/df) - d(p¥) — ﬂ EE Vd_p
dt dt di

Since (d¥V/dr) = (dV/dp)(dp/dr) and, for an ideal gas, pV = mRT with
consequently p = (m/V)RT = pRT and dp/dt = (1/RT)(dp/dz), then
war | v

rate of change of mass in container = p———— +

dp dt RT dt

where R is the gas constant and 7" the temperature, assumed to be constant,
on the Kelvin scale. Thus

dm; dmy ( dV V ) dp
=p— +
dp RT/ di

dz ds



Pneumatic Fluid system Building Blocks
dm;  dm, ( dv 4 ) dp
] PN L o O p— 5 N
di dr dp RT /) dr
The pneumatic capacitance due to the change in volume of the container Cy
1s defined as

oV
1 TR ds
and the pneumatic capacitance due to the compressibility of the gas C) as
V
©2 = R7
Hence
dml d?ﬂg jD
e —— = (o G
& @ Gat@y

or




Pneumatic Fluid system Building Blocks

 Pneumatic inertance: is due to the pressure drop
necessary to accelerate a block of gas

q
d(mv) my = pLAE = plLg
. A4 =
(p1 — 22) A -
d(pq)
(p1 — p2) e
But m = pg and so
., _Ldm
P — P2 A A
d#i
P ==

dz
with the pneumatic inertance / being / = L/A.



Energy stored or
Building block Describing equation power dissipated
Hydraulic
1 1
Inertance g = 7/(101 — py)dt E = E[qz
dg
= J—
? ds
d — P 1
Capacitance g = C (Pt — 22) E=—-C(p — p)
dz 2
: h — P 1 )
Resist = P=—(pm -
esistance q 2 R (p1 — p2)
Puneumatic
.1 1,
Inertance m = 7 (py — pp)de E = E]m
d(p; — 1
Capacitance m = C (= 1) E=—C(p1 — p2)°
de¢ 2
. Y S 1 2
Resistanc = P =—(p -
esistance m R R (P1 — 72)

Table 10.3 Hydraulic and pneumatic building blocks



Fluid system Building Blocks

e Pressure Source (Pump)

— An ideal pressure source of a
hydraulic system is capable of
maintaining the desired pressure,
regardless of the flow required for
what it is driving.

* Flow Source (Pump)

— An ideal flow source is capable of
delivering the desired flow rate,
regardless of the pressure
required to drive the load.

Voltage Source

P1 “ P T P2
o pS o —q>
B =P~ P1=Ps
Current Source
Py P2
o qS °o —



Building up a model for a fluid system

Examplel
For the shown simple hydraulic system derive an
expression for the height of the fluid in the conta Iner.
Consider the system consist of a capacitor, the lig uid in
the container, with a resistor and a valve

e

Cross-sectional
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Figure 10.14 A fluid system



Solution:

Inertance can be neglected since flow rates change only very slowly. For
the capacitor we can write

The rate at which liquid leaves the container ¢; equals the rate at which it
leaves the valve. Thus for the resistor

P — = Ry

The pressure difference (p; — p,) is the pressure due to the height of liquid
in the container and is thus Zpg. Thus ¢, = kpg/ R and so substituting for ¢;
in the first equation gives

h d(%
_ kg _ . dUipg)

41

R ds
and, since C = A/pg,
di  pgh
= i e EE
%4 TR

This equation describes how the height of liquid in the container depends o=
the rate of input of liquid into the container.



Building up a model for a fluid system

Example2:

For the shown hydraulic system derive expression
for the fluid level in the two containers

Cross-sectional Cross-sectional

area A area A
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Figure 10.16 A fluid system




Solution2:

Container 1 is a capacitor and thus

dp
— — C i
41 — 1@ s
where p = hpg and C, = A,/pg and so
|
fh — 42 1 A

The rate at which liquid leaves the container g, equals the rate at which it
leaves the valve R,. Thus for the resistor,

p— P2 = Rig
The pressures are #,pg and k,pg. Thus
(h — h)pg = Rig



Using the value of ¢, given by this equation and substituting it into the
earlier equation gives

hy — h d
éi'l_(l E)szﬁ__l

Rl : dt
This equation describes how the height of the liquid in container 1 depends
on the input rate of flow.
For container 2 a similar set of equations can be derived. Thus for the

capacitor Cj,

qz - qE i szl_g . Cross-sectional Cross-se(i;i()nal
- area A area
ds A AR H
where p = hypg and C, = A,/pg and so| - C i 1
dkz hJ‘ \ § h;IV Contaiqnjerl
g~ g3 = Ay (S S
dt C, Ry ,




The rate at which liquid leaves the container g3 equals the rate at which it
leaves the valve R,. Thus for the resistor,

P2 — 0 = Ryqs

'This assumes that the liquid exits into the atmosphere. Thus, using the value
of g; given by this equation and substituting it into the earlier equation gives

hpg d/,

— T2 4 <
& Rg : dt

Substituting for ¢, in this equation using the value given by the equation

derived for the first container gives

U — m)pg  mpg _ y dni,

2
R 1 Rz dz
This equation describes how the height of liquid in container 2 changes.
q](jros:res:c/zional Cros:;::(i;ional

'3 ) 93

Container 1
hy kZT Container 2




Model for a fluid system Example3:

A bellows is an example of a simple pneumatic system (Figure 10.15).
Resistance is provided by a constriction which restricts the rate of flow of gas
into the bellows and capacitance is provided by the bellows 1itself. Inertance
can be neglected since the flow rate changes only slowly.

The mass flow rate into the bellows 1s given by

p1— by = R

capacitance of the bellows is given by

Area
A

. ] dp;
my — my = (C) + CZ)E

B
y 4

Constriction
resistance

R

e

P2

S\ U

Figure 10.15 A pneumatic system Displacement x




Model for a fluid system Example3:

The mass flow rate entering the bellows is given by the equation for the
resistance and the mass leaving the bellows is zero. Thus

Hence

B dp,
p1 = R(Cy + CZ)d—r + 2

This equation describes how the pressure in the bellows p; varies with time
when there is an input of a pressure p;.



Variables

* g: volumetric flow ratgm3/sec] ( current )
* V: volume[m?] ( charge )
e p: pressur¢dN/m?| ( voltage )

The analogy between the hydraulic system and thé&rielcsystem will be used
often. Just as in electrical systems, the flow rateréat) is defined to be the
time rate of change (derivative) of volume (charge)

d :
= —V =V
q dt
The pressurep, used in this chapter is tlabsolute pressure. You need to be
careful in determining whether the pressure is theolalbe pressure agyauge

pressure, p°. Gauge pressure is the difference between the abgwiessure and
the atmospheric pressure, i.e.

P =P~ patmospheric



Interconnection Laws

e Compatibility Law e Continuity Law
— The sum of the pressure drops — The algebraic sum of the flow rates
around a loop must be zero. at any junction in the loop is zero.
— Similar to the Kirchhoff's voltage — This Is the consequence of the
law. conservation of mass.
S ap =3 p =0 — Similar to the Kirchhoff's current
Closed J Closed ! IaW- _
Loop Loop Z q; = 0
Any
Node
P p
1_’ = 7 or qu :ZqOUT
ql\ / q2

pr l
+ =
prl + p12 + p2r — O o ql q2 qo



Thermal System building Blocks

e Two basic building block€kesistanc& capacitance
 The Thermal Resistancs:defined by the relation

TZ S Tl q: rate of heat flow
g — R T2-T1: Temperature difference
R: Thermal resistance .
The value of R depends on the mode of heat transfer @
. L
Conduction Mode: b A hf’” T
Ak

K: thermal conductivity of the material through which conduction is taken place

L: length of the material

1

Convection Mode: in liquid and gasses R = E

A: is the surface area across which there is temperature difference;
h: coefficient of heat transfer



Thermal System building Blocks

 Thermal capacitance: is a measure of the store of
Internal energy In a system. It is defined by the
following equation

dT
41 42 ds

d,- g , : rate of change of internal energy

C=cm is the thermal capacitance, m is the mass and c is the specific heat capacity

gl
g2



Building block Describing equation Energy stored

dT
Capacitance g1 — ¢ = C R E=CT
Iy — 15

R

Resistance qg =

Table 10.4 Thermal building blocks



Building up a Model for a Thermal system

Consider a thermometer at temperature 7" which has just been inserted m
a liquid at temperature 77, (Figure 10.17).

Figure 10.17 A thermal system




If the thermal resistance to heat flow from the liquid to the thermomes
is R, then

where g is the net rate of heat flow from liquid to thermometer. The therm
capacitance C of the thermometer is given by the equation

dT
_ = =
q1 92 dr
Since there is only a net flow of heat from the liquid to the thermomet

g1 = gand g, = 0. Thus

d7T
= C—
g dz
Substituting this value of g in the earlier equation gives
dT 7, — T
C——=—=
dz R
Rearranging this equation gives
d7T
RC— + T =T,
dz -

This equation, a first-order differential equation, describes how the temperat



Thermal System: Example

consider Figure 10.18 which shows a thermal system
consisting of an electric fire in a room. The fire emits heat at the rate g,

and the room loses heat at the rate ¢,. Assuming that the air in the room
is at a uniform temperature 7 and that there is no heat storage in the walls

of the room, derive an equation describing how the room temperature
will change with time.

q1

Figure 10.18 Thermal system




Thermal System: Example cont...

If the air in the room has a thermal capacity C then

dT
e —_ C_
q\ 1y s

If the temperature inside the room is 7 and that outside the room 7|, then

i Y &
q2 R

where R is the resistivity of the walls. Substituting for ¢, gives

T — T, dT
= — C‘_ 0 qu
2 R dt "
Hence T ) C
aT '
RC—+ T =Rgy + Ty MY




Mechanical Mechanical
(translational) (rotational) Electrical Fluid (hydraulic) Thermal
Element Mass Moment of Capacitor Capacitor Capacitor
inertia
: d%x d’o
Equation F=m— T=1—
dr* dr*
dv dw _ dv d(pr — p2) d7
F=m— T=1— =C— =C———F—— —qp = C—
" ds ds z dr 1 ds non ds
1, 1 1., 1 2
Energy E = Emv E=—-lw E = ECV E = EC(pl — ) E=CT
Element Spring Spring Inductor Inertance None
) di dg
Equat F=k T = ko = L— = [—
quation ¥ v & P &
E E LI E L7 E=tr2 p=lpp
ner = —— = - = _ 2
&y 2 k 2k 2 2
Element Dashpot Rotational Resistor Resistance Resistance
damper
: du de v PP I -1
Equat F=¢—= T=¢—= = — — _
quation 2P ‘% i=p q R q R
Vv 1
Power P = P = o’ P = r P = E(P] — )

Table 10.5 System elements




