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Common Types of Trusses

 A truss is one of the major types of engineering structures which 
provides a practical and economical solution for many engineering 
constructions, especially in the design of bridges and buildings that 
demand large spans.

 A truss is a structure composed of slender members joined together at 
their end points

 The joint connections are usually formed by bolting or welding the ends 
of the members to a common plate called gusset

 Planar trusses lie in a single plane & is often used to support roof or 
bridges



Common Types of Trusses

 Roof Trusses
 They are often used as part of an industrial building frame
 Roof load is transmitted to the truss at the joints by means of a 

series of purlins
 To keep the frame rigid & thereby capable of resisting 

horizontal wind forces, knee braces are sometimes used at the 
supporting column



Common Types of Trusses

 Roof Trusses



Common Types of Trusses

 Bridge Trusses
 The main structural elements of a typical

bridge truss are shown in figure. Here it
is seen that a load on the deck is first
transmitted to stringers, then to floor
beams, and finally to the joints of the
two supporting side trusses.

 The top and bottom cords of these side
trusses are connected by top and bottom
lateral bracing, which serves to resist the
lateral forces caused by wind and the
sidesway caused by moving vehicles on
the bridge.

 Additional stability is provided by the
portal and sway bracing. As in the case
of many long-span trusses, a roller is
provided at one end of a bridge truss to
allow for thermal expansion.



Common Types of Trusses

 Bridge Trusses
 In particular, the Pratt, Howe, and

Warren trusses are normally used for
spans up to 61 m in length. The most
common form is the Warren truss with
verticals.

 For larger spans, a truss with a polygonal
upper cord, such as the Parker truss, is
used for some savings in material.

 The Warren truss with verticals can also
be fabricated in this manner for spans up
to 91 m.



Common Types of Trusses

 Bridge Trusses
 The greatest economy of material is

obtained if the diagonals have a slope
between 45° and 60° with the
horizontal. If this rule is maintained,
then for spans greater than 91 m, the
depth of the truss must increase and
consequently the panels will get longer.

 This results in a heavy deck system and,
to keep the weight of the deck within
tolerable limits, subdivided trusses have
been developed. Typical examples
include the Baltimore and subdivided
Warren trusses.

 The K-truss shown can also be used in
place of a subdivided truss, since it
accomplishes the same purpose.



Common Types of Trusses

 Assumptions for Design
 The members are joined together by smooth pins
 All loadings are applied at the joints

 Due to the 2 assumptions, each truss member acts as an 
axial force member



Classification of Coplanar Trusses

 Simple , Compound or Complex Truss
 Simple Truss

 To prevent collapse, the framework of a truss must be rigid
 The simplest framework that is rigid or stable is a triangle



Classification of Coplanar Trusses

 Simple Truss
 The basic “stable” triangle element is ABC
 The remainder of the joints D, E & F are established in 

alphabetical sequence
 Simple trusses do not have to consist entirely of triangles



Classification of Coplanar Trusses

 Compound Truss
 It is formed by connecting 2 or more simple truss together
 Often, this type of truss is used to support loads acting over a 

larger span as it is cheaper to construct a lighter compound 
truss than a heavier simple truss



Classification of Coplanar Trusses

 Compound Truss
 Type 1
 The trusses may be connected by a common joint & bar

 Type 2
 The trusses may be joined by 3 bars

 Type 3
 The trusses may be joined where bars of a large simple truss, called 

the main truss, have been substituted by simple truss, called 
secondary trusses



Classification of Coplanar Trusses

 Compound Truss



Classification of Coplanar Trusses

 Complex Truss
 A complex truss is one that cannot be classified as being either 

simple or compound



Classification of Coplanar Trusses

 Determinacy
 The total number of unknowns includes the forces in b number

of bars of the truss and the total number of external support
reactions r.

 Since the truss members are all straight axial force members
lying in the same plane, the force system acting at each joint is
coplanar and concurrent.

 Consequently, rotational or moment equilibrium is automatically 
satisfied at the joint (or pin).



Classification of Coplanar Trusses

 Determinacy
 Therefore only

 By comparing the total unknowns with the total number of 
available equilibrium equations, we have:
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Classification of Coplanar Trusses

 Stability
 If b + r < 2j => collapse
 A truss can be unstable if it is statically determinate or 

statically indeterminate 
 Stability will have to be determined either through inspection 

or by force analysis



Classification of Coplanar Trusses

 Stability
 External Stability
 A structure is externally unstable if all of its reactions are concurrent 

or parallel
 The trusses are externally unstable since the support reactions have 

lines of action that are either concurrent or parallel



Classification of Coplanar Trusses

 Internal Stability
 The internal stability can be checked by careful inspection of the 

arrangement of its members
 If it can be determined that each joint is held fixed so that it cannot 

move in a “rigid body” sense with respect to the other joints, then the 
truss will be stable

 A simple truss will always be internally stable
 If a truss is constructed so that it does not hold its joints in a fixed 

position, it will be unstable or have a “critical form”



Classification of Coplanar Trusses

 Internal Stability
 To determine the internal stability of a compound truss, it is 

necessary to identify the way in which the simple truss are connected 
together

 The truss shown is unstable since the inner simple truss ABC is 
connected to DEF using 3 bars which are concurrent at point O



Classification of Coplanar Trusses

 Internal Stability
 Thus an external load can be applied at A, B or C & cause the truss 

to rotate slightly
 For complex truss, it may not be possible to tell by inspection if it is 

stable
 The instability of any form of truss may also be noticed by using a 

computer to solve the 2j simultaneous equations for the joints of the 
truss

 If inconsistent results are obtained, the truss is unstable or have a 
critical form



Example 3.1

Classify each of the trusses as stable, unstable, statically determinate or 
statically indeterminate. The trusses are subjected to arbitrary external 
loadings that are assumed to be known & can act anywhere on the trusses.



Solution

For (a),
 Externally stable
 Reactions are not concurrent or parallel
 b = 19, r = 3, j = 11 
 b + r =2j = 22
 Truss is statically determinate
 By inspection, the truss is internally stable



Solution

For (b),
 Externally stable
 b = 15, r = 4, j = 9
 b + r = 19 >2j 
 Truss is statically indeterminate
 By inspection, the truss is internally stable



Solution

For (c),
 Externally stable
 b = 9, r = 3, j = 6
 b + r = 12 = 2j 
 Truss is statically determinate
 By inspection, the truss is internally stable



Solution

For (d),
 Externally stable
 b = 12, r = 3, j = 8
 b + r = 15 < 2j 
 The truss is internally unstable



Determination of the member forces

 The Method of Joints
 The Method of Sections (Ritter Method)
 The Graphical Method (Cremona Method)



The Method of Joints

 Satisfying the equilibrium equations for the forces exerted 
on the pin at each joint of the truss

 Applications of equations yields 2 algebraic equations 
that can be solved for the 2 unknowns



The Method of Joints

 Always assume the unknown member forces acting on the 
joint’s free body diagram to be in tension

 Numerical solution of the equilibrium eqns will yield 
positive scalars for members in tension & negative for 
those in compression

 The correct sense of direction of an unknown member force 
can in many cases be determined by inspection



The Method of Joints

 A positive answer indicates that the sense is correct, 
whereas a negative answer indicates that the sense shown 
on the free-body diagram must be reversed



Example 3.2

Determine the force in each member of the roof truss as shown. State 
whether the members are in tension or compression. The reactions at the 
supports are given as shown.



Solution

Only the forces in half the members have to be determined as the truss is 
symmetric with respect to both loading & geometry,
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Solution
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Solution
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Zero-Force Members

 Truss analysis using method of joints is greatly simplified if 
one is able to first determine those members that support 
no loading

 These zero-force members may be necessary for the 
stability of the truss during construction & to provide 
support if the applied loading is changed

 The zero-force members of a truss can generally be 
determined by inspection of the joints & they occur in 2 
cases.



Zero-Force Members

 Case 1
 The 2 members at joint C are connected together at a right 

angle & there is no external load on the joint
 The free-body diagram of joint C indicates that the force in 

each member must be zero in order to maintain equilibrium



Zero-Force Members

 Case 2
 Zero-force members also occur at joints having a geometry as 

joint D



Zero-Force Members

 Case 2
 No external load acts on the joint, so a force summation in the 

y-direction which is perpendicular to the 2 collinear members 
requires that FDF = 0

 Using this result, FC is also a zero-force member, as indicated 
by the force analysis of joint F



Example 3.4

Using the method of joints, indicate all the members of the truss that have 
zero force.



Solution

We have,
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Solution
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The Method of Sections
(Ritter Method)

 If the forces in only a few members of a truss are to be 
found, the method of sections generally provide the most 
direct means of obtaining these forces

 The method is created the German scientist August Ritter
(1826 - 1908).

 This method consists of passing an imaginary section through 
the truss, thus cutting it into 2 parts

 Provided the entire truss is in equilibrium, each of the 2 parts 
must also be in equilibrium



The Method of Sections
(Ritter Method)

 The 3 eqns of equilibrium may be applied to either one of 
these 2 parts to determine the member forces at the “cut 
section”

 A decision must be made as to how to “cut” the truss
 In general, the section should pass through not more than 3 

members in which the forces are unknown



The Method of Sections
(Ritter Method)

 If the force in GC is to be determined, section a-a will be 
appropriate

 Also, the member forces acting on one part of the truss are 
equal but opposite

 The 3 unknown member forces, FBC, FGC & FGF can be 
obtained by applying the 3 equilibrium equations



The Method of Sections

 When applying the equilibrium equations, consider ways 
of writing the equations to yield a direct solution for each 
of the unknown, rather than to solve simultaneous equations



Example 3.5

Determine the force in members CF and GC of the roof truss. State 
whether the members are in tension or compression. The reactions at the 
supports have been calculated.



Solution

The free-body diagram of member CF can be obtained by considering 
the section a-a,
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Solution

The free-body diagram of member GC can be obtained by considering 
the section b-b,
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Example 3.6

Determine the force in member GF and GD of the truss. State whether the 
members are in tension or compression. The reactions at the supports have 
been calculated.



Solution

The distance EO can be determined by proportional triangles or realizing 
that member GF drops vertically 4.5 – 3 = 1.5m in 3m.
Hence, to drop 4.5m from G the distance from C to O must be 9m



Solution

The angles FGD and FGF make with the horizontal are 
tan-1(4.5/3) = 56.3o

tan-1(4.5/9) = 26.6o

)(83.7
0)3(7)6(6.26sin

0 ve, as moments clockwise-antiWith 
O.point   toslide is 

0
applyingby directly determinedbecan  GFin force The

CkNF
F

M
F

M

GF

o
GF

D

GF

D




 

 



Solution
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The Graphical Method
(Cremona Method)

 This method deals mainly with the graphical representation of 
equilibrium for each joint. The basic advantage that makes the method 
attractive, is its ability to unify all the force polygons, resulting from 
graphical equilibrium of each joint, into one only force polygon, known 
as Cremona’s diagram. The method was created by the Italian 
mathematician Luigi Cremona.



The Graphical Method
(Cremona Method)

 Although graphical, this method leads to a quick determination of the 
member forces and is useful specifically in the cases where the external 
loads and/or the truss members form random angles.

 Consider the case of graphical analyzing the equilibrium of a point, 
acted upon 3 forces, one of which is completely known while the other 
2 are known in direction only (for example, a lamp hanged by two 
wires). The procedure:
 Draw the vector of the completely known force, in the proper 

direction, scale, magnitude and sense.
 From one end of the vector, draw a line parallel to the direction of 

one of the 2 forces, while from the other end draw a second line 
parallel to the other direction.



 The vector and the point of section of the two lines define a triangle.
 Now, following the path of the vector by laying out the 2 unknown 

forces tip to tail, thus closing the force triangle, we find both the 
magnitudes and the senses of the other 2 forces.

 Of course the completely known force can be considered as the 
resultant of other known forces, through a force polygon. From this 
procedure we realize that the basic characteristic which appears to be
common in the method of joints and Cremona’s diagram lies in the main 
strategic. 

The Graphical Method
(Cremona Method)



 For analyzing the equilibrium of a joint, in the first method available 
were 2 equations only, whereas in the second, the two ends of the 
known-force-vector only.

 Keeping in mind this similarity for the new method, we can also start 
and continue with the equilibrium of a joint, where at least one known 
load exists, while not more than two unknown forces are present.

 Compared to the analytical method of joints, the graphical method of 
Cremona’s diagram is less precise. However, the ‘loss of precision’ is 
unimportant and theoretical. Nevertheless, the speed and the elegance 
of the method are the main characteristics that make it popular and 
attractive by many designers.

The Graphical Method
(Cremona Method)



Example 3.7

Determine graphically the force in each of the eleven members of the 
following truss by the method of Cremona’s diagram.



Solution

We first calculate the support reactions:

 X = 0 HA = 0
 MB = 0 VA = ( 4kN  4m + 4kN  2m + 2kN  6m ) / 4m = 9kN VA = 9kN

 Y = 0 VB = 2kN + 4kN + 4kN + 2kN  9kN = 3kN VB = 3kN



Solution

After drawing the the free body diagram we follow the next steps:
1) Covering the whole area of the free body diagram, we name, say 
with numbers in circles 1, 2, 3… both the triangles formed by the 
members and by the external loads so that each member or load 
separates two areas.



Solution

2) Using an appropriate scale (for example 1kN = 1cm) we next
draw the force polygon of the external loadings. Each region is 
represented by a point at the force polygon. The intersection of the
parallel lines drawn from one region (point) to the adjacent region
gives the point corresponding to the adjacent region.

3) Next, we define a clockwise sequence of forces around a joint. This 
means that if we start drawing the force triangle for equilibrium of 
joint B, from, say, the calculated reaction force of 3 kN, the next force 
considered will be that of member S11 and not of S8.



Solution



The Graphical Method
(Cremona Method)

A set square with integrated protractor 



DEFLECTIONS

THEORY OF STRUCTURES

Asst. Prof. Dr. Cenk Üstündağ



Deflection diagrams & the elastic curve

 Deflections of structures can come from loads, temperature, 
fabrication errors or settlement

 In designs, deflections must be limited in order to prevent 
cracking of attached brittle materials

 A structure must not vibrate or deflect severely for the 
comfort of occupants

 Deflections at specified points must be determined if one is 
to analyze statically indeterminate structures



Deflection diagrams & the elastic curve

 In this topic, only linear elastic material response is 
considered

 This means a structure subjected to load will return to its 
original undeformed position after the load is removed

 It is useful to sketch the shape of the structure when it is 
loaded in order to visualize the computed results & to 
partially check the results



Deflection diagrams & the elastic curve

 This deflection diagram rep the elastic
curve for the points at the centroids 
of the cross-sectional areas along each 
of the members

 If the elastic curve seems difficult to 
establish, it is suggested that the 
moment diagram be drawn first

 From there, the curve can be constructed



Deflection diagrams & the elastic curve

 Due to pin-and-roller support, the disp at A & D must be 
zero

 Within the region of –ve moment, 
the elastic curve is 
concave downward

 Within the region of +ve moment, 
the elastic curve is concave upward

 There must be an inflection point 
where the curve changes from 
concave down to concave up



Example 8.1
Draw the deflected shape of each of the beams.



Solution

In (a), the roller at A allows free rotation with no deflection while the 
fixed wall at B prevents both rotation & deflection. The deflected shape 
is shown by the bold line.

In (b), no rotation or deflection occur at A & B

In (c), the couple moment will rotate end A. This will cause deflections at 
both ends of the beam since no deflection is possible at B & C. Notice 
that segment CD remains un-deformed since no internal load acts within.



Solution

In (d), the pin at B allows rotation, so the slope of the deflection curve will 
suddenly change at this point while the beam is constrained by its support.

In (e), the compound beam deflects as shown. The slope changes abruptly 
on each side of B.

In (f), span BC will deflect concave upwards due to load. Since the beam 
is continuous, the end spans will deflect concave downwards.



Elastic Beam Theory

 To derive the DE, we look at an initially straight beam that is 
elastically deformed by loads applied perpendicular to 
beam’s x-axis & lying in x-v plane of symmetry 

 Due to loading, the beam 
deforms under shear & bending

 If beam L >> d, greatest 
deformation will be caused by bending

 When M deforms, the angle 
between the cross sections becomes d



Elastic Beam Theory

 The arc dx that rep a portion of the elastic curve intersects 
the neutral axis 

 The radius of curvature for this arc is defined as the 
distance, , which is measured from ctr of curvature O’ to 
dx

 Any arc on the element other than dx is subjected to 
normal strain 

 The strain in arc ds located at position y from the neutral 
axis is 

dsdsds /)'( 



Elastic Beam Theory

 If the material is homogeneous & behaves in a linear 
manner, then Hooke’s law applies

 The flexure formula also applies
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Elastic Beam Theory

 Combining these eqns, we have:
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Elastic Beam Theory
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Elastic Beam theory

 This eqn rep a non-linear second DE
 V=f(x) gives the exact shape of the elastic curve
 The slope of the elastic curve for most structures is very 

small
 Using small deflection theory, we assume dv/dx ~ 0
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Elastic Beam Theory

 By assuming dv/dv ~ 0  ds, it will approximately equal 
to dx

 This implies that points on the elastic curve will only be 
displaced vertically & not horizontally
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The double integration method

 M = f(x), successive integration of eqn 8.4 will yield the 
beam’s slope 
   tan  = dv/dx =  M/EI dx

 Eqn of elastic curve
 V = f(x) =  M/EI dx

 The internal moment in regions AB, BC & CD must be 
written in terms of x1, x2 and x3



The double integration method

 Once these functions are integrated & the constants 
determined, the functions will give the slope & deflection 
for each region of the beam

 It is important to use the proper sign for M as established 
by the sign convention used in derivation

 +ve v is upward, hence, the +ve slope angle,  will be 
measured counterclockwise from the x-axis



The double integration method

 The constants of integration are determined by evaluating 
the functions for slope or displacement at a particular 
point on the beam where the value of the function is known

 These values are called boundary conditions
 Here x1 and x2 coordinates are valid within the regions AB 

& BC



The double integration method

 Once the functions for the slope & deflections are 
obtained, they must give the same values for slope & 
deflection at point B

 This is so as for the beam to be physically continuous



Example 8.1

The cantilevered beam is subjected to a couple moment Mo at its end. 
Determine the eqn of the elastic curve. EI is constant.



Solution
By inspection, the internal moment can be represented throughout the 
beam using a single x coordinate. From the free-body diagram, with M 
acting in +ve direction, we have:

Integrating twice yields:
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Solution
Using boundary conditions, dv/dx = 0 at x = 0 & v = 0 at x = 0 then C1
= C2 =0.

Substituting these values into earlier eqns, we get:

Max slope & disp occur at A (x = L) for which

The +ve result for A indicates counterclockwise rotation & the +ve result 
for vA indicates that it is upwards.
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Moment-Area Theorems

 If we draw the moment diagram for the beam & then 
divide it by the flexural rigidity, EI, the “M/EI diagram” is 
the results
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Moment-Area Theorems

 d on either side of the element dx = the lighter shade 
area under the M/EI diagram

 Integrating from point A on the elastic curve to point B, we 
have

 This eqn forms the basis for the first moment-area theorem 

dx
EI
MB

AAB  / 



Moment-Area Theorems

 Theorem 1
 The change in slope between any 2 points on the elastic curve 

equals the area of the M/EI diagram between the 2 points

 The second moment-area theorem is based on the relative 
derivation of tangents to the elastic curve

 Shown in Fig 8.12(c) is a greatly exaggerated view of the 
vertical deviation dt of the tangents on each side of the 
differential element, dx



Moment-Area theorems

 Since slope of elastic curve & its deflection are assumed to 
be very small, it is satisfactory to approximate the length 
of each tangent line by x & the arc ds’ by dt

 Using s = r  dt = xd
 Using eqn 8.2, d = (M/EI) dx
 The vertical deviation of the tangent at A with respect to

the tangent at B can be found by integration

dx
EI
Mxt

B

ABA  / 



Moment-Area Theorems

 Centroid of an area

B. &Abetween  area  theof centroid  the toA
 through axis  vertical thefrom distance 

 

dA dA
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Moment-Area Theorems

 Theorem 1
 The vertical deviation of the tangent at a point (A) on the 

elastic curve with respect to the tangent extended from another 
point (B) equals the “moment” of the area under the M/EI 
diagram between the 2 points (A & B)

 This moment is computed about point A where the derivation is 
to be determined



Moment-Area Theorems

 Provided the moment of a +ve M/EI area from A to B is 
computed, it indicates that the tangent at point A is above 
the tangent to the curve extended from point B

 -ve areas indicate that the tangent at A is below the 
tangent extended from B



Moment-Area Theorems

 It is important to realise that the moment-area theorems 
can only be used to determine the angles & deviations 
between 2 tangents on the beam’s elastic curve

 In general, they do not give a direct solution for the slope 
or disp. at a point



Example 8.5

Determine the slope at points B & C of the beam. Take E = 200GPa, I = 
360(106)mm4



Solution
It is easier to solve the problem in terms of EI & substitute the numerical 
data as a last step.
The 10kN load causes the beam to deflect.
Here the tangent at A is always horizontal.
The tangents at B & C are also indicated.

By construction, the angle between tan A and tan B (B/A) is equivalent to 
B.



Solution

Applying Theorem 1, is equal to the area under the M/EI diagram 
between points A & B.

ACCABB //      ;  
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Solution
Substituting numerical data for E & I 

The –ve sign indicates that the angle is measured clockwise from A.
In a similar manner, the area under the M/EI diagram between points A & 
C equals (C/A).
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Solution
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Conjugate-Beam Method

 The basis for the method comes from similarity equations
 To show this similarity, we can write these eqn as shown

EI
M

dx
vd


2

2

w
dx
Md


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Conjugate-Beam Method

 Or integrating,

dxdx
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Conjugate-Beam Method

 Here the shear V compares with the slope θ , the moment 
M compares with the disp v & the external load w 
compares with the M/EI diagram

 To make use of this comparison we will now consider a 
beam having the same length as the real beam but 
referred to as the “conjugate beam”,



Conjugate-Beam Method

 The conjugate beam is loaded with the M/EI diagram 
derived from the load w on the real beam

 From the above comparisons, we can state 2 theorems 
related to the conjugate beam

 Theorem 1
 The slope at a point in the real beam is numerically equal to 

the shear at the corresponding point in the conjugate beam



Conjugate-Beam Method

 Theorem 2
 The disp. of a point in the real beam is numerically equal to 

the moment at the corresponding point in the conjugate beam

 When drawing the conjugate beam, it is important that the 
shear & moment developed at the supports of the 
conjugate beam account for the corresponding slope & 
disp of the real beam at its supports



Conjugate-Beam Method

 Consequently from Theorem 1 & 2, the conjugate beam 
must be supported by a pin or roller since this support has 
zero moment but has a shear or end reaction

 When the real beam is fixed supported, both beam has a 
free end since at this end there is zero shear & moment



Conjugate-Beam Method



Example 8.5
Determine the max deflection of the steel beam. The reactions have been 
computed. Take E = 200GPa, I = 60(106)mm4



Solution
The conjugate beam loaded with the M/EI diagram is shown. Since M/EI 
diagram is +ve, the distributed load acts upward.
The external reactions on the conjugate beam are determined first and 
are indicated on the free-body diagram.
Max deflection of the real beam occurs at the point where the slope of 
the beam is zero.

Assuming this point acts within the region 0x9m from A’ we can isolate 
the section.



Solution
Note that the peak of the distributed loading was determined from 
proportional triangles,
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Solution
Using this value for x, the max deflection in the real beam corresponds to 
the moment M’.
Hence, 
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Solution
The –ve sign indicates the deflection is downward .

mmm

mmmmmmkN
kNm

EI
kNmM

8.160168.0

)])10/(1()10(60][/)10(200[
2.201

2.201'

44344626

3

3

max










DEFLECTIONS USING ENERGY METHODS

THEORY OF STRUCTURES

Asst. Prof. Dr. Cenk Üstündağ



External Work & Strain Energy

 For more complicated loadings or for structures such as 
trusses & frames, it is suggested that energy methods be 
used for the computations

 Most energy methods are based on the conservation of 
energy principal

 Work done by all external forces acting on a structure, Ue
is transformed into internal work or strain energy Ui

 Ue = Ui



External Work & Strain Energy

 If the material’s elastic limit is not exceeded, the elastic 
strain energy will return the structure to its undeformed 
state when the loads are removed

 When a force F undergoes a disp dx in the same direction 
as the force, the work done is 
 d Ue = F dx

 If the total disp is x, the work becomes:


x

e FdxU
0



External Work & Strain Energy

 Consider the effect caused by an axial force applied to 
the end of a bar 

 F is gradually increased from 0 to some limiting value F = 
P

 The final elongation of the bar becomes 
 If the material has a linear elastic response, then F = (P/ 
)x



External Work & Strain Energy

 By integrating we have:

 Suppose P is already  applied to the bar & that another 
force F’ is now applied, so that the bar deflects further by 
an amount 

 P
2
1

eU



External Work & Strain Energy

 The work done by P when the bar undergoes the further 
deflection is then 
 d Ue’ = P’

 Here the work represents the shaded rectangular area 
 In this case, P does not change its magnitude since ’ is 

caused only by F’
 Work  = force x disp



External Work & Strain Energy

 When a force P is applied to the bar, followed by an 
application of the force F’, the total work done by both 
forces is rep by the triangular area ACE 

 The triangular area ABG rep the work of P that is caused 
by disp 

 The triangular area BCD rep the work of F’ since this force 
causes a dsip ’

 Lastly the shaded rectangular area BDEG rep the 
additional work done by P



External Work & Strain Energy

 The work of a moment  = magnitude of the moment (M) x 
the angle (d) through which it rotates
 d Ue = M d

 If the total angle of rotation is  rad, the work becomes





0
MdUe



External Work & Strain Energy

 If the moment is applied gradually to a structure having a 
linear elastic response from 0 to M, then the work done is

 However, if the moment is already applied to the structure 
& other loadings further distort the structure an amount ’, 
then M rotates ’ & the work done is

MUe
2
1



'' MUe 



External Work & Strain Energy

 When an axial force N is applied gradually to the bar, it 
will strain the material such that the external work done by 
N will be converted into strain energy

 Provided the material is linearly elastic, Hooke’s Law is 
valid
  = E

 If the bar has a constant x-sectional 
area A and length L



External Work & Strain Energy

 The normal stress is  = N/A
 The final strain is  = /L
 Consequently, N/A = E(/L)
 Final deflection:

 Substituting with P = N, 
AE
NL



AE
LNUi 2

2





External Work & Strain Energy

 Consider the beam, P & w are gradually apply
 These loads create an internal moment M in the beam at a 

section located a distance x from the left support
 Consequently, the strain energy or work stored in the 

element can be determined since the internal moment is 
gradually developed 



External Work & Strain Energy

 Hence,

 The strain energy for the beam is determined by 
integrating this result over the beam’s length

EI
dxMdUi 2

2




L

i EI
dxMU

0

2

2



Principle of Work & Energy

 Consider finding the disp at a point where the force P is 
applied to the cantilever beam

 The external work:

 To obtain the resulting strain energy, we must first 
determine the internal moment as a function of position x 
in the beam

 PUe 2
1



Principle of Work & Energy

 In this case, M = - Px so that:

 Equating the ext work to int strain energy & solving for the 
unknown disp, we have:
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Principle of Work & Energy

 Limitations
 It will be noted that only one load may be applied to the 

structure
 Only the disp under the force can be obtained



Principle of Work & Energy

 If we take a deformable structure of any shape or size & 
apply a series of external loads P to it, it will cause 
internal loads u at points throughout the structure

 As a consequence of these loadings, external disp  will 
occur at the P loads & internal disp  will occur at each 
point of internal loads u

 In general, these disp do not have to be elastic, & they 
may not be related to the loads



Principle of Virtual Work

 In general, the principle states that:

 Consider the structure (or body) 
to be of arbitrary shape 

 Suppose it is necessary to determine 
the disp  of point A on the body 
caused by the “real loads” P1, P2 and P3

loadsInt           loadsExt 
ofWork           ofWork 

                  uP 



Principle of Virtual Work

 It is to be understood that these loads cause no movement 
of the supports

 They can strain the material beyond the elastic limit
 Since no external load acts on the body at A and in the 

direction of , the disp , the disp can be determined by 
first placing on the body a “virtual” load such that this 
force P’ acts in the same direction as 



Principle of Virtual Work

 We will choose P’ to have a unit magnitude, P’ =1
 Once the virtual loadings are applied, then the body is 

subjected to the real loads P1, P2 and P3, 
 Point A will be displaced an amount  causing the element 

to deform an amount dL



Principle of Virtual Work

 As a result, the external virtual force P’ & internal load u 
“ride along” by  and dL & therefore, perform external 
virtual work of 1.  on the body and internal virtual work 
of u.dL on the element

 By choosing P’ = 1, it can be seen from the solution for 
follows directly since  = udL

 A virtual couple moment M’ having a unit magnitude is 
applied at this point

dLu..1 



Principle of Virtual Work

 This couple moment causes a virtual load u in one of the 
elements of the body

 Assuming that the real loads deform the element an 
amount dL, the rotation  can be found from the virtual –
work eqn

dLu ..1  



Method of virtual work: Beams & Frames

 To compute  a virtual unit load acting in the direction of 
 is placed on the beam at A

 The internal virtual moment m 
is determined by the method 
of sections at an arbitrary 
location x from the left support

 When point A is displaced , 
the element dx deforms or 
rotates d = (M/EI)dx



Method of virtual work: Beams & Frames

axis neutral about the computed area, sectional-cross of inertia ofmoment   
material  theof elasticity of modulus 

loads real by the   
 caused & x offunction  a as expressed frame,or  beam in themoment int  
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loadunit  lext virtua by the caused&   
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Method of virtual work: Beams & Frames

 If the tangent rotation or slope angle  at a point on the 
beam’s elastic curve is to be determined, a unit couple 
moment is applied at the point

 The corresponding int moment m have to be determined


L

dx
EI
Mm

0
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Method of virtual work: Beams & Frames

 If concentrated forces or couple moments act on the beam 
or the distributed load is discontinuous, separate x 
coordinates will have to chosen within regions that have no 
discontinuity of loading



Determine the disp of point B of the steel beam. Take E = 200GPa and I 
= 500(106) mm4.

Example 9.4



Virtual moment m

The vertical disp of point B is obtained 
by placing a virtual unit load of 1kN at B. 
Using method of sections, the 
internal moment m is formulated.

Real moment M

Using the same x coordinate, 
M is formulated.

Solution



Virtual work eqn

Solution
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Method of virtual work: 
MiMk Table



Analysis of Statically Indeterminate 
Structures by the Force Method

THEORY OF STRUCTURES

Asst. Prof. Dr. Cenk Üstündağ



Statically Indeterminate Structures

 Advantages & Disadvantages
 For a given loading, the max stress and deflection of an 

indeterminate structure are generally smaller than those of its 
statically determinate counterpart

 Statically indeterminate structure has a tendency to redistribute 
its load to its redundant supports in cases of faulty designs or 
overloading



Statically Indeterminate Structures

 Advantages & Disadvantages
 Although statically indeterminate structure can support loading 

with thinner members & with increased stability compared to 
their statically determinate counterpart, the cost savings in 
material must be compared with the added cost to fabricate 
the structure since often it becomes more costly to construct the 
supports & joints of an indeterminate structure

 Because statically indeterminate structures have redundant 
support reactions, one has to be very careful to prevent
differential displacement of the supports, since this effect will 
introduce internal stress in the structure.



Statically Indeterminate Structures

 Method of Analysis
When analyzing any indeterminate structure, it is necessary 
to satisfy equilibrium, compatibility, and force-displacement
requirements for the structure. 
Equilibrium is satisfied when the reactive forces hold the 
structure at rest, and compatibility is satisfied when the 
various segments of the structure fit together without 
intentional breaks or overlaps. The force-displacement
requirements depend upon the way the material responds; 
(Here we assume linear elastic response).



Statically Indeterminate Structures

 Force Method
The force method was originally developed by James Clerk
Maxwell (a Scottish physicist and mathematician) in 1864 and
later refined by Otto Mohr and Heinrich Müller-Breslau (German
civil engineers).

 Displacement Method



Statically Indeterminate Structures

 Force Method: 
The force method consists of writing equations that satisfy the
compatibility and force-displacement requirements for the structure
in order to determine the redundant forces. Once these forces
have been determined, the remaining reactive forces on the
structure are determined by satisfying the equilibrium
requirements.

 Displacement Method: 
The displacement method of analysis is based on first writing
force-displacement relations for the members and then satisfying
the equilibrium requirements for the structure. In this case the
unknowns in the equations are displacements. Once the
displacements are obtained, the forces are determined from the
compatibility and force-displacement equations.



Statically Indeterminate Structures

Unknowns Equations Used
for Solution

Coefficents of 
the Unknowns

Force
Method

Forces Compatibility and
Force Displacement

Flexibility
Coefficents

Displacement
Method

Displacements Equilibirum and
Force Displacement

Stiffness
Coefficients



Force Method of Analysis: General Procedure

 From free-body diagram, there would be 4 unknown support
reactions

 3 equilibrium equations
 Beam is indeterminate to first degree
 Use principle of superposition & consider the compatibility of

displacement at one of the supports
 Choose one of the support reactions as redundant &

temporarily removing its effect on the beam



Force Method of Analysis: General Procedure

 This will allow the beam to be
statically determinate & stable

 Here, we will remove the rocker
at B

 As a result, the load P will cause
B to be displaced downward

 By superposition, the unknown
reaction at B causes the beam
at B to be displaced upward



Force Method of Analysis: General Procedure

 Assuming positive displacements act
upward, then we can write the
necessary compatibility equation at
the rocker as

 Here the first letter in this double-
subscript notation refers to the point
(B) where the deflection is specified,
and the second letter refers to the
point (B) where the unknown reaction
acts.

0 'B BB  



Force Method of Analysis: General Procedure

 Let us denote the displacement at B
caused by a unit load acting in the
direction of By as the linear flexibility
coefficient fBB.

 Since the material behaves in a
linear-elastic manner, a force of By
acting at B, instead of the unit load,
will cause a proportionate increase in
fBB.

'BB y BBB f 



Force Method of Analysis: General Procedure

 The linear flexibility coefficient fBB is 
a measure of the deflection per unit 
force, and so its units are m/N.

 The compatibility equation above 
can therefore be written in terms of 
the unknown By as

0 B y BBB f  



Force Method of Analysis: General Procedure

 Using the method of virtual work the appropriate load-
displacement relations for the deflection B and the
flexibility coefficient fBB, can be obtained and the solution 
for By can be determined.

 Once this is accomplished, the three reactions at the wall A 
can then be found from the equations of equilibrium.

 The choice of redundant is arbitrary



Force Method of Analysis: General Procedure

 The moment at A can be determined directly by removing
the capacity of the beam to support moment at A,
replacing fixed support by pin support

 The rotation at A 
caused by P is A

 The rotation at A 
caused by the 
redundant MA at 
A is ’AA



Force Method of Analysis: General Procedure

 If we denote an angular flexibility coefficient AA as the
angular displacement at A caused by a unit couple
moment applied to A, then

 Thus, the angular flexibility coefficient measures the
angular displacement per unit couple moment, and
therefore it has units of rad/N. The compatibility equation
for rotation at A therefore requires

0 A A AAM  

'AA A AAM 



Maxwell’s Theorem of Reciprocal 
Displacements: Betti’s Law

 The displacement of a point B on a structure due to a unit 
load acting at point A is equal to the displacement of 
point A when the load is acting at point B

 Proof of this theorem is easily demonstrated using the 
principle of virtual work

ABBA ff 



Maxwell’s Theorem of Reciprocal 
Displacements: Betti’s Law

 The theorem also applies for reciprocal rotations
 The rotation at point B on a structure due to a unit couple 

moment acting at point A is equal to the rotation at point A 
when the unit couple is acting at point B



Example 10.1

Determine the reaction at the roller support B of the beam. EI is constant.



Solution

Principle of superposition

By inspection, the beam is statically indeterminate to the first degree. 
The redundant will be taken as By. We assume By acts upward on the 
beam.



Solution

Compatibility equation
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Solution



Example 10.4

Draw the shear and moment diagrams for the beam. EI is constant. 
Neglect the effects of axial load.



Solution

Principle of Superposition

Since axial load is neglected, 
the beam is indeterminate to the 
second degree. The 2 end 
moments at A & B will be 
considered as the redundant. 
The beam’s capacity to resist 
these moments is removed by 
placing a pin at A and a rocker at B.



Solution

Compatibility eqn

Reference to points A & B requires

The required slopes and angular flexibility coefficients can be 
determined using standard tables.

(2)eqn     0

(1)eqn     0

BBBBAAB

ABBAAAA

MM

MM









EIEIEI

EIEI

BAABBBAA

AA

1    ;2   ;2

1.118   ;9.151











Solution

Compatibility eqn

,1.28   ;9.61

211.1180

129.1510

:gives(2) and (1)eqn  into Sub

kNmMkNmM

EI
M

EI
M

EI

EI
M

EI
M

EI

BA

BA

BA



































Displacement Method of Analysis: 
Moment Distribution

THEORY OF STRUCTURES

Asst. Prof. Dr. Cenk Üstündağ



General Principles & Definition

 Displacement method requires satisfying equilibrium
equations for the structures

 The unknowns displacement are written in terms of 
the loads by using the load-displacement relations

 These equations are solved for the displacement
 Once the displacement are obtained, the unknown 

loads are determined from the compatibility 
equations using the load displacement relations



General Principles & Definition

The method of analyzing beams and frames using 
moment distribution was developed by Hardy Cross, 
in 1930. 
At the time this method was first published it attracted 
immediate attention, and it has been recognized as 
one of the most notable advances in structural 
analysis during the twentieth century.



General Principles & Definition

 Moment distribution is a method of successive 
approximations that may be carried out to any 
desired degree of accuracy

 The method begins by assuming each joint of a 
structure is fixed

 By unlocking and locking each joint in succession, the 
internal moments at the joints are “distributed” & 
balanced until the joints have rotated to their final 
or nearly final positions



General Principles & Definition

 Sign Convention
We will establish the same sign convention as that
established for the slope-deflection equations: 
Clockwise moments that act on the member are 
considered positive, whereas counterclockwise 
moments are negative.



General Principles & Definition

 Fixed-End Moments
(FEMs)
The moments at the “walls” or
fixed joints of a loaded 
member are called fixed-end 
moments. These moments can 
be determined from the
table on the right side
depending upon the type of 
loading on the member. 



General Principles & Definition

For example, the beam loaded as shown in figure has 
fixed-end moments of
FEM = PL/8 = 800(10)/8 = 1000 Nm.
Noting the action of these moments on the beam and 
applying our sign convention, it is seen that
MAB = -1000Nm and MBA=1000Nm



 Member stiffness factor
Consider the beam in the figure, which is 
pinned at one end and fixed at the other.
Application of the moment M causes the 
end A to rotate through an angle A. Using 
the conjugate-beam method M can be 
related to A as follows:

ܯ ൌ
ܫܧ4
ܮ ஺ߠ

The term in parentheses

ܭ ൌ
ܫܧ4
ܮ

is referred to as the stiffness factor at A 
and can be defined as the amount of 
moment M required to rotate the end A of 
the beam A=1 rad.

General Principles & Definition
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 Joint stiffness factor
If several members are fixed connected to joint and each of 
their far ends is fixed, then by the principle of superposition, 
the total stiffness factor at the joint is the sum of the member 
stiffness factors at the joint.
 The total stiffness factor of joint A is 

General Principles & Definition
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General Principles & Definition
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 Distribution Factor (DF)
 If a moment M is applied to a fixed connected joint, the 

connecting members will each supply a portion of the 
resisting moment necessary to satisfy moment 
equilibrium at the joint. That fraction of the total 
resisting moment supplied by the member is called the 
distribution factor (DF).



General Principles & Definition

L
IKR 

 Member relative stiffness factor
 Quite often a continuous beam or a frame will be made 

from the same material
 E will therefore be constant
 In the case, the common factor 4E will cancel from the 

numerator and denominator when the distribution factor 
for a joint is determined.



General Principles & Definition

AA  2     ; 4  














L
EIM

L
EIM BAAB

ABBA MM 5.0

 Carry-over (CO) factor

 Solving for  and equating these equations,

 The moment M at the pin induces a moment of M’ = 
0.5M at the wall

 In the case of a beam with the far end fixed, the CO 
factor is +0.5



General Principles & Definition
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 Carry-over (CO) factor
 The plus sign indicates both moments act in the same 

direction

 Consider the beam



General Principles & Definition
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 Note that the above results could also have been 
obtained if the relative stiffness factor is used



General Principles & Definition

 We begin by assuming joint B is fixed or locked
 The fixed end moment at B then holds span BC in 

this fixed or locked position
 To correct this, we will apply an equal but opposite 

moment of 8000Nm to the joint and allow the joint 
to rotate freely



General Principles & Definition

 As a result, portions of this moment are distributed 
in spans BC and BA in accordance with the DFs of 
these spans at the joint

 Moment in BA is 0.4(8000) = 3200Nm
 Moment in BC is 0.6(8000) = 4800Nm
 These moment must be carried over since moments 

are developed at the far ends of the span



General Principles & Definition

 Using the carry-over factor of
+0.5, the results are shown

 The steps are usually presented in
tabular form

 CO indicates a line where moments
are distributed then carried over

 In this particular case only one
cycle of moment distribution is
necessary

 The wall supports at A and C
“absorb” the moments and no
further joints have to be balanced
to satisfy joint equilibrium



General Principles & Definition



Example

 Determine the internal moment at each support of the 
beam. The moment of inertia of each span is 
indicated.



Solution

A moment does not get distributed in the overhanging span AB
So the distribution factor (DF)BA =0 
Span BC is based on 4EI/L since the pin rocker is not at the far end of the 
beam
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Solution
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Solution

The overhanging span requires the internal moment to the left of B to be 
+4000Nm.

Balancing at joint B requires an internal moment of –4000Nm to the 
right of B.
-2000Nm is added to BC in order to satisfy this condition.
The distribution & CO operations proceed in the usual manner.
Since the internal moments are known, the moment diagram for the beam 
can be constructed.



Solution



Stiffness-Factor Modifications

 The previous e.g. of moment distribution, we have considered 
each beam span to be constrained by a fixed support at its 
far end when distributing & carrying over the moments. For this
reason we have computed the stiffness factors, distribution 
factors, and the carry-over factors based on the case shown in 
figure below.

 In some cases, it is possible to modify the stiffness factor of a 
particular beam span & thereby simplify the process of 
moment distribution



Stiffness-Factor Modifications
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 Member pin supported at far 
end
 As shown the applied moment M 

rotates end A by an amount 
 To determine , the shear in the 

conjugate beam at A’ must be 
determined



Stiffness-Factor Modifications
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 Member pin supported at far end (cont’d)
 The stiffness factor in the beam is

 The CO factor is zero, since the pin at B does not support a 
moment

 By comparison, if the far end was fixed supported, the 
stiffness factor would have to be modified by ¾ to model 
the case of having the far end pin supported. If this 
modification is considered, the moment distribution process is 
simplified since the end pin does not have to be unlocked–
locked successively when distributing the moments



Stiffness-Factor Modifications

 Symmetric beam & loading
 The bending-moment diagram for the beam will also 

be symmetric
 To develop the appropriate stiffness-factor 

modification consider the beam 
 Due to symmetry, the internal 

moment at B & C are equal
 Assuming this value to 

be M, the conjugate 
beam for span BC is shown



Stiffness-Factor Modifications
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 Symmetric beam & loading (cont’d)

 Moments for only half the beam can be distributed 
provided the stiffness factor for the center span is 
computed



Stiffness-Factor Modifications

 Symmetric beam with asymmetric loading
 Consider the beam as shown
 The conjugate beam for its center span BC is shown
 Due to its asymmetric loading, the internal moment at B 

is equal but opposite to that at C



Stiffness-Factor Modifications
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 Symmetric beam with asymmetric loading
 Assuming this value to be M, the slope  at each end is 

determined as follows:



Example

Determine the internal moments at the supports of the 
beam shown below. The moment of inertia of the two 
spans is shown in the figure.



Solution

The beam is roller supported at its far end C.
The stiffness of span BC will be computed on the basis of K = 3EI/L
We have:
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Solution
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Solution

The forgoing data are entered into table as 
shown. The moment distribution is carried out.
By comparison, the method considerably 
simplifies the distribution.
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