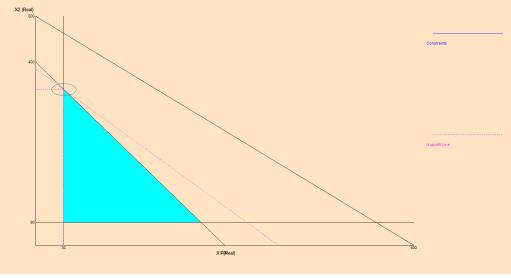
MHN502E OPERATIONS RESEARCH SOLUTIONS TO MIDTERM EXAM QUESTIONS

1. Dakota problem


- a. (6 pts.) The increase at the obj. fn. coef. of the table is \$3, allowable increase is \$5. Therefore, the current basis remains optimal, the profit is still \$280 as no table is produced.
- b. (6 pts.) The increase at the obj. fn. coef. of the chair is \$3, allowable increase is \$2.5. Therefore, the current basis is no longer optimal.
- c. (6 pts.) The decrease at the obj. fn. coef. of the desk is \$3, allowable decrease is \$4. Therefore, the current basis remains optimal, new profit = $280 + (-3) \times 2 = 274
- d. (6 pts.) The decrease at the RHS of carpentry is 3 hrs., allowable decrease is 1.3333 hrs. Therefore, the current basis is no longer optimal.
- e. (6 pts.) The increase at the RHS of carpentry is 2 hrs., allowable increase is 2 hrs. Therefore, the current basis remains optimal, new profit = $280 + 2 \times 10 = 300
- f. (6 pts.) The decrease at the RHS of lumber is 3 bf, allowable decrease is 24 bf. Therefore, the current basis remains optimal, new profit is still \$280 as the constraint is non-binding.
- 2. SJT Problem
 - (4 pts.) Decision variables:

*x*_i: number of P_is manufactured per month

(5 pts.) Objective fn.; (12 pts.) Constraints; (3 pts.) Sign restrictions:

```
\max z = 150 x_{1} + 100 x_{2}
s.t. x_{1} \ge 30
x_{2} \ge 50
25 x_{1} + 20 x_{2} \le 10,000
10 x_{1} + 5x_{2} \le 2,000
x_{1}, x_{2} \ge 0
```

(15 pts.) Graphical sol'n:

Opt. sol'n: *x*¹ = 30, *x*² = 340, *z* = 38500

(15 pts.) Software output (report)

OBJECTIVE FUNCTION VALUE									
	1)	38500.00							
VAR	RIABLE	VALUE	REDUCED COST						
	X1	30.00000	0.00000						
	X2	340.000000	0.00000						
	ROW	SLACK OR SURPLUS	DUAL PRICES						
	2)	0.00000	-50.00000						
	3)	290.000000	0.00000						
	4)	2450.000000	0.00000						
	5)	0.00000	20.00000						
NO.	ITERATI	ONS= 2							

OR

x1	x2		
30	340	max	
150	100	38500	
1		30	30
	1	340	≥ 50
25	20	7550	10000
10	5	2000	[►] 2000

(10 pts.) Executive summary:

SJT should manufacture 30 units of $P_{1}s$ and 340 units of $P_{2}s$ per month. In this case, the monthly profit would be \$38,500.