Advanced Propulsion System GEM 423E

Week 8: Prediction of Power at Preliminary Design Stage

Dr. Ali Can Takinacı Associate Professor in The Faculty of Naval Architecture and Ocean Engineering 34469 Maslak – Istanbul – Turkey

Contents

- Prediction of Power at Preliminary Design Stage
 - 1. Resistance & Power Estimation
 - 2. Design of Suitable Propeller and Engine Selection
 - 3. Prediction of Performance in service
 - 4. Determination of the Blade Surface Area
 - 5. Classroom application demo.

Prediction of Power at Preliminary Design Stage

Objective

The method is appropriate to large oceangoing vessels with modern slow speed direct drive diesel engines.

Ship owner will require that ship will achieve and average speed in service, $V_{SERVICE}$, at a certain engine power.

Initial acceptance will be basis of demonstration of a higher speed on trial, V_{TRIAL} , at same power.

i.e.

$$V_{TRIAL} = V_{SERVICE} + \delta V$$

where $\delta V \cong 1$ knot

- The contract will state that ship should achieve
 V_{TRIAL} with engine developing, say, 85% of its
 <u>Maximum Continous Power or Rating (MCR).</u>
- · Under the above circumstances:

1. Resistance & Power Estimation

 Estimate resistance and P_E for range of speed (covering V_{SERVICE} and V_{TRIAL}) using appropriate "Methodical Series" data or "Statistical Analysis" data

 P_E : Methodical series or else $P_{E_{TRIAL}} = (1+x)P_E$ $P_{E_{SERVICE}} = 1.2P_{E_{TRIAL}}$: (Based upon 20% "sea margin")

Where for trial

 $(1+x)_{FROUDE} = \left(0.44 + 2.229L^{-1/4} + 10.058L^{-1}\right) / 1.20$ (1+x): The correlation or power prediction factor

• The curves $P_{E_{TRIAL}}$ and $P_{E_{SERVICE}}$ versus speed is plotted

2. Design of Suitable Propeller and **Engine Selection**

- that the maximum Assuming permissible propeller diameter, D=0.6T and using the charts $[B_n-\delta]$, $[K_T-K_0-J]$ or computer programme determine the optimum propeller and engine speed corresponding to the trial conditions, the required maximum continuous power and the mean face pitch of the propeller.
- Select an appropriate engine from the machinery leaflets provided.

- For propeller-hull interaction coefficients it might be used the following semi-empirical relationships given by Andersen&Guldhammer.

$$w = w_1 + w_2$$

$$w_1 = a + \frac{b}{\left[c(0.98 - C_B)^3 + 1\right]}$$

$$w_2 = -0.18 + \frac{0.00756}{\left[\frac{D}{L} + 0.002\right]}$$

$$a = 0.1\frac{B}{L} + 0.149$$

$$b = 0.05\frac{B}{L} + 0.449$$

$$c = 585 - 5027\frac{B}{L} + 11700\left(\frac{B}{L}\right)^2$$

Rel. Eff.

$$\eta_R = 1.0$$

3. Prediction of Performance in Service

 Predict the ship speed and propeller rate of rotation in service with the engine developing 85% of the maximum continuous power

4. Determination of the Blade Surface Area and B.A.R.

Assuming that the height of the shaft centreline above the base is given by

$$\left(\frac{D}{2} + 0.2\right)$$
 or $\%60*T$ meters

use the Burrill cavitation diagram provided to determine the blade surface area and B.A.R.

$$\tau_c = 0.2761 \sigma_{0.7R}^{0.625}$$

(approximation equation for "suggested upper limits of merchant propellers" of Burrill 's chart)