POWER PREDICTION PROBLEM SOLUTION

Preliminary power prediction is required for a single screw bulk carrier with the following details for 15 knots of service speed.

The contract requires that, on fully loaded trial, the ship achieves a speed 1 knot greater than the required service speed with engine developing 85% of its maximum continuous power.

The vessel particulars:

$$\begin{bmatrix}
 L_{BP} = 135.34 m \\
 B = 19.30 m \\
 T = 9.16 m \\
 C_B = 0.704$$

Stage 1: Effective Power prediction

- First estimate Effective power for TRIAL & SERVICE conditions for the program provided or another statistical method.
- To do this, specify a speed range which includes the trial & service speeds -5 knots and +2 knots of trial speed.
- Power prediction factor (1+x) is given by

$$(1+x)_{FROUDE} = \frac{1}{1.2} \left(0.44 + 2.229L^{-\frac{1}{4}} + 10.058L^{-1} \right)$$

- Assume that in average service conditions, the ship resistance is increased by 20% (i.e. is 1.2).
- Plot $[P_{E_{TRIAI}} \& P_{E_{SERVICE}} vs V_{S}$ curves

Solution

Speed range: $\frac{V_{S_{TRLAL}} = V_{S_{SERVICE}} + 1 = 16 \,knots}{V_{S} = 11,12,13,14,15,16,17,18 \,knots}$ $\circ \qquad \underline{Actual Ship Dimensions:}$ $L \times B \times T = 135.34 \times 19.30 \times 9.16 \text{ meters}$

 $\circ \qquad \underline{\textit{Volume of actual ship}}, \nabla.$

 $\begin{aligned} \nabla &= C_B \times L \times B \times T = 0.704 \times 135.34 \times 19.3 \times 9.16 = 16,844 \text{ m}^3 \ 0.60 \times T = 0.60 \times \\ 9.16 = 5.5 \text{ meters} \\ \text{Midship Coefficient } C_M &= 0.995 \\ \text{Length of Waterline, } L_{wl} &= 2.5\%L + L = 3.3835 + 135.34 = 138.72 \text{ meters.} \\ \text{Bulb Section Area, } A_{BT} &= 0.10 \times (C_M \times B \times T) = 0.10 \times (0.995 \times 19.3 \times 9.16) = 17.59 \\ \text{m}^2 \\ \text{Height of the centroid of the bulb from the keel, } H_{BT} &= 0.50 \times T = 0.50 \times 9.16 = 4.58 \\ \text{m.} \\ \text{Stern parameter for moderate U form, } C_{\text{Stern}} &= 5 \\ \text{Location of Longitudinal center of buoyancy from midship, } LCB &= 0.0 \\ \text{meters} \\ \text{Propeller Diameter, } D &= 0.60 \times T = 0.60 \times 9.16 = 5.5 \\ \text{meters} \end{aligned}$

(*) These variables are taken from similar ships and needed for Holtrop and Mennen Performance prediction method.

 \circ <u>Power Prediction factor, (1+x)</u>

0

Power Prediction factor (1+x) = 0.968 (According to Froude)

(1+x) = (0.44 + 2.229/L**0.25 + 10.058/L)/1.20

L = 138.720 m (Length of Waterline)

Power Prediction factor (1+x) = 1.000 (Actual)

RESULTS OF EFFECTIVE POWERS												
No	Vs	RT	Ре	Pe(TRIAL)	Pe(SERVICE)							
	(Knots)	(kN)	(KW)	(KW)	(KW)							
1-	10.000	80.079	411.929	411.929	494.314							
2-	11.000	97.517	551.791	551.791	662.149							
3-	12.000	118.215	729.718	729.718	875.662							
4-	13.000	143.338	958.531	958.531	1150.238							
5-	14.000	174.325	1255.416	1255.416	1506.499							
6-	15.000	212.818	1642.106	1642.106	1970.528							
7-	16.000	260.589	2144.754	2144.754	2573.705							
8-	17.000	319.449	2793.520	2793.520	3352.224							
9-	18.000	391.177	3621.986	3621.986	4346.383							

2

Figure 1. Effective powers.

Stage 2: Design of Suitable Propeller and Engine Selection

Calculation of propulsion coefficients gives,

```
В
       19.30000 m
   =
      135.34000 m
 L
   =
        9.16000 m
 Т
   =
         4.80000 m
 D =
      .704
 Cb =
B/L =
         .14260
D/L =
         .03547
_____
a = 0.10 \times B/L + 0.149 = .16326
  = 0.05 \times B/L + 0.449 = .45613
b
  = 585 - 5027*(B/L) + 11700*(B/L)**2 = 106.06010
С
w1 = a + b / (c*(0.98 - Cb)**3+1) = .3045
w2 = -0.18 + 0.00756 / (D0/L + 0.002)
                                 =
                                    .0218
  = w1 + w2 = .3263
W
_____
                                        _____
d = 0.625 \times B/L + 0.08 =
                         .1691
  = 0.165 - 0.25 \times B/L =
                         .1293
е
  = 825 - 8060*B/L + 20300*(B/L)**2 = 88.4310
f
t1 = d + e / (f^*(0.98 - Cb)^{**3+1}) = .2144
t2 = 2.*(D/L-0.04) = -.0091
t = t1 + t2 = .2053
```

• Therefore the wake fraction, thrust deduction coefficients and relative rotative efficiency are obtained as;

w = 0.326, t=.2053, $\eta_R = 1$.

• Open water diameter
$$D_0 = \frac{D_B}{0.95} = \frac{5.50}{0.95} = 5.79 \, m$$

This diameter of propeller should absorb the delivered power for trial condition, i.e. Vs(trial) = 16 knot, at the optimum R.P.M. which would correspond to maximum propeller efficiency.

From figure 1 Vs(trial) = 16.000 knots => Pe(trial) = 2144.75 kW

• Assume
$$\eta_D = 0.75$$

$$P_{D} = \frac{F_{E}}{\eta_{D}} = \frac{2144.75}{0.75} = 2859.67 \, kW$$

$$V_{A} = V_{S_{trial}} (1 - w) = 16(1 - 0.293) = 11.307 \, knots = 5.816 \, m/sec$$

$$R_{T} = \frac{P_{E}}{V_{S}} = \frac{2144.75}{0.5144 \times 16} = 260.59 \, kN$$

$$T = \frac{R_{T}}{(1 - t)} = \frac{260.59}{(1 - 0.22)} = 334.05 \, kN$$

$$\frac{K_{T}}{J^{2}} = 0.287$$

0

To find optimum R.P.M., either select a range of R.P.M., e.g. $80\sim120$ and calculate $B_p-\delta$ or K_T,K_Q,J diagrams or use the program "*PropCalc*" with the option "Optimum R.P.M". Since the thrust of the propeller is known the application of Keller's formula tells us the approximate value of expanded area ratio of the propeller as EAR = 0.368. In this case EAR is selected as 0.400 and the number of blade Z is.

Z=0.400 ; BAR=0.400 Wageningen B series is used

i	P/D	J	Kt	10Kq	eta0	Вр	delta
							-
1	.500	.451	.0586	.0851	.4949	22.2668	224.2971
2	.510	.458	.0603	.0874	.5031	21.7643	221.0480
3	.520	.465	.0621	.0898	.5111	21.2869	217.9026
4	.530	.471	.0638	.0923	.5188	20.8329	214.8567
					····· •		
51	1.000	.751	.1620	.2862	.6765	11.4518	134.8704
52	1.010	.756	.1643	.2920	.6771	11.3666	133.9258
53	1.020	.761	.1666	.2980	.6777	11.2834	132.9990

```
.1689
                             .3039
                                     .6782
                                              11.2023
54
    1.030
             .767
                                                         132.0896
                    .1712
                             .3100
                                     .6786
55
    1.040
            .772
                                              11.1231
                                                         131.1969
            .777
                    .1735
    1.050
                             .3161
                                     .6790
56
                                              11.0458
                                                         130.3206
            .782
    1.060
                    .1759
                                              10.9702
                                                         129.4602
57
                             .3223
                                     .6793
    1.070
58
             .787
                    .1782
                             .3286
                                     .6796
                                              10.8963
                                                         128.6153
            .792
                                     .6798
59
    1.080
                    .1805
                             .3349
                                              10.8241
                                                         127.7856
                    .1828
60
    1.090
            .798
                             .3413
                                     .6800
                                              10.7534
                                                         126.9706
    1.100
            .803
                             .3477
                    .1852
                                              10.6843
                                                         126.1700
61
                                     .6802
62
    1.110
             .808
                    .1875
                             .3542
                                     .6803
                                              10.6167
                                                         125.3833
63
    1.120
             .813
                    .1898
                             .3608
                                     .6804
                                              10.5504
                                                         124.6103
                    .1922
64
    1.130
             .818
                             .3675
                                     .6805
                                              10.4855
                                                         123.8505
            .823
                    .1945
                             .3742
                                     .6805
65
    1.140
                                              10.4219
                                                         123.1037
                             .3809
                                     .6806
66
    1.150
            .828
                    .1968
                                              10.3596
                                                         122.3696
            .832
                    .1992
                             .3877
                                     .6806
    1.160
                                              10.2984
67
                                                         121.6478
                                     .6806
    1.170
                    .2015
                             .3946
                                              10.2384
                                                         120.9380
68
             .837
89
   1.380
             .935 .2510
                          .5481 .6812
                                              9.1695
                                                         108.3609
90
   1.390
            .939
                    .2534
                            .5556
                                     .6815
                                              9.1246
                                                         107.8549
SECILEN PERVANE = 60. PERVANEDIR
P/D=1.090
J= .798 Kt= .183 10Kq= .341 eta= .680
Bp= 10.7534 delta= 126.9706
T=
     334.05 kN Va= 5.816 m/s RHO = 1025.0 kg/m3
Z = 4. EAR = .400 D = 5.789 m
RPS= 1.260 dev/san RPM= 75.58 TORK= 361.006 kNm Pd= 2857.2 kW
```

According to the program output is shown in the table given above

$$\eta_{0} = 0.680 and N = 75.58 R.P.M$$

To confirm this

$$\eta_D = \eta_h \times \eta_R \times \eta_0 = \frac{1-t}{1-w} \times \eta_R \times \eta_0 = \frac{1-0.220}{1-0.293} \times 1 \times 0.680 = 0.750$$

$$\varepsilon = \eta_{D_{calculated}} - \eta_{D_{previous}} = 0.750 - 0.750 = 0$$

So the assumed value of $\eta_D = 0.75$ is found to be enough for the calculation.

• Based upon the latest value of $\eta_0 = 0.680$, The trial power

$$P_{B} = \frac{P_{E}}{\eta_{D} \times \eta_{S}} = \frac{2144.75}{0.750 \times 0.980} = 2918.3 \, kW$$

• Installed maximum continuous power

$$P_{B_m} = \frac{P_B}{MCR\%} = \frac{2918.3}{0.85} = 3433 \, kW$$

• Delivered power

$$P_D = P_B \times \eta_S = 2918.3 \times 0.98 = 2860 \, kW$$

• Therefore, the advance coefficient of the propeller at behind hull condition would be

$$J = \frac{V_A}{n \times D_B} = \frac{16 \times (1 - 0.293) \times 0.5144}{75.579/60 \times 5.5} = 0.84$$

• The required values can be read-off the program output table given above as

DEVIR	-	Ν	=	75.579	RP
KANAT SAYISI	-	Z	=	4	
ILERLEME KATSAY	ISI	- J	=	.840	
ITME SABITI	-	Kt	=	.217	
MOMENT SABITI	-	10Kq	=	.042	
ACIK SU VERIMI	-	ETA-0	=	.662	
PIC ORANI - P/D	-	SABIT	=	1.168	
ACINIM ALANI ORA	ANI	- EAR	=	.400	
PERVANE CAPI -	DIA	M	=	5.500	m
HATVE MIKTARI -	- P		=	6.424	m

• Engine selection:

Calculated optimum R.P.M = 75.579

Trial Power = 2918 kW

Installed Power = 3433 kW

The engine would be MAN B&W Diesel A/S – L42MC type. In this case since the engine speed is 176 RPM, a reduction gear to achieve 75 R.P.M.'s propeller is needed.

AN B&V	V Dies	el A/S	5		Engine Selec							tion Gui	
				Power kW BHP									
Engine type	Layout point	Engine speed	Mean effective pressure		Number of cylinders								
		r/min	bar	4	5	6	7	8	9	10	11	12	
L42MC	L1	176	18.0	3980 5420	4975 6775	5970 8130	6965 9485	7960 10840	8955 12195	9950 13550	10945 14905	11940 16260	
Bore 420 mm	L2	176	11.5	2540 3460	3175 4345	3810 5190	4445 6055	5080 6920	5715 7805	6350 8690	6985 9535	7620 10380	
Stroke 1360 mm	L3	132	18.0	2980 4060	3725 5075	4470 6090	5215 7105	5960 7105	6705 9135	7450 10150	8195 11165	8940 12180	
	4	132	11.5	1920 2600	2400 3250	2880 3900	3360 4550	3840 5200	4320 5850	4800 6500	5280 7150	5760 7800	
S35MC	L1	170	18.4	2800 3800	3500 4750	4200 5700	4900 6650	5600 7600	6300 8550	7000 9500	7700 10450	8400 11400	
Bore 350 mm	L2	170	14.7	2240 3040	2800 3800	3360 4560	3920 5320	4480 6080	5040 6840	5600 7600	6160 8360	6720 9120	
Stroke	L3	145	18.4	2380	2975	3570	4165	4760	5335 7245	5950	6545	7140	