POWER PREDICTION PROBLEM SOLUTION

Preliminary power prediction is required for a single screw bulk carrier with the following details for 15 knots of service speed.

The contract requires that, on fully loaded trial, the ship achieves a speed 1 knot greater than the required service speed with engine developing 85% of its maximum continuous power.

The vessel particulars: $\begin{aligned} & L_{B P}=135.34 \mathrm{~m} \\ & B=19.30 \mathrm{~m} \\ & T \\ & C_{B}=9.16 \mathrm{~m} \\ & C_{B}=0.704\end{aligned}$

Stage 1: Effective Power prediction

- First estimate Effective power for TRIAL \& SERVICE conditions for the program provided or another statistical method.
- To do this, specify a speed range which includes the trial \& service speeds -5 knots and +2 knots of trial speed.
- Power prediction factor $(1+\mathrm{x})$ is given by

$$
(1+x)_{\text {FROUDE }}=\frac{1}{1.2}\left(0.44+2.229 L^{-1 / 4}+10.058 L^{-1}\right)
$$

- Assume that in average service conditions, the ship resistance is increased by 20% (i.e. is 1.2).
- $\quad \operatorname{Plot}\left[P_{E_{\text {TRAL }}} \& P_{E_{\text {SERVCI }}}\right.$ vs V_{S} curves

Solution

Speed range: $\begin{aligned} & V_{S_{\text {TRALL }}}=V_{S_{\text {SRVVCE }}}+1=16 \text { knots } \\ & V_{S}=11,12,13,14,15,16,17,18 \text { knots }\end{aligned}$

- Actual Ship Dimensions:
$\mathrm{L} \times \mathrm{B} \times \mathrm{T}=135.34 \times 19.30 \times 9.16$ meters
- \quad Volume of actual ship, ∇.
$\nabla=C_{B} \times \mathrm{L} \times \mathrm{B} \times \mathrm{T}=0.704 \times 135.34 \times 19.3 \times 9.16=16,844 \mathrm{~m}^{3} 0.60 \times \mathrm{T}=0.60 \times$ $9.16=5.5$ meters

Midship Coefficient $\mathrm{C}_{\mathrm{M}}=0.995$
Length of Waterline, $\mathrm{L}_{\mathrm{wl}}=2.5 \% \mathrm{~L}+\mathrm{L}=3.3835+135.34=138.72$ meters.
Bulb Section Area, $A_{B T}=0.10 \times\left(C_{M} \times B \times T\right)=0.10 \times(0.995 \times 19.3 \times 9.16)=17.59$ m^{2}

Height of the centroid of the bulb from the keel, $\mathrm{H}_{\mathrm{BT}}=0.50 \times \mathrm{T}=0.50 \times 9.16=4.58$ m.

Stern parameter for moderate U form, $\mathrm{C}_{\text {stern }}=5$
Location of Longitudinal center of buoyancy from midship, $\mathrm{LCB}=0.0$ meters
Propeller Diameter, $\mathrm{D}=0.60 \times \mathrm{T}=0.60 \times 9.16=5.5$ meters.
Propeller Shaft Depth $\mathrm{H}_{\mathrm{p}}=0.60 \times \mathrm{T}=0.60 \times 9.16=5.5$ meters
(*) These variables are taken from similar ships and needed for Holtrop and Mennen Performance prediction method.

- Power Prediction factor, $(1+x)$

Power Prediction factor $(1+\mathrm{x})=0.968$ (According to Froude)

$$
\begin{aligned}
& (1+\mathrm{x})=(0.44+2.229 / \mathrm{L} * * 0.25+10.058 / \mathrm{L}) / 1.20 \\
& \mathrm{~L}=138.720 \mathrm{~m} \text { (Length of Waterline) }
\end{aligned}
$$

Power Prediction factor $(1+\mathrm{x})=1.000$ (Actual)

RESULTS OF EFFECTIVE POWERS					
No	$\begin{gathered} \text { Vs } \\ \text { (Knots) } \end{gathered}$	$\begin{gathered} \mathrm{RT} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{Pe} \\ \text { (KW) } \end{gathered}$	$\begin{gathered} \operatorname{Pe}(\text { TRIAL }) \\ (\mathrm{KW}) \end{gathered}$	$\begin{aligned} & \text { Pe (SERVICE) } \\ & \text { (KW) } \end{aligned}$
1-	10.000	80.079	411.929	411.929	494.314
2-	11.000	97.517	551.791	551.791	662.149
3-	12.000	118.215	729.718	729.718	875.662
4 -	13.000	143.338	958.531	958.531	1150.238
5-	14.000	174.325	1255.416	1255.416	1506.499
6-	15.000	212.818	1642.106	1642.106	1970.528
7-	16.000	260.589	2144.754	2144.754	2573.705
8-	17.000	319.449	2793.520	2793.520	3352.224
9-	18.000	391.177	3621.986	3621.986	4346.383

Figure 1. Effective powers.

Stage 2: Design of Suitable Propeller and Engine Selection

Calculation of propulsion coefficients gives,

```
B = 19.30000 m
L = 135.34000 m
T = 9.16000 m
D = 4.80000 m
Cb = . }70
B/L = .14260
D/L = . . 03547
```

```
a = 0.10*B/L + 0.149 = .16326
b = 0.05*B/L + 0.449 = .45613
c = 585 - 5027*(B/L) + 11700*(B/L)**2 = 106.06010
w1 = a + b / (c*(0.98 - Cb)**3+1) = . 3045
w2 = -0.18+0.00756/(D0/L+0.002) = .0218
w = w1 + w2 = . 3263
d = 0.625*B/L + 0.08 = .1691
e = 0.165 - 0.25*B/L = . 1293
f = 825 - 8060*B/L + 20300*(B/L)**2 = 88.4310
t1 = d + e / (f*(0.98 - Cb)**3+1) = . 2144
t2 = 2.*(D/L-0.04) = -.0091
t = t1 + t2 = . 2053
```

$\mathrm{w}=0.326, \mathrm{t}=.2053, \eta_{\mathrm{R}}=1$. efficiency are obtained as;

- Open water diameter $D_{0}=\frac{D_{B}}{0.95}=\frac{5.50}{0.95}=5.79 \mathrm{~m}$

This diameter of propeller should absorb the delivered power for trial condition, i.e. $\mathrm{Vs}($ trial $)=16 \mathrm{knot}$, at the optimum R.P.M. which would correspond to maximum propeller efficiency.

From figure $1 \mathrm{Vs}($ trial $)=16.000$ knots $=>\operatorname{Pe}($ trial $)=2144.75 \mathrm{~kW}$

Therefore the wake fraction, thrust deduction coefficients and relative rotative

Assume $\eta_{\mathrm{D}}=0.75$

$$
\begin{aligned}
& P_{D}=\frac{P_{E}}{\eta_{D}}=\frac{2144.75}{0.75}=2859.67 \mathrm{~kW} \\
& V_{A}=V_{S_{\text {rial }}}(1-w)=16(1-0.293)=11.307 \mathrm{knots}=5.816 \mathrm{~m} / \mathrm{sec} \\
& R_{T}=\frac{P_{E}}{V_{S}}=\frac{2144.75}{0.5144 \times 16}=260.59 \mathrm{kN} \\
& T=\frac{R_{T}}{(1-t)}=\frac{260.59}{(1-0.22)}=334.05 \mathrm{kN} \\
& \frac{K_{T}}{J^{2}}=0.287
\end{aligned}
$$

To find optimum R.P.M., either select a range of R.P.M., e.g. 80~120 and calculate $\mathrm{B}_{\mathrm{p}}-\delta$ or $\mathrm{K}_{\mathrm{T}}, \mathrm{K}_{\mathrm{Q}}, \mathrm{J}$ diagrams or use the program "PropCalc" with the option "Optimum R.P.M". Since the thrust of the propeller is known the application of Keller's formula tells us the approximate value of expanded area ratio of the propeller as $\mathrm{EAR}=0.368$. In this case EAR is selected as 0.400 and the number of blade Z is.

$$
\begin{aligned}
& Z=0.400 ; B A R=0.400 \\
& \text { Wageningen B series is used }
\end{aligned}
$$

i	P/D	J	Kt	10 Kq	eta0	Bp	delta
1	. 500	. 451	. 0586	. 0851	. 4949	22.2668	224.2971
2	. 510	. 458	. 0603	. 0874	. 5031	21.7643	221.0480
3	. 520	. 465	. 0621	. 0898	. 5111	21.2869	217.9026
4	. 530	. 471	. 0638	. 0923	. 5188	20.8329	214.8567
51	1.000	. 751	. 1620	. 2862	. 6765	11.4518	134.8704
52	1.010	. 756	. 1643	. 2920	. 6771	11.3666	133.9258
53	1.020	. 761	. 1666	. 2980	. 6777	11.2834	132.9990

54	1.030	. 767	. 1689	. 3039	. 6782	11.2023	132.0896
55	1.040	. 772	. 1712	. 3100	. 6786	11.1231	131.1969
56	1.050	. 777	. 1735	. 3161	. 6790	11.0458	130.3206
57	1.060	. 782	. 1759	. 3223	. 6793	10.9702	129.4602
58	1.070	. 787	. 1782	. 3286	. 6796	10.8963	128.6153
59	1.080	. 792	. 1805	. 3349	. 6798	10.8241	127.7856
60	1.090	. 798	. 1828	. 3413	. 6800	10.7534	126.9706
61	1.100	. 803	. 1852	. 3477	. 6802	10.6843	126.1700
62	1.110	. 808	. 1875	. 3542	. 6803	10.6167	125.3833
63	1.120	. 813	. 1898	. 3608	. 6804	10.5504	124.6103
64	1.130	. 818	. 1922	. 3675	. 6805	10.4855	123.8505
65	1.140	. 823	. 1945	. 3742	. 6805	10.4219	123.1037
66	1.150	. 828	. 1968	. 3809	. 6806	10.3596	122.3696
67	1.160	. 832	. 1992	. 3877	. 6806	10.2984	121.6478
68	1.170	. 837	. 2015	. 3946	. 6806	10.2384	120.9380
89	1.380	. 935	. 2510	. 5481	. 6812	9.1695	108.3609
90	1.390	. 939	. 2534	. 5556	. 6815	9.1246	107.8549
SECILEN PERVANE $=60$. PERVANEDIR							
$\mathrm{P} / \mathrm{D}=1.090$							
$\mathrm{J}=.798 \mathrm{Kt}=.18310 \mathrm{Kq}=.341$ eta= . 680							
$\mathrm{Bp}=10.7534$ delta $=126.9706$							
$\mathrm{T}=334.05 \mathrm{kN} \mathrm{Va}=3.816 \mathrm{~m} / \mathrm{s} \quad \mathrm{RHO}=1025.0 \mathrm{~kg} / \mathrm{m} 3$							
$\mathrm{Z}=4 . \mathrm{EAR}=.400 \mathrm{D}=5.789 \mathrm{~m}$							
$\mathrm{RPS}=1.260 \mathrm{dev} / \mathrm{san} \mathrm{RPM}=75.58 \mathrm{TORK}=361.006 \mathrm{kNm} \mathrm{Pd}=2857.2 \mathrm{~kW}$							

According to the program output is shown in the table given above

$$
\eta_{0_{\max }}=0.680 \text { and } N=75.58 \text { R.P.M }
$$

To confirm this

$$
\begin{aligned}
& \eta_{D}=\eta_{h} \times \eta_{R} \times \eta_{0}=\frac{1-t}{1-w} \times \eta_{R} \times \eta_{0}=\frac{1-0.220}{1-0.293} \times 1 \times 0.680=0.750 \\
& \varepsilon=\eta_{D_{\text {celculueded }}}-\eta_{D_{\text {previous }}}=0.750-0.750=0
\end{aligned}
$$

So the assumed value of $\eta_{D}=0.75$ is found to be enough for the calculation.

- Based upon the latest value of $\eta_{0}=0.680$, The trial power

$$
P_{B}=\frac{P_{E}}{\eta_{D} \times \eta_{S}}=\frac{2144.75}{0.750 \times 0.980}=2918.3 \mathrm{~kW}
$$

- Installed maximum continuous power

$$
P_{B_{m}}=\frac{P_{B}}{M C R \%}=\frac{2918.3}{0.85}=3433 \mathrm{~kW}
$$

- Delivered power

$$
P_{D}=P_{B} \times \eta_{S}=2918.3 \times 0.98=2860 \mathrm{~kW}
$$

- Therefore, the advance coefficient of the propeller at behind hull condition would be

$$
J=\frac{V_{A}}{n \times D_{B}}=\frac{16 \times(1-0.293) \times 0.5144}{75.579 / 60 \times 5.5}=0.84
$$

- The required values can be read-off the program output table given above as

- Engine selection:

Calculated optimum R.P.M $=75.579$
Trial Power $=2918 \mathrm{~kW}$
Installed Power $=3433 \mathrm{~kW}$
The engine would be MAN B\&W Diesel A/S, - L42MC type. In this case since the engine speed is 176 RPM, a reduction gear to achieve 75 R.P.M.'s propeller is needed.

