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SCALARS, VECTORS AND TENSORS 

In fluid mechanics, it is dealt with these quantities and it is important to have a firm 

understanding of their meaning and of their properties. Unlike vectors and tensors, scalars 

are uniquely defined by a single value (e.g. temperature, density..). Scalars will generally 

be denoted by italic letters, while vectors and tensors will be denoted by bold letters. 

 

1. VECTORS 

1. 1 SCALARS AND VECTORS 

A Scalar is a quantity having only magnitude. A vector is a quantity having both direction 

and magnitude. The magnitude of a vector a is denoted |a| A familiar example of a vector is 

the velocity u or the position coordinate x. Such a vector may be represented by an arrow 

whose length denotes its magnitude and whose orientation specifies its direction in space. 

 

1. 2 VECTOR SPACE, BASIS, COMPONENTS 

Let us begin with a brief review. The fundamental rules for addition of two vectors and of 

multiplication of a vector by a scalar form a vector space. 

1) Commutative rule 

u + v = v + u (1.1) 

au = ua (1.2) 

2) Associative rule 

(u + v) + w = u + (v + w) = u + v + w (1.3) 

a(bu) = (ab) u (1.4) 

3) Distributive rule 

a(u + v) = au + av (1.5) 

(a+b)u = au + bu (1.6) 

4) Existence of a zero and negative 

u + 0 = u (1.7) 

u + (-u )= 0 

 

 

(1.8) 
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5) Unit multiplication 

1u = u (1.9) 

Suppose that a group of vectors { v } contains n independent vectors. This group { v } is 

called and n-dimensional vector space. Let us choose n such vectors e1, e2, …,en to form a 

vector basis. By definition of linear dependence, any vector v belonging to the group of 

vectors { v }may be written as a linear combination of e1, e2,…,en: 

v = v1e1 + v2e2 +…+ vnen (1.10) 

The rules of operations in vector components are as follows: 

1) Addition of two vectors. Let 

u = u1e1 + u2e2 +…+ unen  and v = v1e1 + v2e2 +…+  vnen    

Then 

w = u + v = (u1 + v1)e1 + (u2 + v2)e2 +…+ (un + vn)en  

w = (u1 + v1 , u2 + v2,…,un + vn) 

wi = ui + vi  for  (i=1, 2,…, n) 

 

2) Multiplication of a vector by a scalar a:  

v = au = au1e1 + au2e2 +    + aunen  

v = (au1 , au2 ,…, aun) 

vi =aui  for (i=1, 2, …, n) 

 

 

1. 3 SCALAR (INNER OR DOT) PRODUCT OF TWO VECTORS 

The scalar product of two vectors is by definition a scalar, 

u . v = scalar (1.11) 

The general rules imposed on the scalar product are as follows 

1) Commutative rule 

u . v = v . u (1.12) 

2) Distributive rule 

u . (v + w )= u . v + u . w (1.13) 

3) In general 

u . (av + bw )= au . v + bu . w (1.14) 

Using the above rules, the scalar product of any two vectors may be determined once the 
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scalar products between the base vectors e1, e2,…, en are specified. 

 

Several geometric concepts such as magnitude, orthogonality and directional cosine may be 

defined through the use of the scalar product. 

1) Magnitude of a vector 

v.vv   (1.15) 

2) Orthogonality 

Two vectors u and v are said to be orthogonal to each other if  

u . v = 0 (1.16) 

3) Directional cosine 

If θ is the angle between two vectors u and v then the directional cosine is defined by 

vu

v.u
cos  (1.17) 

 

1. 4 EINSTEIN ’S SUMMATION CONVENTION 

The Einstein ‘s summation convention greatly simplifies things by saying “repeated indices 

implies summation.” A vector 

,...
1

2 



n

i

iinn1 vvvv eeeev 21   

 

may be written using Einstein’s convention as  

iiv ev   

 

The summation sign with respect to i is omitted but its presence is understood. The ith 

component of v may be written formally as 

{ v }i = vi (1.18) 

We must take a clear distinction between two types of indices in a system of equations. For 

example, let 

nnxaxaxau 12121111 ....   

nnxaxaxau 22221212 ....   
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……  

nnnnn xaxaxau  ....22111   

In Einstein notation, we have 

jiji xau    

The index j is repeated implying summation and is called a dummy index because this 

index may be replaced by any other letter, say, k and the equation will be unaffected. 

kiki xau    

Hence, the index i, here a free index. The same free index must appear in every term in the 

equation.  

 

1. 7 ORTHONORMAL BASIS 

A basis of a n-dimensional space e1, e2,…,en is called orthonormal if the n base vectors 

fulfil the following two conditions. 

(1) All the n vectors e1, e2, …, en are unit vectors, 

|e1| = |e2| =…= |en| = 1 (1.19) 

or 

ei . ej = 1 when i = j (1.20) 

(2) The n base vectors are orthogonal to each other,  

ei . ej = 0 when i ≠ j (1.21) 

The above two conditions may be combined as follows  

ei . ej = δij (1.22) 

where δij is the Kronecker delta, which is defined by, 

δij = 1 for i = j (1.23) 

δij = 0 for i ≠ j (1.24) 

From here on we will be dealing with 3-dimensional orthonormal vector spaces. An 

example is the conventional right hand Cartesian coordinate system. Here the 1, 2, 3 axes 

correspond to the x, y, z axes, respectively, and are parallel to the unit vectors e1, e2, e3. 
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 1. 6 VECTOR (CROSS) PRODUCT 

In 3-dimensional space, the cross product of two vectors u and v is defined in the form w ≡ 

u × v is defined by the following rules: 

(1) w is perpendicular to both u and v,  

u . w = v . w = 0 (1.25) 

(2) The magnitude of w is by definition,  

|w| = |uvsinθ|, (1.26) 

where θ is the angle between u and v. 

(3) w points in the direction so that u, v, w form a right hand coordinate system. The 

following properties of the vector product are easily proven. 

u × v = - (v . u)   

u × v = 0 if v = au   

u × (v + w) = u × v + u × w  

u × (v × w) ≠ (u × v )× w  

 

1. 8 MULTIPLE PRODUCT OF VECTORS 

Some useful formulae involving multiplication of multiple vectors are presented below. 

These formulae may be proven directly by using known vectorial identities or indirectly by 

working through the scalar components. One important theorem in connection with the 

latter approach is the following statement: “If a vector or tensor identity is proved true in 

one coordinate system, it will be true in all other coordinate systems.” We can therefore 

prove an identity using the simple coordinate system (usually the rectangular coordinate 

system with orthonormal base vectors), and then rewrite it in general vector form. 

(1) The scalar product of three vectors: 

 

321

321

321

.

www

vvv

uuu

   w  v  u  = εijkuivjwk (1.27) 

The applying the rules of the permutation symbol, we obtain 

u . ( v × w ) =  v . ( w × u ) = w . ( u × v ) 

= -u . ( w × v ) = -v . ( u × w ) = -w . ( v × u ) 
(1.28) 

The scalar product then follows a general cyclic rule. The sign of the determinant changes 
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when any two rows in equation (32) are interchanged. This is because interchanging two 

indices in the permutation symbol causes a change in sign. Note also that u . ( v × w ) =  0 

if any two vectors are identical. 

 

The magnitude of u . ( v × w ) is he volume of the parellelpiped formed by the three vectors 

u, v, w. Hence if the three vectors lie in a plane, the volume vanishes. 

(2) Vector product of three vectors  

u × ( v × w ) =  v . ( u . w ) - w . ( u . v ) (1.29) 

(3)  

(a × b) × (c × d) =  (a . c) (b . d) - (b . c) (a . d) (1.30) 

(4) Lagrange’s Identity 

|u × v|2 = |u |2 . |v|2 – (u.v)2 (1.31) 

 

1. 9 DIFFERENTIATION OF A VECTOR FUNCTION OF A SCALAR VARIABLE 

Let r(ξ) be a vector function of the scalar ξ. As ξ changes, the magnitude and direction of r 

varies as shown in the figure (1). For a small change Δξ, r(ξ) changes by Δr to r(ξ+Δξ). 

 

 

Figure 1. Differentiation of a Vector Function of a Scalar Variable 

The derivative of r is a new vector function defined by 






 

)()(
lim

d

d rrr
 (1.32) 
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1. 10 THE PRODUCT RULE 

Two vector functions u(ξ) and v(ξ)  may be combined in various ways such as by the inner 

product, the cross product u×v.  Another product called the outer product uv  ( vu ) 

produces a higher order tensor and will be discussed later. Writing “ ” to denote “.” or “×” 

or “ ” , the cross product rule states 







 d

d

d

d
)(

d

d v
u v

u
vu  (1.33) 

 

It is important to remember here that the operations “×” or “ ”do not commute. 

Example: If u(ξ) is a vector of constant magnitude then 
d

du
is perpendicular to u. By 

assumption, |u| = cons. Hence,  

0
d

d
2

d

d
2







u
u.

u
 (1.34) 

 

2 TENSORS 

The definition of a tensor is a natural extension of that vectors which are sometimes 

referred to as 1st order tensors, while scalars are zeroth order tensors. A tensor is defined by 

a set of scalars and a tensor basis. In 3-dimensional space, with basis vectors e1, e2, e3, a 

tensor A may be written as 

A = A11e1e1 + A12e1e2 + …+ A33e3e3 (2.1) 

or in matrix form as  

A = 
















333231

232221

131211

AAA

AAA

AAA

 (2.2) 

or in Einstein notation  

A = Aijeiej or { A }ij = Aij (2.3) 

 

2. 1 TENSOR ORDER 

The number of the tensor components is equal to the order (or rank) of the tensor. 

Table 1. Order of tensors 
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Rank No of free indices Examples Remarks 

0 0 T, ui,vi Scalar 

1 1 ui ,Aijui,εijkujvk Vector 

2 2 ijij

j

i A
x

u





,,  Tensor 

3 3 Aijxk, εijk 3rd order tensor 

n n Aijk…sj  

If a quantity is referred to as a tensor without reference to its order, it is assumed that the 

quantity is a second order tensor. 

 

2. 2 PROPERTIES OF TENSORS 

 

2. 2. 1 IDENTITY TENSOR 

The identity tensor I defined by 

x = I . x (2.4) 

In Cartesian coordinates  

  ijij

ii






















I

ee  I

100

010

001

 

(2.5) 

 

2. 2. 2 TRANSPOSE 

The transpose of a tensor A is denoted AT and is defined  

AT = Ajiejei or { AT }ij = Aji (2.6) 

 

2. 2. 3 SYMMETRY 

A tensor A is symmetric if Aij = Aji  

2. 2. 4 THE ADJOINT OF A TENSOR 

A tensor 
~

A is called the adjoint of the tensor. A if for any two vectors x and y,  
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x . A . y = y . 
~

A . x (2.7) 

A tensor is called self-adjoint if AA
~

. A symmetric tensor satisfies the condition equation 

(55) and is therefore self-adjoint. 

 

2. 2. 5 THE TRACE OF A TENSOR 

The trace of a tensor A is the sum of its diagonal elements, e. 

tr(A) = Aii = A11 + A22 + A33 (2.8) 

As will be verified later by inspection, the trace of a tensor is independent of the orientation 

of the coordinate system. Note also that the trace of the Kronecker delta is 

δii = 3 (2.9) 

 

2. 2. 6 THE DETERMINANT OF A TENSOR 

The determinant of a tensor A is defined by: 

333231

232221

131211

)det(

AAA

AAA

AAA

 A A  

=A11(A22 A33 - A23 A32) - A12(A21 A33 - A23 A31) + A13(A21 A32 - A22 A31)  

= det(A) = εijk A1i A2j A3k 

(2.10) 

 

2. 2. 7 THE INVERSE OF A TENSOR 

The inverse of a tensor A is the tensor A-1 if  

A A-1 = A-1 A = I (2.11) 

In Cartesian coordinates,  

Aij Ajk
-1 = δjk (2.12) 

 

 

 

 

2. 2.8 EIGENVALUES AND EIGENVECTORS 

For a tensor A there exists a particular set of eigenvectors u and eigenvalues λ for which  
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A u = λ u (2.13) 

 

The u ’s define the directions of principal axes of A. If all the eigenvalues of A are 

positive then A is said to be positive definite. 

 

Theorem (without proof): The eigenvalues of a real, self-adjoint (symmetric) 2nd order 

tensor are real, and the eigenvectors are mutually orthogonal. 

 

From equation (64), for u≠0, we must have  

|A - λI| = 0 (2.14) 

0

333231

232221

131211









AAA

AAA

AAA

 (2.15) 

 

Hence we obtain a characteristic equation that is cubic in λ, 

λ3 – I1 λ
2 + I2 λ – I3 = 0 (2.16) 

 

The solution is the three eigenvalues λ1, λ2, λ3, we note that the three equations 

(Aij – λδij) uj = 0 (2.17) 

And 

(A11 – λ)u1 + A12u2 + A13u3 = 0 

A21u1 + (A22 – λ)u2 + A23u3 = 0 

A31u1 + A32u2 + (A33 – λ)u3 = 0 

(2.18) 

 

Are linearly dependent since the characteristic determinant is zero (|A – λI| = 0). The three 

unknown components of u (u1, u2, u3) cannot be uniquely determined. We can however 

determine the ratios u1/u2 and u2/u3 by selecting equation (69): 
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1

2221

1211

2223

1213

2

1 .












AA

AA

AA

AA

u

u
 

1

2221

1211

2321

3111

3

2 .








AA

AA

AA

AA

u

u
 

(2.19) 

 

The procedure is applied for all three eigenvalues. We need two additional conditions to 

determine (a) the magnitude and (b) the sense of u, v, w. By convention, the magnitudes 

are normalized to unity and the sense of the three eigenvectors are chosen to form a right 

hand orthonormal basis set. 

 

| u | = | v | = | w | = 1 

 u × v = w , v × w = u , w × u = v 
(2.20) 

 

2. 2. 9 THE INVERSE OF A TENSOR 

Although the operations described below apply to vectors spaces of arbitrary dimension, 

we will use a 3-dimensional space. Let x1, x2, x3 and x’1, x’2, x’3 be two Cartesian 

coordinate systems. The frame x1, x2, x3 is in arbitrary direction and has base vectors e1, e2, 

e3, while the frame x’1, x’2, x’3 is called the principal frame since its base vectors e’1, e’2, 

e’3,are in the principal directions. Suppose that A is a Cartesian tensor in the arbitrary 

frame x1, x2, x3, and has the general component form, 

333231

232221

131211

AAA

AAA

AAA

A  (2.21) 

The tensor A can be transformed by a rotation to the principal frame. In the principal frame 

the tensor will be denoted A’. We shall find that A’ is a diagonal matrix and the three 

diagonal elements are the eigenvalues of A. It is said that A’is in the canonical form which 

is, 

3

2

1

00

00

00







A  (2.22) 
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3. TRANSFORMATION UNDER ROTATION AND TRANSLATION 

The directional cosines of v for the ei axis are defined as 

v
e i

i

v
)cos(  (3.1) 

Suppose that we introduce two right hand Cartesian coordinate systems K and K’ with 

orthonormal basis ei and e’I we wish to express the coordinates xi ’s of an arbitrary point in 

the system K in terms of its coordinates x’i  Let the origin O’ of the system K’ have radius 

vector r’0 and coordinates x’0i in the system K, while the origin O of the system K has 

radius vector r0 = -r’0 and coordinates x0i in the system K’ . Finally, let αj’k  be the cosine of 

the angle between the jth axis of the system K’ and kth axis of system K,  

αj’k  = cos(x’j , xk) = e’j , ek (3.2) 

Then  

x’i  e’i = xi ei + x0i ei (3.3) 

 

Figure 2. Definition of two coordinate systems. (O’ and O) 

Taking the scalar product of equation (100) with e’j, we obtain 

x’j  = αj’i xi + x0j (3.4) 

Similarly  

xj  = αi’j x’i + x’0j (3.5) 

The basis vectors are also related  

e’i  = αi’j ej 

ei  = αj’i e’j 
(3.6) 

From orthogonality condition  
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e’i  e’k = αi’j αk’j = δik  

ei  ek = αj’i αj’k = δik 
(3.7) 

For the transformation of a tensor A, we have 

A’ij  = αi’k αj’l Akl  

Aij  = αk’i αl’j A’kl 
(3.8) 

 

Example: Suppose that we are interested in rotation of a Cartesian coordinate system about 

the z axis (here we write x,y,z instead of x1, x2, x3). Let φ be the angle between the new x’–

axis and the old x-axis. Then the general formula, 

x’i  = Tij xj + x0i  (3.9) 

Becomes 

x = x cosφ + y sinφ  

y’ = -x sinφ + y cosφ 

z’ = -z 

(3.10) 

Hence T becomes, 























100

0cossin

0sincos

 T  (3.11) 

 

This special form of the transformation matrix is often called the rotation matrix, denoted 

by R.  

 

 4 VECTOR CALCULUS 

In vector calculus, we encounter the vector operator “del” or  . Del may be written in 

index notation as 
i

i
x


e . It appears in the gradient, divergence, curl and laplacian of a 

scalar, vector or tensor. 

 

4. 1 GRADIENT 

A vector often encountered in fluid mechanics is the gradient of a scalar, grad . 
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Consider a scalar field  , where ),,()( 321 xxx x is a function of the position vector from 

the origin x. The differential of  is: 

3

3

2

2

1

1

dx
x

dx
x

dx
x

d













  (4.1) 

xee ddx
x

dx
x

dx
x

iij

j

i

j

iji

i

.













 (4.2) 

The gradient of  is a vector, 

3

3

2

2

1

1

eee
xxx 












  (4.3) 

Or in index notation, 

i

ii
x


 }{}grad{  (4.4) 

Let us denote ds = |dx| as the differential distance along the unit vector n; then dx = nds 

and,  

,... dsdd  nx   

so that we obtain: 

,. 


n
ds

d
 (4.5) 

which is defined as the directional derivative. So, the directional derivative of  in the 

direction characterized by the unit vector n is the projection of  on n. 

 

Example: If kk xxr  is the distance from the origin to some point, evaluate 









r

1
. We 

use index notation to find the ith component.  

    332/32/3
2

1

2

111

r

x

r

x

xx

x

x
x

xx

x
x

x

xxxr

ikik

kk

i

k
k

kk

k

i

k

kkii




































































  

(114) 

 

4. 2 THE PHYSICAL SIGNIFICANCE OF   

(1) Suppose consantC  )(r represents a surface in space. Let dr denote any tangent 
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vector of the surface at point P. Because  ia constant on the surface, we must have  

.0.  rdd  (4.6) 

Thus  is a vector normal to dr and therefore perpendicular to the surface. Hence, the unit 

normal to the surface is given by 



n  and points in the direction of increasing  . 

Example: Find the normal to the surface of the sphere of radius R centered on the origin, 

2Rxx ii   (4.6) 

Hence, 

R

x

xx

x ii

ii

ii ee
n 

4

2
 (4.7) 

 

 

 

Figure 3. Physical significance of  . 

(2) At any point P, the change of  with position is the fastest along the direction of 

 . So the rate of change with distance s is its maximum. 




maxds

d
 (4.8) 

in the direction normal to the surface  = const at P. To prove this, let n be the unit normal 

vector at P, then 

dsddd  cos.. sns  (4.9) 

Where dsd s and  is the angle between ds and n. Hence, 
ds

d
is its maximum when s 
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coincides with n and  = 0 or π. Then 




maxds

d
 (4.10) 

(1) The variation of  in multidimensional space may be depicted as a series of equi-

value surfaces. The gradient  defines the direction along which the change of  with 

position 
ds

d
is greatest. The position at which   = 0 ,  is maximum or minimum and is 

called stationary point. A curve in space which is everywhere tangent to the gradient 

 is known path of steepest ascent (descent). 

 

4. 3 THE GRADIENT OF VECTORS AND TENSORS 

The differential for a vector v = vkek is:  

  xvee
vvvvv

v ddx
x

dx
x

dx
x

dx
x

dx
x

d iij

j

i

i

..3

3

2

2

1

1

























  (4.11) 

In Cartesian coordinate system,  

   
j

i
ijji

j

i
jii

j x

v

x

v
v

x 












 veeeev or  (4.12) 

The nine partial derivatives in the gradient of a vector are:  































































3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1

x

v

x

v

x

v

x

v

x

v

x

v

x

v

x

v

x

v

v  (4.13) 

The directional derivative of a vector is written 

  vn
v

 .
ds

d
 (4.14) 

k

i
k

i

dx

dv
n

ds

dv
  (4.15) 

Note that the gradient of the position vector is the Kronecker delta 

j

i
ij

x

x




  (4.16) 
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The differential of a tensor A = Aijeiej is  

xAA dddx
x

A
dA k

k

ij

ij .or 



  (4.17) 

 

The gradient of A is  

   
k

ij

ijkkji

k

ij

kjiij

k xx

A
A

x
d
















A
AeeeeeeA or  (4.18) 

Notice that the gradient operator always raises the rank of the tensor by one (the gradient of 

a tensor is third rank tensor). 

 

4. 4 DIVERGENCE 

The divergence of a vector v and a tensor A is  

   
i

i
ij

j

i
ji

j

i
jii

j x

v

x

v

x

v
v

x 

















 eeeevv ...div  (4.19) 

3

3

2

2

1

1.
x

v

x

v

x

v

x

v

i

i



















 v  (4.20) 

 

If 0.  v then v is solenoid. 

 

 
i

j

ij

ijk

k

ij

kji

k

ij

kjiij

k x

A

x

A

x

A
A

x
eeeeeeeeAA



















 ...div  (4.21) 

 

   


































































3

33

2

32

1

31

3

23

2

22

1

21

3

13

2

12

1

11

.div

x

A

x

A

x

A

x

A

x

A

x

A

x

A

x

A

x

A

x

A
A

j

ij

jjA  (4.22) 

 

Notice that the contraction process performed by the divergence operator reduces the rank 

of the tensor by one (a vector becomes a scalar). 
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4. 5 CURL 

The curl of vector v is defined by 

i

j

k
ijk

j

k
kjkk

j

j
x

v

x

v
v

x
eeeeevvs














 curl  (4.23) 

 
j

k
ijki

x

v




 v  (4.24) 

 

Hence,  

2

1

1

2
3

1

3

3

1
2

3

2

2

3
1 ,,

x

v

x

v
s

x

v

x

v
s

x

v

x

v
s





























  (4.25) 

 

If 0 v then v is irrotational. If v denotes the velocity vector, then vw  is the 

vorticity, a pseudo vector that will encounter later. 

 

4. 6 LAPLACIAN 

The Laplacian, 2 , of a scalar,  , is defined as: 

2

3

2

2

2

2

2

1

2

2

2
2 ..

xxxxxxxx iji

ji

j

j

i

i


















































 eeee  (4.26) 

In the above definition,  can be replaced by a vector or tensor of any order. 

Note: The expressions for the operations defined above apply only to Cartesian coordinate 

system. In curvilinear coordinate systems (e.g. cylindrical, spherical, etc…) the expressions 

for the operators div, curl, etc. are more complicated and out of scope of this chapter. 

 

4. 7 SOME VECTOR IDENTITIES 

The following identities may be proved in rectilinear coordinates. According to a general 

theorem, once the result is true in one coordinate system, it is true in other coordinates. 
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     
 

     
     
     

   
  0.

.

0

......

......

...

...

21

2

















uuu

uvvuvuuvvu

uvvuvuuvvu

vuuvvu

uuu

uuu

 (4.27) 

 

4. 8 LAMINAR AND SOLENOIDAL VECTOR FIELDS 

A vector field u(r) is called lamellar (irrotational) if 0 u and is called solenoidal 

(incompressible) if 0.  u . By the identity 0 (from equation (137)) we may 

express an irrotational vector field u by 

u  (4.28) 

The the condition 0 u is satisfies and multiple component vector field is given by a 

single scalar function  . If u is solenoidal, u may be written as 

au   (4.29) 

By the identity 0.  a , the condition 0.  u is satisfied. The functions  and a are 

called the scalar and vector potentials, respectively. 

 

Theorem (without proof): Any vector field u(r) may be written as the sum of a lamellar 

field and a solenoidal field,  

au   (4.30) 

 

5 INTEGRAL THEOREMS 

 

5. 1 THE DIVERGENCE THEOREM 

The divergence theorem is sometimes referred to as Gauss’ theorem and is an extension of 

the familiar result, 

 

b

a

bfafdx
dx

df
)()(  (5.1) 
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Consider a closed piece-wise smooth surface ∂D, which encloses a domain D. Let n be the 

unit outer normal to ∂D and let u be any vector whose components and their first 

derivatives are finite and continuous everywhere within D and on ∂D.  

 

 

Figure  4. Definition of the divergence theorem 

Then, the divergence theorem states that 

 dAdV
DD




 unu .div  (5.2) 

or 

dAundV
x

u

D

ii

D i

i








 (5.3) 

This gives a relation between a volume integral and a surface integral and states, 

surprisingly enough, that the volume integral of divu depends only on the values of u on 

the surface enclosing the domain D. The divergence theorem is essentially a statement of 

conservation. Sources and sinks in the volume (on the left hand side of equation (5.3)) are 

balanced by the flux through the surface (on the right hand side of equation (5.3)). 

 

There are two extensions to this theorem: 

(a) If Bjkl… is a tensor of arbitrary order, then provided its components and their first 

derivatives are finite and continuous, 

 dABndVB
x

D

jkli

D

jkl

i








......  (5.4) 
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(b) If the domain D is contained between two closed surfaces ∂D and ∂D’ : 

Then 

 

Figure  5 Extension of the divergence theorem. 

 

   dABndABndVB
x

D

jkli

D

jkli

D

jkl

i









'

......... '  (5.5) 

 

Where n’ is the outer normal to ∂D’. This latter result can readily be extended to the case 

where the domain D is contained in the region between several closed surfaces. 

 

5. 2 GREEN’S THEOREM 

If f and  are two scalar functions which are continuous with continuous first and second 

derivatives, then 

  dAn
x

f

x
fdVff

D

i

iiD


 
















 22

 (5.6) 

 

5. 3 STOKES’ THEOREM 

Let C be closed curve which coincides with the edge of the surface S. Then: 

   

















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SS j

k
i

C

ijkii dAdA
x

u
ndxu u  (5.7) 

Where dx is everywhere tangent to C and the integration is in the counter-clockwise 

direction. Thus Stokes’ theorem provides us with a relation between a surface and a line 
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integral. When u is the velocity, then the line integral is known as the circulation. 

 

 

Figure 6 Application of Stokes’ theorem 

 

In 2-dimensions, equation (5.7) reduces to Green’s theorem in a plane. In rectangular 

coordinates, Green’s theorem reads, 

 

  
















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dxudxudxdx
x

u

x

u
221121

2

1

1

2  (5.8) 

 

5. 4 LEIBNITZ’S THEOREM 

Let Bij…(xi, t) be any time be any time dependent scalar, vector or tensor field. Suppose the 

volume integral 

 

dVtxBtI i

tD

ijij ),()(
)(

......   
(5.9) 

 

Is over domain of integration that is a function of time D(t). Let vi be th velocity of the 

surface )(tD . The Leibnitz theorem then allows us to find 
dt

dIij...
as follows 
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dStxBvndVtxB
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dVtxB
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



  (5.10) 

The surface integral takes into account the motion of the boundary, e. how fast Bij…is 

coming into D(t) because of the surface velocity v The one dimensional version of Leibnitz 

theorem is given by 

 




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)(
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 (5.11) 

 


