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Bolum 9
DIFERANSIYEL AKIS
ANALIZI



Bu bolumde akiskan hareketinin temel denklemleri turetilir ve basit bazi
akiglar igin analitik olarak nasil ¢ozulecegi gosterilir. Daha karmasik
akigslar ornegin resimde gosterilen bir tornado tarafindan tetiklenen

hava akisinin kesin ¢ozumu yoktur. ?



Amaclar

- Kutle ve momentum korumununa ait diferansiyel
denklemlerin nasil turetildigini anlayabilmelisiniz.

- Akim fonksiyonu ve basing alanini hesaplayabilmeli
ve verilen bir hiz alant icin akim cizgilerini
cizebilmelisiniz

« Basit akislar icin hareket denklemlerinin analitik
cozumlerini elde edebilmelisiniz.



o0-1 m GIRIS

Kontrol hacmi teknigi, kontrol hacmine giren ve
kontrol hacminden c¢ikan kutlesel debiler veya
cisimler Uzerine uygulanan kuvvetler gibi bir

akigsin  genel ozellikleriyle ilgilendigimizde
yararlidir.
Diferansiyel analiz, akiskan hareketinin

diferansiyel denklemlerinin akis bolgesi olarak
adlandirilan bir bolge boyunca akis alanindaki
her noktaya uygulanmasini gerektirir.

Degiskenlerin sinir sartlari da, girisleri, cikiglari
ve kati ceperleri de icine alacak sekilde akis
boélgesinin tiim sinirlarinda belirtiimelidir.

Ote yandan eger akis daimi degilse, akis
alaninin degismeye devam ettigi zaman boyunca
¢OzUmUmuzu yurutmek gereklidir.

(a) Kontrol hacmi analizinde kontrol hacminin
ici bir kara kutu gibi ele alinir, fakat (b)
diferansiyel analizde akisin film detaylari akis
bolgesindeki her bir noktada cizilir.
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9-2 m KUTLENIN KORUNUMU VE
SUREKLILIK DENKLEMI

Conservation of mass for a CV:
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denklemini  tiretmek  kontrol v

hacmini sonsuz kicUk boyuta :
kugulttugumuzu dusunuyoruz. N

————————————

¥

dx



Diverjans Teoremini Kullanarak Turetme

Kutlenin korunumunun diferansiyel formunu tiretmenin en hizli ve anlasilmasi en
kolay yolu diverjans teoremini uygulamaktir

Divergence theorem: r V-GdV= ¢ G-ndA
y 1A
[ dp B —
0= — dV + V-lpV]dV
Joy 01 cv
[ |ap = —
' —+ V- pV]|dV=0
Jov ot
) ‘ | | ,HJ“ . r _:.x
Continuity equation: —+ V- (pif) = ()
ol Y /

Bu denklem, henuz sikistinlamaz akis kabull
yapmadigimiz icin sureklilik denkleminin sikistirilabilir
akis icin gecerli bir formudur ve akis alanindaki her
noktada gecerlidir.
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koordinatlarda
kutlenin korunumununa ait

Kartezyen

diferansiyel denklemin
tiretiimesinde merkezi P
noktasi olan kuguk bir kutu

seklindeki kontrol hacmi
kullanihir: Mavi noktalar her
bir yuzun merkezini

gostormektedir.

kullanalim.

(Pulcenler of right face

Center of right face:

Center of left face:

Center of front face:

Center of rear face:

Center of top face:

Center of bottom face:

=pu+

Sonsuz kucuk kontrol hacmini
kullanarak turetme

Kutu merkezinden uzak noktalar i¢in kutu
merkezi civarindaki Taylor serisi acilimini

d(pu) dx . 1 J*(pt) (fix) N

ax 2 20 ax? \2

(PU) conter of right face = PU "'*'if”” <
g ax 2

d( pu) dx
(PU) center of teft face = PU — ax 2
d(pw) dz
(PW)center of front face = PW az 2
d(pw) dz
(PW)center of rear face = PW — 9z 2
d(pv) dy
(PV)center of top face = PV T ay 2
d(pv) dy

(f”’}cenu‘r of bottom face — PV —
dy 2



A = surface area v (
{

V, = average normal
velocity component x

z f (pw - d{ﬂ}i?) dx dy
l - dz 2

v

x | ot dy
Z (,r;u a[p”}dl)dx dz —1—--®8 : I—-I-r( a[pu}ﬂh) )
. . dx 2 i ol + dv dz
Bir yuzeyden gecgen kutlesel | ox 2
debi pV, A 'ya esittir. / .
( dlpw) r.’JrE.) .- g A dz
W + — ldxdy 1= :
dz 2 dx |
w) dy
(m! - ag:} %) dx dz
Rate of change of mass within CV: Diferansiyel kontrol hacminin her

bir yuzunden kutle girisi ve cikigl,
) d (’_} . . e
J 0 =22 4y dyd; MV noktalar her bir  yizin
ot ot merkezini gostermektedir.

Net mass flow rate into CV:
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Net mass flow rate out of CV:

d(pu) dx
(;JH f i ) dy dz +
out = .

EH’I—

=

(_ni."

d(pv) cﬁ d(pw) dz
: dxdz + | pw + f — | dx dy
ay dz 2 ‘

-'_n
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..:I.l fa top face front face
ap d(pu) d(pr) d(pw)
—dxdyd;= ———dxdvd; — —dxdydz; — —dxdvdz:
ot ] ox ] dy ' a7 '
Continuity equation in Cartesian coordinates:
dp dl put) d( pr) d( pw) }
- A 1 — E
at ox dy 0z
The Divergence Operation
Cartesian coordinates:
7 (s7) < O P 3 indirik
A - (pﬂ]+—(pl'))+§(pw] Kartezyen ve silindiri
X

ady

Cylindrical coordinates:
v-(pV) =
1 rpu) 1 Aouy)  Apu)
r or ' r a9 0z

koordinatlarda diverjans iglemi.




Ornek 1: Hava-Yakit Karisiminin Sikitiriimasi

icten yanmali bir motorun silindirinde hava-yakit karisimi  bir piston ile
sikistirilmaktadir. 'y koordinatinin baslangici gekilde gosterildigi gibi silindirin
tavaninda ve yonu asagi dogrudur. Pistonun yukariya dogru sabit bir v, hiziyla gittigi
varsayllmaktadir. Silindirin tavani ile piston kafasi arasindaki L mesafesi L=Lyqm-Vt
iligkisi uyarinca zamanla azalmakta olup burada L, ., Sekilde gosterildigi gibi t=0
aninda piston alt 6l noktadayken pistonun konumunu gostermektedir. t=0 aninda
hava-yakit karisiminin yogunlugunun silindir icerisinde heryerde ayni ve p(0) oldugu
bilindigine gore, pistonun yukari c¢ikisi sirasinda hava-yakit karisiminin yogunlugunu
zamanin ve verilen parametrelerin fonksiyonu olarak elde ediniz.

Cylinder

L(t) l-T _
Piston I¢ten yanmali bir havanin pistonla
motorun  silindirinde  yakit ve

Time ¢ havanin sikistiriimasi

Yol om

Timet=0

T Vv p 10



Finally then, we have the desired expression for p as a function of time,

lir—'I:l-l:ll.tn:nm
p = pl(0) @
Lh-uttnm _ va

In keeping with the convention of nondimensionalizing results, Eq. 4 is
rewritten as

P 1 1
= - pr=E——
p(0) 1 — Vpl/L porom 1 —r*

where p* = p/p(0) and t* = Vii/L, .- Equation 5 is plotted in Fig. 9-8.

Discussion At t* = 1, the piston hits the top of the cylinder and p goes to
infinity. In an actual internal combustion engine, the piston stops before
reaching the top of the cylinder, forming what is called the clearance wvol-
ume, which typically constitutes 4 to 12 percent of the maximum cylinder
volume. The assumption of uniform density within the cylinder is the weak-
est link in this simplified analysis. In reality, p may be a function of both

(3)

space and time. 5
4]
p* 3—_
Nondimensional -
densityasa | -
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Analysis First we need to establish an expression for velocity component v
as a function of y and f. Clearly v = 0 at y = 0 (the top of the cylinder), and
v =—Vp at y = L. For simplicity, we approximate that v varies linearly
between these two boundary conditions,

'i._.
Vertical velocity component. v = — VP"E (1)

where L is a function of time, as given. The compressible continuity equa-
tion in Cartesian coordinates (Eq. 9-8) is appropriate for solution of this
problem.

dp  d(pu d{pv dip dp  dipv

SE ) | {'p)Jr ({r}'f}zﬂ_ i (pv) _

at - jx ay iz at - ay

Osincen =0 O sincew =10

By assumption 1, however, density is not a function of y and can therefore
come out of the y-derivative. Substituting Eq. 1 for v and the given expres-
sion for L, differentiating, and simplifying, we obtain

p _ av ] ( }‘) V, V,

L

ot g ay / ay PL P Luotom — Vot

By assumption 1 again, we replace dp/dt by dp/dt in Eq. 2. After separating
variables we obtain an expression that can be integrated analytically,

Yo dp . : Vp P Lotiom
— = 1 In

dt — (3)

n _—
-0 Lbﬂ[lﬂm T VPI p[ﬂ} Lbntmm o 1”'P'IIL

o=pi) P4
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Sureklilik denkleminin alternatif formu

p = — ap = = B — L -
VepV)=—+V-Vp+pV: V=0
[ ot Y _
Material derivative of p I} -
Alternative form of the continuity equation: l
I
| Dp = Streamline
~P vy = 0 >
(9-10) p Dt ;

Bir maddesel eleman akis alaninda hareket
ederken yogunlugu Denklem 9-10 uyarinca degisir.

Equation 9-10 shows that as we follow a fluid element through the flow
field (we call this a material element). its density changes as V- V changes
(Fig. 9-9). On the other hand, if changes in the density of the material ele-
ment are negligibly small compared to the magnitudes of the velocity gradients

in V- V as the element moves around, p IDprr = (), and the flow is approx-
imated as incompressible,



Silindirik Koordinatlarda Sureklilik Denklemi

Coordinate transformations:

S0 7 . _ 1‘
F=Nx"+ vy X=rcos#t v = rsin = tan =
i : v

Continuity equation in cylindrical coordinates:
dp 1 dlrpu,) 1 dlpuy) dlpu.)

dt rooodr rooof a7

f

(a) i ()

Silindirik koordinartlarda hiz bilesenleri ve birim vektorler: (a) xy- veya ré
duzleminde iki boyutlu akis, (b) G¢ boyutlu akis
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Siireklilik Denkleminin Ozel Durumlari

Ozel Durum 1: Daimi Sikistirilabilir Akis
Steady continuity equation: V-(pV)=0 (9-13)
In Cartesian coordinates, Eq. 9—13 reduces to

0

i pu dlpr) dlpw)
dpu) , opv)  dpw) _
0x dy dz
In cylindrical coordinates, Eq. 9-13 reduces to
1 d(rpu, | d(pu, d(pu,)
_r{p}+_rp;}+ pu;) _
roodr rooaf 0z

0

15



Incompressible continuity equation: V-vV=0 Ozel Durum 2:

- L S : : Sikistirilamaz
Incompressible continuity equation in Cartesian coordinates: Ak 2
i i , I
o av ow §
—+—+—=0
dx dy 0z

Incompressible continuity equation in cylindrical coordinates:

| d(ru,) 1 du,) dlu,)
-t —— "+ —=0
rooor roodo 0z

Observer

Bir patlamadan sonra olusan
duzensizlik sok dalgasi gozlemciye
ulasincaya kadar hissedilmez.

16



- E}MMP.{E 9-2 Design of a Compressible Converging Duct

- A two-dimensional converging duct is being designed for a high-speed wind
® tunnel. The bottom wall of the duct is to be flat and horizontal, and the top
m wall is to be curved in such a way that the axial wind speed v increases

approximately linearly from v; = 100 m/s at section (1) to u, = 300 m/s at :
section (2) (Fig. 9-12). Meanwhile, the air density p is to decrease approxi- g
mately linearly from p; = 1.2 kg/m® at section (1) to p, = 0.85 kg/m® at m
section (2). The converging duct is 2.0 m long and is 2.0 m high at section =
(1). (&) Predict the y-component of velocity, v(x, y), in the duct. (b) Plot the ®
approximate shape of the duct, ignoring friction on the walls. (c¢) How h|gh

should the duct be at section {2} the exit of the duct? o
Ax=20m
N
2.0
M| oy, ~—
— _
.T —— D —
=

X

(1) (2)

Yuksek-hizl bir rizgar tuneli icin
tasarlanmig  yakinsak  kanal
(cizim Olcekli degildir). 17



Properties " The fluid is air at room temperature (25°C). The speed of sound

is about 346 m/s, so the flow is subsonic, but compressible.

Analysis (a) We write expressions for v and p, forcing them to be linear in x,

Uy — Uy (300 — 100) m/s
Ax 2.0m

u=u +C,x where C,

=100s " (1)
and
pa—p1  (0.85 — 1.2) kg/m’
p=p +C,x where C,= A 2 0m
= —0.175 kg/m*

The steady continuity equation (Eg. 9-14) for this two-dimensional com-
pressible flow simplifies to

d(pu) N ﬂ(’pv) N fﬂ;}’l'ﬂ PN ﬂ(’pﬂ) __ 9pu)

: - (3)
ax ay ay ox

(2)

e
0 (2-I)

Substituting Egs. 1 and 2 into Eq. 3 and noting that C, and C, are con-
stants,

dpr) _ dllpr + C,x)(uy + Cux)]
dy - ax

= —(p,C, + HJC,:J} — ECHC;;I

Integration with respect to y gives

pvr= —(pC, + u,C,)y — 2C,C,xy + f(x) (4)

18



Mote that since the integration is a partial integration, we have added an
arbitrary function of x instead of simply a constant of integration. Next, we
apply boundary conditions. We argue that since the bottom wall is flat and
horizontal, v must equal zero at y = O for any x. This is possible only if f(x)
= (0. Solving Eq. 4 for v gives
_(P lCu +u lC;a]}! - ECHCFJI}:

v = — U= :
P P+ CLx

—(pC, +u,C L)y —2C,C,xy

(3)

(b) Using Egs. 1 and 5 and the technique described in Chap. 4, we plot sev-
eral streamlines between x = 0 and x = 2.0 m in Fig. 9-13. The streamline
starting at x = 0, y = 2.0 m approximates the top wall of the duct.

(c) At section (2), the top streamline crosses y = 0.941 m at x = 2.0 m.
Thus, the predicted height of the duct at section (2) is 0.941 m.

]

—
L

Ornek 9-2'deki yakinsak v
kanala ait akim gizgileri.

=
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T
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1
Bottom wall




o EXAMPLE 9-3 Incompressibility of an Unsteady

Two-Dimensional Flow

CDnslder the velocity field of Example 4-5—an unsteady, two-dimensional
velomt}.r field given by V = (u, v) = (0.5 + 0. 8x)i + [1.5 + 2.5 sin (wh) —
0.8y1j", where angular frequency  is equal to 2+ rad/s (a physical frequency
of 1 Hz). Verify that this flow field can be approximated as incompressible.

SOLUTION We are to verify that a given velocity field is incompressible.
Assumptions 1 The flow is two-dimensional, implying no z-component of
velocity and no variation of v or v with z.

Analysis The components of velocity in the x- and y-directions, respectively,
are

u=105+ 0.8x and v =15+ 2.5sin (wl) — 0.8y

If the flow is incompressible, Eq. 9-16 must apply. More specifically, In
Cartesian coordinates Eq. 9-17 must apply. Let's check:

du  dv dw
—+— 4+
dx oy ﬁ.?

0.8 0.% 0 since 2-D

=0 — 08—-08=0

So we see that the incompressible continuity equation is indeed satisfied at
any instant in time, and this flow field may be approximated as incompressihle.
Discussion Although there is an unsteady term in v, it has no y-derivative
and drops out of the continuity equation.

20



: EXAMPLE 9-4 Finding a Missing Velocity Component

: Two velocity components of a steady, incompressible, three-dimensional flow
g field are known, namely, u = ax? + by® + cz? and w = axz + byz?®, where
m a, b, and c are constants. The y velocity component is missing (Fig. 9-14).

®m Generate an expression for v as a function of x, y, and z.

Iﬂnafysfs Since the flow is steady and incompressible, and since we are

working in Cartesian coordinates, we apply Eg. 9-17 to the flow field,
Condition for incompressibility:

ov . du  dw dv

‘ W T s — by
dy ox oz » |
et e
2ax ax + 2byz

—LEA

Next we integrate with respect to y. Since the integration is a partial integra-
tion, we add some arbitrary function of x and z instead of a simple constant

of integration.

»

A
i -y

Solution: v = —3axy — by’z + f(x,2) For Sale: Need a
6-mo. old computer to Lewis
$300 OBO This Fri
8 86227120 | o
Suareklilik denklemi eksik hiz Mlslsm_g:
o E T S y t
bileseni bulmak icin kullanilabilir é‘o‘nfp‘ffn‘e{n

If found, call
1-800-CON-UITY



EXAMPLE 9-5 Two-Dimensional, Incompressihle, Vortical Flow

Consider a two-dimensional, incompressible flow in cylindrical coordinates;
the tangential velocity component is u, = K/r, where K is a constant. This
represents a class of vortical flows. Generate an expression for the other
velocity component, u,.

Analysis The incompressible continuity equation (Eq. 9-18) for this two-
dimensional case simplifies to

1 d(ru,) 10w, ouy d(ru,) o,
— +—-—+ =0 — = —— (1)
roodr r of /_‘d" dr at

'-_.\_,._f'

0(2-I)

The given expression for u, is not a function of #, and therefore Eqg. 1
reduces to

olru
(ﬂr’] =0 — ru, = (6, 1) (2)

where we have introduced an arbitrary function of # and t instead of a con-
stant of integration, since we performed a partial integration with respect to
r. Solving for u,,

_J0,0)

r

u, (3)

Thus, any radial velocity component of the form given by Eq. 3 yields a two-
dimensional, incompressible velocity field that satisfies the continuity equation.

22



We discuss some specific cases. The simplest case is when f(8,f) = O
(u, = 0, u, = Kir). This yields the line vortex discussed in Chap. 4, as
sketched in Fig. 9-15ba. Another simple case is when f(#,f) = C, where C is
a constant. This yields a radial velocity whose magnitude decays as 1/r. For
negative C, imagine a spiraling line vortex/sink flow, in which fluid elements
not only revolve around the origin, but get sucked into a sink at the origin
(actually a line sink along the zaxis). This is illustrated in Fig. 9-155.
Discussion Other more complicated flows can be obtained by setting (4, 1)
to some other function. For any function f(#, f), the flow satisfies the two-
dimensional, incompressible continuity equation at a given instant in time.

ok

{ﬂ.} 'I:IJ']
(a) Cizgisel cevri akisi ve (b) spiral sekilli ¢izgisel
cevri/kuyu akisina ait akim cizgileri ve hiz profilleri
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EXAMPLE 9-6 Comparison of Continuity
and Volumetric Strain Rate

Recall the volumetric strain rafe, defined in Chap. 4. In Cartesian coordinates,

1 DV N N o N du N ow i
—— =g Ewt+ e, =—+—+—

vpr %Y TF ax ay o az

Show that volumetric strain rate is zero for incompressible flow. Discuss the
physical interpretation of volumetric strain rate for incompressible and com-
pressible flows.

ﬂnaf}sfs If the flow is incompressible, Eq. 9-16 applies. More specifi-
cally, Eq. 9-17, in Cartesian coordinates, applies. Comparing Eqg. 9-17 to
Eqg. 1,

1DV _

—=1 for incompressible flow
V' Dt P

24



Thus, volumetric strain rate is zero in an incompressible flow field. In fact,
you can define incompressibility by DWDt = 0. Physically, as we follow a
fluid element, parts of it may stretch while other parts shrink, and the ele-
ment may translate, distort, and rotate, but its volume remains constant
along its entire path through the flow field (Fig. 9-16a). This is true whether
the flow is steady or unsteady, as long as it is incompressible. If the flow
were compressible, the volumetric strain rate would not be zero, implying
that fluid elements may expand in volume (dilate) or shrink in volume as
they move around in the flow field (Fig. 9-16b). Specifically, consider Eq.
9-10, an alternative form of the continuity equation for compressible flow.
By definition, p = m/V, where m is the mass of a fluid element. For a mate-
rial element (following the fluid element as it moves through the flow field),
m must be constant. Applying some algebra to Eq. 9-10 yields

—

1 Dp  VD(m/\V) V' m DU 1 DU f: 1—; 1 LJU'
—_—— = — —_— e —— — 1 —3
pDt m Dt mV:Dt VDt V Dt

Volume = VL=V

= V.1

Discussion
The final result
IS general—not
limited to
Cartesian
coordinates. It
applies to
unsteady as
well as steady
flows.

\ S (a) Sikistirilamaz bir akig

Time =t, Time =t,

N\
|
I
."

Time =1,

-
-

—

:

|

|

|
——

-

Volume = Vi

(a) degisedbilir.

alaninda akiskan elemanlari

otelenebilir, donebilir ve

:j“-a- sekilleri degisebilir fakat

- Valume =V, hacimleri degismez; (b)

sikistirilabilir bir akis alaninda

T-me =t ise akiskan elemanalari

L otelenirken, donerken ve

Volume = 1, S€Killeri bozulurken hacimleri



: EXAMPLE 9-7 Conditions for Incompressible Flow

:Consider a steady velocity field given by V= (u, v, w) = alx?y + ygf
o+ bxy2j + cxk, where a, b, and c are constants. Under what conditions is
m this flow field incompressible?

SOLUTION We are to determine a relationship between constants a, b, and
¢ that ensures incompressibility.

Assumptions 1 The flow is steady. 2 The flow is incompressible (under cer-
tain constraints to be determined).

Analysis We apply Eq. 9-17 to the given velocity field,

du dvr dw
— + +—F—=10 — 2axy + 2bxy = 0
ax  ay  fz : :

‘I—\...—"

'_\_' H'_'
2400y 2hy i

Thus to guarantee incompressibility, constants a and b must be equal in
magnitude but opposite in sign.

Condition for incompressibility: a=—b

Discussion |f a were not equal to —b, this might still be a valid flow field,
but density would have to vary with location in the flow field. In other words,
the flow would be compressible, and Eq. 9-14 would need to be satisfied in
place of Eg. 9-17/.
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9-3 m AKIM FONKSIYONU

Kartezyen Koordinatlarda Akim Fonksiyonu

du  ov
ot =
dx  dy

0

Kartezyen koordinatlarda, sikistirilamaz,
iki boyutlu akim fonksiyonu:

adifs
u=-—
dy

9 (aw)
- =
dx \ dy

dir — Akim
and = —— :
gr fonksiyonu w

o dils ERl. O 0
ay dx dx dy  dyodx

Akim fonksiyonunun degigik koordinat
sistemlerine gore tanimlamalari

Stream Function

2-D, incompressible, Cartesian
coordinates:

o and v=—@

“=3y ax

2-D, incompressible, cylindrical
coordinates:
1 nlr
U =—— and uy =——
T ab 9 :
Axisymmetric, incompressible,
cylindrical coordinates:
= _l@ and . =ldliIEI
oz < rar
2-D, compressible, Cartesian
coordinates:
il il
p P
u=—= and py=-——
PE="5y Pr =" 0x




_— Point (x + dx, v + dy)
-
i =l A .
i o Streamline
~ i = L.';; - - ;
~ i - -
_— e o
b=y /
— ) ]}' Point (x, y)
{Illj' — {Illj' I.-f-.-"
. i X
Y Streamlines Arc length dr = (dx, dy) and local
‘ _ _ . velocity vector V = (u, v) along
¥ Sabit akim fonksiyonu egrileri akigin a two-dimensional streamline
akim cizgilerini temsil eder in the xy-plane.
_ dy v Sabit y eqgrileri
Along a streamline: o — v dx +Ed}* =0 al.<|§|_n a{(”.n
abilax il cizgileridir.
_ oy s
Along a streamline: — dx+—dy=0
ax Ay
s s
Total change of i: df = —dx + —dy 28

dx dy



EXAMPLE 9-8 Calculation of the Velocity Field
from the Stream Function

A steady, two-dimensional, incompressible flow field in the xy-plane has a
stream function given by ++ = ax? + by + cx, where a, b, and ¢ are con-
stants: a = 0.50 (m - s}, b =—2.0 m/s, and ¢ =—1.5 m/s. (a) Obtain
expressions for velocity components v and v. (b) Verify that the flow field
satisfies the incompressible continuity equation. (c) Plot several streamlines
of the flow in the upper-right quadrant.

Analysis (a) We use Eq. 9-20 to obtain expressions for v and v by differen-
tiating the stream function,
_alr difr

Uu=—==n and v=——==3ax}—¢

dy X
(b) Since v is not a function of x, and v is not a function of y, we see imme-
diately that the two-dimensional, incompressible continuity equation (Eqg.

9-19) is satisfied. In fact, since « is smooth in x and y, the two-dimensional,

incompressible continuity equation in the xy-plane is automatically satisfied
by the very definition of +. We conclude that the flow is indeed incompressible.
(c) To plot streamlines, we solve the given equation for either y as a function
of x and «, or x as a function of y and . In this case, the former is easier,
and we have
o — ax® — cx

b

Equation for a streamline: V=

29



This equation is plotted in Fig. 9-20 for several values of i+, and for the pro-
vided values of a, b, and c. The flow is nearly straight down at large values
of x, but veers upward for x < 1 m.

Discussion You can verify that v = 0 at x = 1 m. In fact, v is negative for x
= 1 m and positive for x < 1 m. The direction of the flow can also be deter-
mined by picking an arbitrary point in the flow, say (x = 3 m, y = 4 m), and
calculating the velocity there. We get t = —2.0 m/s and v = —12.0 m/s at
this point, either of which shows that fluid flows to the lower left in this
region of the flow field. For clarity, the velocity vector at this point is also
plotted in Fig. 9-20; it is clearly parallel to the streamline near that point.
Velocity vectors at three other locations are also plotted.

10 m/s

Scale for velocity VeCtOrs: — iy — CI.IE' — CX

I' |I | | | }r =
5 \\_m/ .” TTTH’ b
4 I'I |II || | feo
", 175 ."' ||' |' | {|' Ornek 9—8'_deki hiz
3 [ ]3] alanina ait akim

¥, m

]

=

| | I|- I| ||

| | £
IIII|IIII|IIII|IIII|IIII|II

0 I 2 3 4 5

X m

cizgileri her bir akim
cizgisi icin sabit
degerleri ve dort farkl
konumda hiz vektorleri
goOsterilmistir.
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Streamline 2

Bir akim c¢izgisinden digerine y degerleri —
arasindaki fark, birim geniglik basina ay

bu iki akim ¢izgisi arasindan gecgen
hacimsel debiye esittir.

xy-dizleminde iki-boyutlu akim cizgilen i¢in
iki akim gizgisi araswndan birim geniglik bagina
gecen hacimsel debi V/ her en-kesitte aymdr,

iy =l |

Streamline 1

Control surface

(@) xy duzleminde akim
gizgileri v, ve y, ile
sinirlandiriimig

Y kontrol hacmi ile A ve
B dilimleri;

(b) Sonsuz kucuk ds
uzunlugu etrafindaki
bolgenin buyutulmus
goruntusu.

Streamline 2

i = ify I

Streamline 1

(a)
¢ (b}
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Akim fonksiyonu y’nin degeri xy-dizleminde
akis yonunun soluna dogru artar

Sol-taraf kurali ¢izim
Uzerinde gosterilmistir.
Xy duzleminde akim
fonksiyonunun  degeri
)' akis yonunun soluna
—_— dogru artar.

r,"f = __:'I-

i =6

Sekilden gorulebilecegi gibi, akim fonksiyonu, akisin ne kadar kivrildigina ve
dondugune bakilmaksizin akis yontinun soluna dogru artmaktadir.

Akim cizgilerinin birbirinden uzaklastigi (sag alt kisim) kisimlardaki hizin buyuklugu
(akiskan hizi), akim cizgilerinin birbirlerine daha yalan oldugu kisimlardakine (orta
kisim) oranla daha kucguk kalir.

Akim cizgileri daraldiginda aralarindaki en-kesit alani azalir ve akim cizgileri
arasindaki debiyi korumak icin hiz artmalidir.
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Ornek 9. Akim Cizgilerinden Bulunan Bagil Hiz

Hele-Shaw akist, bir siviyi paralel plakalar arasindaki ince bir araliktan gegmeye zorlamak suretiyle elde edilir.
Sekilde egik plaka Uzerindeki akig igcin ornek bir Hele-Shaw akisi verilmigtir. Cikis cizgileri, yukari akim
bolgesinde esit aralikli noktalardan salinan murekkep ile olusturulmustur. Akis daimi oldugundan akim cizgileri
ile ¢ikis cizgileri cakismaktadir. Akiskan su olup cam plakalar 1.0 'er mm aralikla yerlestiriimigtir. Akim ¢izgisi
deseninden yola ¢ikarak akig hizinin, akis alaninin belirli bir bolgesinde yuksek veya dusuk (goreceli olarak)
oldugunu nasil soyleyebilecegimizi irdeleyiniz.

Kabuller: 1 Akis daimidir. 2 Akis sikistirllamazdir. 3 Akis xy-duzleminde iki-boyutlu potansiyel akisi
modellemektedir.

Analiz: Bir akim fonksiyonunun esit aralikli akim gizgilerinin birbirlerinden uzaklagsmasi, o bolgede akis hizinin
dustugunu gosterin Benzer sekilde eger akim gizgileri birbirlerine yaklasiyorsa bu bolgede akis hizi
artiyordur. Sekilden, akim cizgileri esit aralikli oldugundan plakanin yukariakiminin uzaginda akisin duz ve
uniform oldugu anlasilmaktadir: Akiskan plakanin.alt tarafina dogru yaklastik¢a, 6zellikle durma noktasi
civarinda akim cizgileri arasindaki genis araliklarindan anlasildigi gibi akisin hizi yavaslamaktadir. Ote
yandan akis, plakanin keskin koseleri civarinda: birbirine.iyice yaklagsmig akim gizgilerinin gosterdigi gibi
yuksek hizlara dogru ivmelenmektedir: :

Irdeleme: Hele-Shaw akisinin ¢ikis cizgileri, Bolim 10'da tartisilacagi gibi potansiyel akisa benzer bir yapi
sergiler.

Egik bir plaka Uzerinden Hele-
Shaw akisi ile olusturulan c¢ikis
cizgileri. Cikis cizgileri, ayni en-
kesit sekline sahip iki-boyutlu
egik bir plaka Uzerindeki
potansiyel akisa ait (Bolum 10)
akim cizgilerini
modellemektedir.
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Ornek 11: Hacimsel Debinin Akim Cizgilerinden Bulunmasi

Bir su kanalinin taban yuzeyindeki dar bir yariktan su emisi yapiimaktadir. Kanaldaki su V= 1.0 m/s uniform
hiziyla soldan saga dogru akmaktadir. Yarik xy-duzlemine dik ve tim kanal kesitinde z-ekseni boyunca
uzamakta olup genisligi w= 2.0 m'dir. Dolayisiyla akigin xy-duzleminde iki-boyutlu oldugu dusunulmektedir.

Sekilde bazi akim cizgileri cizilmis ve isaretlenmistir. Kalin akim c¢izgisi akisi ikiye ayirdigindan bdlen akim
cizgisi olarak adlandirilir. Bu bolen akim cizgisinin altindaki tUm su yarik tarafindan emilirken, bolen akim
gizgisinin Uzerinde kalan su asagl akim yonunde yoluna devam etmektedir. Yariktan emilen suyun hacimsel
debisi nedir? A noktasindaki hizin bayukluguna belirleyiniz.

9

i

y,m |

0

Uzerinde dar bir emis yarigi bulunan bir ¢geper boyunca olan serbest akim
akisina ait akim gizgileri; akim cizgilerinin degerleri m?/s birimindedir; kalin
olan akim ¢izgisi bolen akim ¢izgisidir. A noktasindaki biz vektorunun yonu
sol-taraf kuralina gore belirlenmisgtir.
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Analysis By Eg. 9-25, the volume flow rate per unit width between the bot-
tom wall (4., = 0) and the dividing streamline (drgyiging = 1.0 m?/s) is

LI‘F 2 2
; = Llljdi,_.jdjng - Llla‘wa'] = (]G — 'D) m-/s = 1.0 m/s
All of this flow must go through the slot. Since the channel is 2.0 m wide,
the total volume flow rate through the slot is

Y
V= W= (1.0 m*/s)(2.0 m) = 2.0 m%/s

To estimate the speed at point A, we measure the distance & between the
two streamlines that enclose point A. We find that streamline 1.8 is about
0.21 m away from streamline 1.6 in the vicinity of point A. The volume flow
rate per unit width (into the page) between these two streamlines is equal to
the difference in value of the stream function. We thus estimate the speed
at point A,

(V2 N VAR |

Vi= S sw E{"-.'II’J_S — ) =

(1.8 — 1.6) m*s = 0.95 m/s
0.21 m

Qur estimate is close to the known free-stream speed (1.0 m/s), indicating
that the fluid in the vicinity of point A flows at nearly the same speed as the
free-stream flow, but points slightly downward.

Discussion The streamlines of Fig. 9-26 were generated by superposition of
a uniform stream and a line sink, assuming irrotational (potential) flow. We
discuss such superposition in Chap. 10.
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Silindirik Koordinatlarda Akim Fonksiyonu

d(ru,)  o(uy) Incompressible, planar stream function in cylindrical coordinates:
dr e 1 dils s
U, =———- and Uy = ———
roof dr

| o(ru,) olu.)
_ .I' —I— L — O
roor 0z

Incompressible, axisymmetric stream function in cylindrical coordinates:

| dilr 1 i
W, = ——-; and U, = ——
| . I ar

Silindirik  koordinatlarda
z-eksenine gore donel
simteriye sahip bir
eksenel simetrik cisim
uzerindeki akis; ne
geometri ne de hiz alani
O'yva bagldir ve u, =0
dir.

Rotational
symmetry

Axisymmetric

body
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Ornek 12: Silindirik Koordinatlarda Akim Fonksiyonu

Hiz bilegenlerinin u=0 ve uy, = K/r (K-sabit) olarak verildigi, daimi,
duzlemsel ve sikistirllamaz bir gizgisel cevriyi goz onune aliniz. Bu
akis asagidaki sekilde gosterilmistir. Akim fonksiyonu w(x,y) icin bir
ifade gelistiriniz ve akim ¢izgilerinin dairesel oldugunu gosteriniz.

Analysis We use the definition of stream function given by Eq. 9-27. We can
choose either component to start with; we choose the tangential component,

difr K

EZ —HH:—? — LrI=_Klnr+f(H) (1)
Now we use the other component of Eq. 9-27,

1 fﬂfﬁ_ | 0 —
U= rf ©

where the prime denotes a derivative with respect to #. By equating u, from
the given information to Eq. 2, we see that

=0 — fiey=cC
where C is an arbitrary constant of integration. Equation 1 is thus

Solution: r=-KInr+C (3)

Finally, we see from Eq. 3 that curves of constant » are produced by setting
r to a constant value. Since curves of constant r are circles by definition,
streamlines (curves of constant ) must therefore be circles about the origin,
as in Fig. 9-15a.

For given values of C and i+, we solve Eq. 3 for r to plot the streamlines,

Equation for streamlines: r=e W-OK (4)

For K = 10 m2/s and C = 0, streamlines from + = 0 to 22 are plotted in
Fig. 9-28.

o

=
in

e

=
I|IIII|IIII!IIII|IIII|I

-1 0.5 0 0.5

X

Hiz alanina ait akim ¢izgileri
K=10m?/sandC=0
alinarak cizilmistir. Bazi
akim cizgileri igin sabit
degerleri gosterilmistir.;
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Sikistirilabilir Akim Fonksiyonu

We extend the stream function concept to steady, compressible, two-dimen-
sional flow in the xy-plane. The compressible continuity equation (Eq.
O—-14) in Cartesian coordinates reduces to the following for steady two-
dimensional flow:
d(pu) N dpv) _ 0
dx ay

(9-30)

We introduce a compressible stream function, which we denote as ¢/,

Steady, compressible, two-dimensional stream function in Cartesian coordinates:
difr oilr |

pu = — and pr = ——— (9-31)
dy X

By definition, s, of Eq. 9-31 satisfies Eq. 9-30 exactly, provided that ¢, is
a smooth function of x and y. Many of the features of the compressible
stream function are the same as those of the incompressible i as discussed
previously. For example, curves of constant s, are still streamlines. How-
ever, the difference in ¢, from one streamline to another is mass flow rate
per unit width rather than volume flow rate per unit width. Although not as
popular as its incompressible counterpart, the compressible stream function
finds use in some commercial CFD codes.
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9-4 m DOGRUSAL MOMENTUM KORUNUMU-

CAUCHY DENKLEMi

RTT uygulanmasiyla bir kontrol hacmi igin dogrusal momentum
denkleminin genel ifadesi.

— . B 0l — ‘ — =
MYF=| pgdV+ | o;-ndA= —(pV)dV+ | (pV)V -1 dA
“CV “CS “CV dt “CS
— — — 0l — — —
SMF=> Foay T > Furface = py (pV)dV + > BmV — > pmV
Jov out in

Kartezyen koordinatlarda duzgun
altiyuzlu seklindeki sonsuz kuguk bir
kontrol hacminin pozitif yuzlerindeki
(sag, ust ve On) pozitif gerilme
tansoru bilesenleri. Mavi noktalar
her bir yuzun merkezini
gostermektedir. Negatif yuzlerdeki
(sol, alt ve arka) pozitif bilegenler
sekilde gosterilenlerin tersi
yonlerdedir.
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Diverjans Teoremi Kullanarak Turetilmesi
J (pV)V - il dA = J V-(pVV)dV | oy-iidA= J Vo, dV
C5 (Y “CS8 (Y

‘ d — — — — N —
J {—{p‘r’} + V- (pVV) —pg =V 0,[dV=0
ot .
cv
Cauchy’s equation: Py (pV) + V- (pVV) = pg + V- 0
d

The Extended Divergence Theorem

| V-Gyav=1, G;-7ida

S

Diverjans teoreminin genisletilmis formu sadece |
vektorler icin degil ayni zamanda tensorler icin de i

kullanislidir. Denklemde G; ikinci mertebeden bir Cauchy denklemi dogrusal momentumun
tensor, W hacim ve A ise hacmi gevreleyen ve korunumu yasasinin diferansiyel
tanimlayan ydzeyin alanidir. formudur. Her akiskan tipine uygulanir.




Sonsuz Kucuk Kontrol Hacmi Kullanarak Turetilmesi

2Fr= EFr,de}r + 2-‘Er,.~;urfacc= J i{PH] dVv + EB‘WH o E.IB?I‘;IH

Cv ot

Rate of change of x-momentum within the control volume:

ot

"1
‘ d(pru) d}‘) _
X
T G”W‘agjm%gd“#

S0 d
J — (pu) dV = —(pu) dx dy dz
v dt

=z
A

) I
LAy o
I

(,rmu — a{puu]ix) dy dz —-—-»8 : r— d(puu) dx

ox 2 I put + —— dy dz
/ I PR o
A S dz
(pwu + %) ?) dr dy” S -

(o= 220 8) 4

in

Sonsuz koucuk bir
kontrol hacminin her
bir yuzinden gecen

dogrusal

momentumun X-
bileseninin giris ve
cikiglarr, Kirmizi
noktalar her  bir
yuzun merkezini

gOstermektedir.
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Net outflow of x-momentum through the control surface:

> Briw — E Briw =

out

(— (puu) + — [pvu} + — {pwu}) dx dy dz

2 F; body — 2 Fl eravity — P8x dx d‘r dz

\

— * l . ~ v
. ) -
Fgmmy -

Yercekimi vektorunun mutlaka belirli bir
eksen ile hizalanmasi gerekmez. En genel
halde sonsuz kuguk bir akigskan elemanina
etkiyen agirlik kuvvetinin U¢ bileseni
vardir.
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h-(-:ru + et d—1) dx dz

do,, dx ' :
(f*r_r.r - *ar;r E) dy d7 —t===-: ) i .__>(ET_ o+ af;:r i—l) dy dz

Diferansiyel bir kontol hacminin her bir yuzu tzerindeki ilgili gerilme tansoru
bileseninden kaynaklanan ve x-yonunde etkiyen kuvvetleri gosteren sematik
cizim; kirmizi noktalar her bir ylUzun merkezini gostermektedir.

d i i
F. =g .+ — o, +— .. |dxdvdz
2 T, surface (ﬂl X H"I- X t:H’. ,,r) 4

dlpu) dlpuu) dpru) dpwu) l d i
’f + ]f + F + F. =Pt Ot Ot Oy
df dX dv dZ ' ox —  dy — dI ~
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d(pr) N dpur) dprr)  d{pwr) i a 4

=pg, +— o, +— 0o, +— 0,
ol ax ay 0z PRy T ax 7o ay 7 9z °
d(pw)  d(puw) d(prw)  d(pww) H d a
) + — + — + - = pg.+ O+ Oy O
ot dx ay 0z e T ey Az

Cauchy’s equation: T{(;:V} + V- (pVV)=pg + V- 0y
(]

V = (1, v, w) vekiériiniin kendisi ile dis carpuns
ikinci mertebeden bir tensdrdiir. Gasterilen
carpim Kartezyen koordinatlardadir ve dokuz
bilesenli bir matris olarak gdsterilmistir.
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Cauchy Denkleminin Alternatif Formu

PR oV - ap
Tovy=p L v
o P =P, ot

- = —3

Alternative form of Cauchy’s equation:

ot

9V R
I,r,{— + {F- ?]V] =p

p—-l—".f’—p—l— %*{p?’}]—l—p{b’* T}V=p§—|— E*ff,}'

—

DV
Dt

—

=||”§ T T'”__r'-ll;
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Newton’un Ikinci Yasasini
Kullanarak Turetme

S F = ma DV dx dy d DV
=ma=m-— = 7
pt P
DV . =

pﬁ =pg + V {IU- |
Diferansiyel akis elemani
eger maddesel bir eleman
ise, akis ile birlikte hareket g
eder ve Newton'un ikinci
yasasl dogrudan dx

uygulanabilir.

y Du N
X-component: =
P P~ P&
y Dv N
-component: — — po.
e Ppr — P®
y Dw N
Z-component: = = e

do, 00, do.
— + — +

0x ay dz

A0y dOy  dOy,

- —I_ -
0x ay dz
do, 00y do,

L5 i - —I_ Lk
0X dy dz

Streamline
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9-5 m NAVIER-STOKES DENKLEMI

Giri S T Oy Oy —P 0 0
Fluid at rest: T =| 0w Oy op =1 0 —P 0
Ty O O 0 0 —P
5, viskoz gerilim ~ MovingJluids:
tansoru Tp Oy Oy —P 0 0 T Ty Tx
Tj=|0u oy o= 0 =P Of+lmTa T Ty
Ty Oy O 0 0 -—P Ta Ty Tx
| |
v Mechanical pressure: P,=——(oy+ oy, + )
_ 3 y
/]—q— |p Mekanik basing, bir akiskan elemani lzerinde
| * ice dogru etki eden ortalama normal gerilmedir.
I .
I s _
| s F Durgun haldeki akiskanlarda
Ll i et akigskan elemani Uzerindeki tek
dy p/fi _____________ geriime, daima her bir ylzeyin
: 7 normali dogrultusunda ve iceri
— | dogru  etkiyen  hidrostatik o
N basingtir.



Newton tipi ve Newton Tipi Olmayan Akiskanlar

Bingham

N Shear stress .
plastic

Shear
thinning

Newtonian

Shear
thickening
Shear strain rate
Akiskanlarin  reolojik  davraniglari;  sekil

degistirme hizinin fonksiyonu olarak kayma
gerilmesi.

Bazi akiskanlar harekete gecirebilmek
icin akma gerilmesi denilen sonlu bir
gerilmenin uygulanmasina ihtiya¢ vardir.
Bu tur akigkanlar Bingham plastik
akiskanlar olarak bilinir.

Reoloji: Akmakta olan akiskanlarin
deformasyonunun incelenmesine denir.

Newton tipi akiskanlar: Kayma gerilmesinin
sekil degistirme hiziyla dogrusal degistigi
akiskanlardir.

Newton tipi olmayan akigkanlar: Kayma
gerilmesi ile sekil degistirme hizinin dogrusal
olmadigi akiskanlardir.

Viskoelastik: Uygulanan gerilme
kaldirildiginda bastaki asil sekline (tamamen
ya da kismen) donen akiskana denir.

Bazi Newton tipi olmayan akigkanlar, ne kadar
hizli sekil degisimine ugrarlarsa o denli daha
az viskoz duruma geldiklerinden incelen
akiskanlar veya sanki- plastik akiskanlar
olarak adlandirilir.

Plastik akiskanlar incelme etkisinin en fazla
goruldagu akigkanlardir.
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Kabalagsan akigkanlar veya kabaran (dilatant) akiskanlarda gerilme
veya sekil degisimi hizi arttikca akiskan daha viskoz hale gelir.

[ think he

means
quicksand.

Help!
[ fell into a
dilatant fluid!

Bir muhendisin bataklik kumuna (bir
dilatant akigskan) dustugundeki hali.
Daha cok hareket etmeye calistikca
akigskan daha viskoz hale gelmektedir.



Sikistirilamaz izotermal Akis icin Navier-Stokes Denkleminin
Turetilmesi

For a fluid flow that is both
incompressible and isothermal- Slkvlg.tlrll?maz akis ygklagtlrml
: yogunlugun; izotermal
« p=constant : : . :
. u = constant yaklastirani ise viskozitenin sabit
And therefore: oldugu anlamina gelir.

» v = constant

Viscous stress tensor for an incompressible Newtonian fluid with constant properties:

Ti = 2E;; (9-55)
/ . ou o ov u aw \
- o # dy  ax Moz " ax
! xx I ¥ o I'-':IL-' + [.'_i' i , I'-'IIE.-" (L_i'E,J 1:”-1:
Y e H\ ox Ay oy M\ oz ay
[ . i , -

o 'y aw N du aw v oW
s ow 7
\“L ox az) May T az o )
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/ 2 2 ou o @+w\
H ax H dy  ox H 0z  ox
-P 0 0 o T L
1o p ol #(du . du) on® H(mr . dw)
0= - LI - T
ax - ay ay 7
0 0 -P . :

w o) (ow ) aw
Mlax “oz) Moy " oz H oz

Du o "u L, @ (v ou), 6 (ow  ou d [ow d (ow
e T ) 3 o\ |\ oo T ol el Bl " ol R
"Di dx PEx # ax - H dy \dx oy # dz \dx az a 07 \ oXx ax \ 0z

Du aP N N KR’ N d ou N d v N d*u N d dw N alu}
) = — g Sttt + - s
"Dt ox | P& ‘u_ax- dxdx axdy gy* dx dz Az’

aP o [ou  ov  aw atu a0 u
= ——tpshtpu ot ot ottt
dx | JX \oX dy o7 ax - dv- 1 i

|

The Laplacian Operator

Cartesian coordinates: )
Sikisirilamaz Navier-Stokes

S P P L : :
g - 2 o 32 o o2 denkleminin vizkoz terimlerinde
Cvlindrical Em;r dinatels,' gortlen Laplace operatorinin
E ' Kartezyen ve silindirik

gL 11 (, 8) 1 *, & koordinatlardaki agilimi.
I
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Du dP .
; + pg. + nuV-u

"D — ox
Dv dP N RS Dw aP N R
—_— = — — ¥ . LI.J —_ = — - “W
Incompressible Navier—Stokes equation:
DV o= =
P Dr = —VP + pg+ uV-V (9-60)

Navier-Stokes denklemi; daimi olmayan,
dogrusal olmayan, ikinci mertebeden bir
kismi diferansiyel denklemdir.

Denklem 9-60 dort bilinmeyene (u¢ hiz
bileseni ve basing) sahip olmakla birlikte
sadece 3 denklemi (vektorel denklem
oldugundan Uc bileseni vardir) temsil
eder.

Acikca anlasiliyor ki bu denklemi
Navier-Stokes denklemi akiskanlar cozulebilir hale getirmek igin bir denkleme
mekaniginin kose tasidir daha ihtiya¢ vardir. Dordunci denklem

sikistirilamaz sureklilik denklemidir



Kartezyen Koordinatlarda Sureklilik ve
Navier—=Stokes Denklemleri

The continuity equation (Eq. 9-16) and the Navier—Stokes equation (Eq.
9—-60) are expanded in Cartesian coordinates (x, v, z) and (u, v, w):

Incompressible continuity equation:

au  dv dw
+ +

T+t —=0 (9-61a)
ox dy 0z

x-component of the incompressible Navier—Stokes equation:

au N ou N o N au oP . o°u N a%u . a%u ©61h)
"N — M — v w—\1=———— 115 . . -
Plar " "ax " "oy T " az ox  PET\gx2 T g2 T 922

y-component of the incompressible Navier—Stokes equation:

dv v av v dP v v v
pl—tu—+v—F+w—|=—+pg +tpul—+—+— (9-61c)
ot 0x dy dZ dy ' ox- dy-  dT”

z-component of the incompressible Navier—Stokes equation:

w ow o aw W L a?err'Ferr‘Fw -
N —+u—+v W = ——— 1+ pg: | | -
Plar ""ax "oy T oz oz ST M ax2 T 9y T a2




Silindirik Koordinatlarda Sureklilik ve
Navier=Stokes Denklemleri

. . . . ] H{FH,-) 1 ﬂ(”l’.l} {'][-H:}
Incompressible continuity equation: — +——+ =0 (9-62a)
roodr roaf dz

r-component of the incompressible Navier—Stokes equation:

du, ou, uyou, u; ou,
P + U, + — —— T u,

at " or roog r az

dP 1 d o, w, 1 0%u, 2 du, u,
= - tpg Tt -5t -

r 5 ST — +— (9-62h)
ar rar\_ adr) r* ot ol a7
H-component of the incompressible Navier-Stokes equation:
du,, du, Uy ou, U du,,
P + u, + ——+ + u.—
at dr  r ad r S iz
LoP [1 o ( Fug\ w1 ﬂ%ﬁ;+ 2 ﬁur+_ﬂ%h1 0620
= l I\ T 2T T C
roo PR TR \"ar) T 2T a0 T e o

z-component of the incompressible Navier—Stokes equation:

du du.  wu, odu. du
o\ —+tu,—+—— + u.

ot " or roog S

F e + {l a( ﬂ”:) R al”‘] (9-62d) >
= —— _ — Fr— —
dz PE= T oA\ ar rraer  9z2




Alternative Form of the Viscous Terms

[t can be shown that

For\ ar| r2
g (1 a
= _._{ru”}}
ar \r ar
Trr Tt Tn
T.l__r = Tr’-’r Tr'-'lj TH:
T_\_r T H T_“_
au,
r"l'
HM -
or

[. G| (u.l) N 1 HHJ}
" ar\r PY:

r
, (] ﬁlu.JJru,
H r oot r

al

dily

iz

Navier—Stokes
denklemindeki r-

ve 0
bilesenlerinde ilk
Iki  viskoz terim

e

.
=

icin alternatif bir
form

dz r oot
1 Hu:) , ou,
roaf H dz

(HHJ. N Hu:)

Moz 7 or
du, 1 0u.

T4 el s

Sitindirik koordinatlarda €. va & biriin vektorlen
pagiidir: §-ySniinde hareket edildiginde €."nin
yoniinde de degigim meydana gelir ve Navier
Stolces Denkieminin r~ ve 8- bilegenlerinde ek
terimler ortaya cikar.
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9-6 m AKIS PROBLEMLERININ
DIFERANSIYEL ANALIZI

Diferansiyel hareket denklemlerinin (sureklilik ve N&S) kullanish oldugu iki tur
problem vardir.

* Bilinen bir hiz alani i¢cin basing alani hesabi

* Bilinen geometri ve sinir sartlari icin hem hiz hem de basing alanlarinin
hesaplanmasi

Three-Dimensional Incompressible Flow

Four variables or unknowns:

« Pressure P Sabit ozelliklere sahip genel
» Three components of vel:}city‘l? lic-boyutlu fakat
sikistirlamaz akis alaninda
dort bilinmeyeni bulmak igin
. Continuity, dort denkleme ihtiyac vardir.

—

v.-V=0
« Three components of Navier—Stokes,

D]I’_; = —» e
1— =-VP+ pg+ uyv-Vv
F Dt pg + pv

Four equations of motion:



Bilinen Bir Hiz Alani i¢in Basing Alaninin Hesaplanmasi

Birinci ornek gurubu, bilinen bir hiz alani igin basing alaninin
hesaplanmasini icermektedir.

Sureklilik denkleminde basing bulunmadigindan, hiz alanini teorik
olarak sadece kutlenin korunumuna dayanarak olusturabiliriz.

Bununla birlikte hiz, hem surekliik hem de Navier-Stokes
denkleminde bulundugundan bu iki denklem bag/idir.

Buna ilave olarak basing, Navier-Stokes denkleminin her Uc¢
bileseninde de yer alir ve boylece hiz ve basin¢ alanlari da bagl
haldedir.

Hiz ve basing alanlari arasindaki bu baglilik, bilinen bir hiz alani igin
basing alanini hesaplamamiza olanak verir.
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EXAMPLE 9-13 Calculating the Pressure Field
in Cartesian Coordinates

Consider the steady, two- d|men5|0nal mcu::mpresslble velocity field of Example
9-9, namely, V = (u,v)=(ax + b)r + (—ay + cx}; Calculate the pressure
as a function of x and y.

SOLUTION For a given velocity field, we are to calculate the pressure field.
Assumptions 1 The flow is steady and incompressible. 2 The fluid has con-
stant properties. 3 The flow is two-dimensional in the xy-plane. 4 Gravity
does not act in either the x- or y-direction.

Analysis First we check whether the given velocity field satisfies the two-
dimensional, incompressible continuity equation:

ou Hv dw
—
ax  ay ﬁ;

_\_r

=a—a=~0 (1)

a 2-I)

Thus, continuity is indeed satisfied by the given velocity field. If continuity

were not satisfied, we would stop our analysis—the given velocity field would

not be physically possible, and we could not calculate a pressure field.
MNext, we consider the y-component of the Navier-Stokes equation:

AL v W P s A
L ru— + v—+w|=——+pf + u|l -~ +
p(ﬁr "o T Ve TV ) y P ”(af- 2t )

—— —— et o o S bt e
0 (steady) (ar + bic {—ay + cx—a) 0 (2-D) ] 0 0 0 (2-D)
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The y-momentum equation reduces to

:—’: = p(—acx — bc — a*y + acx) = p(—bc — a*y)  (2)
The y-momentum equation is satisfied if we can generate a pressure field
that satisfies Eq. 2. In similar fashion, the x-momentum equation reduces to
aP - b
P pl—a™x — ab) (3)
The x-momentum equation is satisfied if we can generate a pressure field
that satisfies Eq. 3.

In order for a steady flow solution to exist, P cannot be a function of time.
Furthermore, a physically realistic steady, incompressible flow field requires
a pressure field P(x, y) that is a smooth function of x and y (there can be no
sudden discontinuities in either P or a derivative of P). Mathematically, this
requires that the order of differentiation (x then y versus y then x) should not
matter (Fig. 9-46). We check whether this is so by cross-differentiating Egs.
2 and 3, respectively,

d°P d [dP d°P d [oP
- {7-)J=0 and ——=__|=—-]=0 (4)
dx dy  dx \ dy dvyox  dy \ox

Equation 4 shows that P is indeed a smooth function of x and y. Thus, the
given wvelocity field satisfies the steady, two-dimensional, incompressible
Navier— Stokes equation.
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If at this point in the analysis, the cross-differentiation of pressure were to
yield two incompatible relationships (in other words if the equation in Fig.
9-46 were not satisfied) we would conclude that the given velocity field
could not satisfy the steady, two-dimensional, incompressible Navier—Stokes
equation, and we would abandon our attempt to calculate a steady pressure
field.

To calculate Plx, y), we partially integrate Eq. 2 (with respect to y) to
obtain an expression for P(x, ),

Pressure field from y-momentum:

a*y?
Pix,v) = ;;(—bc.‘}' — 1 ) + g(Xx) (5)
Note that we add an arbitrary function of the other variable x rather than a
constant of integration since this is a partial integration. We then take the
partial derivative of Eg. 5 with respect to x to obtain

dP ,

— = g'(x) = p(—a*x — ab (6)

oy 8 W I )

Cross-Differentiation, xy-Plane

RN R et kg ~or a two-dimensional flow
only if the order of differentiation field in the xy-plane, cross-
does not matter: differentiation reveals

P 9*P whether pressure P is a
S 9yo smooth function.
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where we have equated our result to Eq. 3 for consistency. We now integrate
Eqg. 6 to obtain the function g(x):

2_2

2(x) = p(—a — abx) + C, (7)

where C, is an arbitrary constant of integration. Finally, we substitute Eq. 7
into Eq. b to obtain our final expression for P(x, y). The result is

3

Fl rFey

_ a’x*  a’y* .
Plx,y) = p| - ——— —abx —bey | + C, (8)

Discussion For practice, and as a check of our algebra, you should differen-
tiate Eq. 8 with respect to both y and x, and compare to Egs. 2 and 3. In
addition, try to obtain Eq. 8 by starting with Eq. 3 rather than Eqg. 2; you
should get the same answer.
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— P= ":'-'.22.2 Pfa gage

The velocity field in an incompressible flow is
not affected by the absolute magnitude of
pressure, but only by pressure differences.

Since pressure
R appears only as a
+pg+pVv gradient in the
iIncompressible
Navier—Stokes
equation, the absolute
magnitude of pressure
IS not relevant—only
pressure differences - |
matter. ST
: e AR

L P =-3.562 Pa gage
(a)

P=509.222 Pa oace
J'— gag

Filled pressure contour plot, velocity vector

plot, and streamlines for downward flow of air N
through a channel with blockage: (a) case 1, e

.....

(b) case 2—identical to case 1, except P is
everywhere increased by 500 Pa. On the
gray-scale contour plots, dark is low pressure
and light is high pressure.

P =496.438 Pa gage
(b)



Finally, we note that most CFD codes do noft calculate pressure by inte-
gration of the Navier—Stokes equation as we have done in Example 9-13.
Instead, some kind of pressure correction algorithm is used. Most of the
commonly used algorithms work by combining the continuity and
Navier—Stokes equations in such a way that pressure appears in the continu-
ity equation. The most popular pressure correction algorithms result in a
form of Poisson’s equation for the change in pressure AP from one itera-
tion (n) to the next (n + 1),

Poisson’s equation for AP: V*AP) = RHS,, (9-64)

Then, as the computer iterates toward a solution, the modified continuity
equation is used to “correct” the pressure field at iteration (n + 1) from its
values at iteration (n).

Correction for P: Py+yn= Py + AP

Details associated with the development of pressure correction algorithms is
beyond the scope of the present text. An example for two-dimensional flows
is developed in Gerhart, Gross, and Hochstein (1992).
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EXAMPLE 9-14 Calculating the Pressure Field
in Cylindrical Coordinates

Consider the steady, two-dimensional, incompressible velocity field of Exam-
ple 9-5 with function f(0, f) equal to 0. This represents a line vortex whose
axis lies along the z-coordinate (Fig. 9-49). The velocity components are

= 0 and u, = K/r, where K is a constant. Calculate the pressure as a
function of r and @.

Analysis The flow field must satisfy both the continuity and the momentum
equations, Eqgs. 9-62. For steady, two-dimensional, incompressible flow,

L) 1060 065,

Incompressible continuity:
p o r/ﬁﬂ /:/i.?

0 0 0

=Y

| ’\_,/
| \\J// Streamlines and
T velocity profiles for

_ a line vortex.
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Thus, the incompressible continuity equation is satisfied. Now we look at the
# component of the Navier-Stokes equation (Eq. 9-62c):

oy, Oy wgou, uu, o
Bt T Y T e T T ey
ot,  _dar, rde, Jr o Tldz
0 (steady) I[_“I:‘“ £| [.iﬁ-lu]u i 0 12-I7)

1P 10 [ du up 1 2 dul @
= ——+pg, + (r ”) F —'&+ kv gt

raf - rar\. or __\.-f r,ﬁﬂz rr a0 Az’
0 3 M i ——— e

£ K ] 0 0 (2-ID)

The #-momentum equation therefore reduces to

dP
H-momentum: — =1 (1

dfl
Thus, the #-momentum equation is satisfied if we can generate an appropri-
ate pressure field that satisfies Eq. 1. In similar fashion, the r~-momentum
equation (Egq. 9-62b) reduces to

dP K?

r-momentum: —=p—

: (2)
dr I

Thus, the -momentum equation is satisfied if we can generate a pressure
field that satisfies Eq. 2.
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In order for a steady flow solution to exist, P cannot be a function of time.
Furthermore, a physically realistic steady, incompressible flow field requires
a pressure field P(r, 8) that is a smooth function of r and 8. Mathematically,
this requires that the order of differentiation (r then # versus ¢ then r) should
not matter (Fig. 9-50). We check whether this is so by cross-differentiating
the pressure:

arab  or\aeg) a 90 ar o6 \ar)

Equation 3 shows that P is indeed a smooth function of r and 6. Thus, the
given velocity field satisfies the steady, two-dimensional, incompressible
Navier—Stokes equation.

We integrate Eq. 1 with respect to # to obtain an expression for P(r, #),

Pressure field from 8-momentum: P(r.0) =0+ g(r) (4)
Note that we added an arbitrary function of the other variable r, rather than
a constant of integration, since this is a partial integration. We take the par-
tial derivative of Eq. 4 with respect to r to obtain

2

AP , K-
—=g'nN=p— (5)
ar r

Cross-Differentiation, r@-Plane

AR g .l For atwo-dimensional
only if the order of differentiation flow field in the ré-plane,

does not matter: cross-differentiation
' reveals whether pressure
P is a smooth function.
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where we have equated our result to Eq. 2 for consistency. We integrate Eq.
5 to obtain the function g(r):

2

1
g(r) = _Ep + C (6)

rl
where C is an arbitrary constant of integration. Finally, we substitute Eq. 6
into Eq. 4 to obtain our final expression for P(r, #). The result is
1 K*?
Pr.@)=—p—+C (7)
lj .F'l

Thus the pressure field for a line vortex decreases like 1/r2 as we approach
the origin. (The origin itself is a singular point.) This flow field is a simplistic
model of a tornado or hurricane, and the low pressure at the center is the
“eye of the storm” (Fig. 9-51). We note that this flow field is irrotational,
and thus Bernoulli’'s equation can be used instead to calculate the pressure.
If we call the pressure P, far away from the origin (r — o), where the local
velocity approaches zero, Bernoulli's equation shows that at any distance r
from the origin,

2
Bernoulli equation: P + %pvf =P, — P=P.— %p% (8)
Equation 8 agrees with our solution (Eq. 7) from the Navier-Stokes equation
if we set constant C equal to P.. A region of rotational flow near the origin
would avoid the singularity there and would yield a more physically realistic
model of a tornado.
Discussion For practice, try to obtain Eg. 7 by starting with Eq. 2 rather
than Eq. 1; you should get the same answer.
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The two-dimensional line
vortex IS a simple
approximation of a tornado;
the lowest pressure is at the
center of the vortex.

71



Sureklilik ve Navier=Stokes Sinir Sartlari

Denklemlerinin Kesin (}ozumlerl No-slip boundary condition:
Adim 1: ligili tim boyut ve Vi = V.o
parametreleri tespit ederek '
problem ve geometri kurulur. _

Adim 2: Uygun olan tim kabuller, Cylinder

yaklastirimlar, basitlestirmeler ve
sinir sartlari siralanir.

Adim 3: Diferansiyel hareket
denklemleri (sureklilik ve N&S)
mumkun oldugunca basitlestirilir.
Adim 4. Denklemler integre
edilerek bir veya daha fazla

intggral sabitine bagl ifadeler elde | Piston g?;'fsmf}rmg
edilir. FL

Adim 5: Integral sabitlerini bulmak X

icin sinir sartlari uygulanir. Bir silindir iginde V, hiziyla hareket eden
Adim 6: Sonuglar dogrulanir. bir piston. Piston ile silindir arasinda ince

bir yag filmi vardir. Sekilde filmin
buyutilmis gorunusu verilmistir. Kaymama
sinir kosulu cepere bitisik akiskanin hizinin
ceperin hizina esit olmasini gerektirir.

Sikistirilamaz sureklilik ve
Navier—Stokes denklemlerinin
¢ozumunde izlenecek yol.



Interface boundary conditions: |
Fluid B
- ---I
I I
— 1T "
T W UL N N
- .‘::Z:!-'"”"—';'?.Trﬁ
- 1
- FA -----:
Fluid A
Fluid B—air

Wair

I B .. ---sz- I .
—

r"’ Uryater

X
Fluid A—water

-.I

and Ts A

At an interface between two
fluids, the velocity of the two
fluids must be equal. In addition,
the shear stress parallel to the
interface must be the same in
both fluids.

Along a horizontal free surface of
water and air, the water and air
velocities must be equal and the
shear stresses must match.
However, since 1, << fyater &
good approximation is that the
shear stress at the water surface is
negligibly small.
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Boundary conditions at water—air interface:

du i
Is water — Mwater . = g air — Mair
water air

Free-surface boundary conditions:

|

|
. |
P = continuous |
|
|
|

B Symmetry plane
Vv

‘ X
Boundary conditions along a plane of
symmetry are defined so as to ensure
that the flow field on one side of the
symmetry plane is a mirror image of

that on the other side, as shown here
for a horizontal symmetry plane.

PIi;|'.|iLI =P

dy dy/ .

and T = ()

pas 5, liquid
Other boundary conditions arise
depending on the problem setup.

For example, we often need to define
inlet boundary conditions at a
boundary of a flow domain where fluid
enters the domain.

Likewise, we define outlet boundary
conditions at an outflow.

Symmetry boundary conditions are
useful along an axis or plane of
symmetry.

For unsteady flow problems we also
need to define initial conditions (at
the starting time, usually t = 0).



: EXAMPLE 9-15 Fully Developed Couette Flow

™ Consider steady, incompressible, laminar flow of a Newtonian fluid in the
: narrow gap between two infinite parallel plates (Fig. 9-57). The top plate is
m moving at speed V, and the bottom plate is stationary. The distance between
m these two plates is h, and gravity acts in the negative z-direction (into the
®m page in Fig. 9-57). There is no applied pressure other than hydrostatic

pressure due to gravity. This flow is called Couette flow. Calculate the velocity

and pressure fields, and estimate the shear force per unit area acting on the
bottom plate.
1!

e
' -

Moving plate Geometry of Example 9—

| 15: viscous flow between
h Fluid: p, p two infinite plates; upper
y plate moving and lower

v Fixed plate T x plate stationary.

Analysis To obtain the velocity and pressure fields, we follow the step-by-
step procedure outlined in Fig. 9-52.

Step 1 Set up the problem and the geometry. See Fig. 9-57.

Step 2 List assumptions and boundary conditions. We have numbered
and listed seven assumptions (above). The boundary conditions come
from imposing the no-slip condition: (1) At the bottom plate (y = 0),
u=v=w=0.(2) Atthetop plate(y = h), u=V, v =0, and w= 0.
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Step 3 Simplify the differential equations. We start with the
incompressible continuity equation in Cartesian coordinates, Eq. 9-61a,
ol i HH au

0 (1
ax oy 07 ox

U

assumption 3 assumpion &

Equation 1 tells us that u is not a function of x. In other words, it doesn't
matter where we place our origin—the flow is the same at any x-location.
The phrase fully developed is often used to describe this situation (Fig.
9-58). This can also be obtained directly from assumption 1, which tells
us that there is nothing special about any x-location since the plates are
infinite in length. Furthermore, since v is not a function of time
(assumption 2) or z (assumption 6), we conclude that v is at most a
function of y,

Result of continuity: u = u(y) only (2)

4 A A fully developed region of a flow

field is a region where the velocity
profile does not change with
downstream distance. Fully

¥

developed flows are encountered in
long, straight channels and pipes.
Fully developed Couette flow is
shown here—the velocity profile at x,
IS identical to that at x;.



We now simplify the x-momentum equation (Eq. 9-61b) as far as possible.
It is good practice to list the reason for crossing out a term, as we do here:

(a,si N A N ail N a;ir) apP N
7 - v Wo— | = —7— .
4 ot ix oy iz ix %
— o — - =" assumption 7
assumption 2 continuity  assumption 3 assumption 6  assumption 5
+ (_}_ﬂzﬁ + _I:FH + !“FP{) s 0 (3)
— — =
H P iy’ P @y’
IH_\\.F_(- \_V_l'
continuity assumption &

Notice that the material acceleration (left-hand side of Eq. 3) is zero,
implying that fluid particles are not accelerating in this flow field, neither
by local (unsteady) acceleration, nor by advective acceleration. Since the
advective acceleration terms make the Navier-Stokes equation nonlinear,
this greatly simplifies the problem. In fact, all other terms in Eg. 3 have
disappeared except for a lone viscous term, which must then itself equal
zero. Also notice that we have changed from a partial derivative (d/dy) to a
total derivative (d/dy) in Eq. 3 as a direct result of Eq. 2. We do not show
the details here, but you can show in similar fashion that every term except
the pressure term in the y-momentum equation (Eq. 9-61c) goes to zero,
forcing that lone term to also be zero,

oP _
a9y

0 (4)

In other words, P is not a function of y. Since P is also not a function of
time (assumption 2) or x (assumption 5), P is at most a function of z,

Result of y-momentum: P = P(z) only (5)
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Finally, by assumption 6 the zcomponent of the Navier—Stokes equation
(Eq. 9-61d) simplifies to

op — dp (6)
— —_— — — J
9z P8 dz P8

where we used Eq. 5 to convert from a partial derivative to a total
derivative.

Step 4 Solve the differential equations. Continuity and y-momentum have
already been “solved,” resulting in Eqgs. 2 and 5, respectively. Equation 3
(x-momentum) is integrated twice to get

u=0Cy+ G, (7

where C, and C, are constants of integration. Equation 6 (z-momentum) is
integrated once, resulting in

P=—ppz+ C; (8)

Step 5 Apply boundary conditions. We begin with Eq. 8. Since we have
not specified boundary conditions for pressure, C; remains an arbitrary
constant. (Recall that for incompressible flow, the absolute pressure can be
specified only if Pis known somewhere in the flow.) For example, if we let
P = P,at z= 0, then C; = F; and Eqg. 8 becomes

Final solution for pressure field: P=F,— pgz (9)
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Alert readers will notice that Eq. 9 represents a simple hydrostatic pressure
distribution (pressure decreasing linearly as z increases). We conclude that,
at least for this problem, hydrostatic pressure acts independently of the

flow. More generally, we make the following statement (see also Fig. 9-59):

For incompressible flow fields without free surfaces, hydrostatic pressure
does not contribute to the dynamics of the flow field.

In fact, in Chap. 10 we show how hydrostatic pressure can actually be
removed from the equations of motion through use of a modified pressure.

For incompressible flow fields
¢ ¢ | without free surfaces, hydrostatic
pressure does not contribute to the
~ dynamics of the flow field.

P hydrostatic

xory

We next apply boundary conditions (1) and (2) from step 2 to obtain
constants C; and C..

Boundary condition (1): u=0C, x0+0C,=0 - C,=0
and

Boundary condition (2): H=C, xh+0=V — C, = V/h
Finally, Eq. 7 becomes

v
Final result for velocity field: un=v-= (10)
1

The velocity field reveals a simple linear velocity profile from v = O at the 79
bottom plate to v = V at the top plate, as sketched in Fig. 9-60.



o y
h U= V,;Il The linear velocity
C- y profile of Example 9-15:
¥ Couette flow between

x parallel plates.

Step 6 \Verify the results. Using Egs. 9 and 10, you can verify that all the
differential equations and boundary conditions are satisfied.

To calculate the shear force per unit area acting on the bottom plate, we
consider a rectangular fluid element whose bottom face is in contact with
the bottom plate (Fig 9-61). Mathematically positive viscous stresses are
shown. In this case, these stresses are in the proper direction since fluid
above the differential element pulls it to the right while the wall below the
element pulls it to the left. From Eq. 9-56, we write out the components of
the viscous stress tensor,

/ du du o du aw\ V
2 ox “(a_f“%) “(a_fg) O Ky 0
dv  du dv v ow 1%
Tj = JLL(E+E) 21 P ,L{(H_E-l- {?}‘) ol L 0 O (11)

w ) fow e\, w 0 0 o
Max " oz) "\oy " oz H oz




Stresses acting on a
differential two-
dimensional rectangular
fluid element whose
bottom face is in contact

with the bottom plate of
Example 9-15.

Since the dimensions of stress are force per unit area by definition, the force
per unit area acting on the bottom face of the fluid element is equal to 7,
= wV/h and acts in the negative x-direction, as sketched. The shear force
per unit area on the wall is equal and opposite to this (Newton's third law);
hence,

Shear force per unit area acting on the wall: =m—i (12)
The direction of this force agrees with our intuition; namely, the fluid tries to
pull the bottom wall to the right, due to viscous effects (friction).

Discussion The zcomponent of the linear momentum equation is wncou-
pled from the rest of the equations; this explains why we get a hydrostatic
pressure distribution in the zdirection, even though the fluid is not static,
but moving. Equation 11 reveals that the viscous stress tensor is constant

everywhere in the flow field, not just at the bottom wall (notice that none of
the components of 7, is a function of location).
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A rotational viscometer; the
inner cylinder rotates at
angular velocity o, and a
torque T, pjieq IS applied, from
which the viscosity of the fluid
Is calculated.

. v wR,
‘_TF'T_HRG_RE_MRO_R!'
{J'JRI'
T,v.jsmus = ’TAR,— = M m (E?TR{-L)RI-
Stationary outer cylinder o i
; . (Ro o R:J
Viscosity of the fluid: =

lied
PP 2 wRIL
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= EXAMPLE 9-16 Couette Flow with an Applied Pressure Gradient

| Cnnsnder the same geometry as in Example 9-15, but instead of pressure
I}emg constant with respect to x, let there be an applied pressure gradient in
the Xx-direction (Fig. 9-&3). Specifically, let the pressure gradient in the x-
m direction, #Pf4x, be some constant value given by

||
ap P, — P
dx X — X

® Applied pressure gradient: = constant (1)
where x; and x, are two arbitrary locations along the x-axis, and P; and P.
are the pressures at those two locations. Everything else is the same as for
Example 9-15. (a) Calculate the velocity and pressure field. (b) Plot a family
of velocity profiles in dimensionless form.

SOLUTION We are to calculate the velocity and pressure field for the flow
sketched in Fig. 9-63 and plot a family of velocity profiles in dimensionless
form.

Assumptions The assumptions are identical to those of Example 9-15,
except assumption 5 is replaced by the following: A constant pressure gradi-
ent is applied in the x-direction such that pressure changes linearly with
respect to x according to Eq. 1.

Analysis (a) We follow the same procedure as in Example 9-15. Much of
the algebra is identical, so to save space we discuss only the differences.

Step 1 See Fig. 9-63.
Step2 Same as Example 9-15 except for assumption 5.

Step 3 The continuity equation is simplified in the same way as in
Example 9-15,

Result of continuity: u = u(y) only (2)

1 |
] i Moving plate i
[ |
J'i Fluid: p, e i
| 1
1Py Fixed plate :PQT x
."il'] aF — P] _ 'D] .‘il']
ox X3 —X)

FIGURE 9-63

Geometry of Example 9-16: viscous
flow between two infinite plates with
a constant applied pressure gradient
dPlax; the upper plate 1s moving and
the lower plate is stationary.
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CAUTION!

WHEN PERFORMING A
PARTIAL INTEGRATION,
ADD A FUNCTION OF THE
OTHER VARIABLE(S)

-
=+
-
= &
-
-+
-
-
-

FIGURE 9-64

A caution about partial integration.

The x-momentum equation is simplified in the same manner as in Example
9-15 except that the pressure gradient term remains. The result is

Result nt du_1op 3)
ESutl Of X-momeniim: e = T
f dy?  poax
Likewise, the y-momentum and z-momentum equations simplify to
aP
Result of v-momentum: e = (4)
and
aP
Result of z-momentum: P = —pg (5)
ri

We cannot convert from a partial derivative to a total derivative in Eq. 5,
because Pis a function of both x and zin this problem, unlike in Example
9-15 where P was a function of z only.

Step4 We integrate Eq. 3 (x-momentum) twice, noting that aP/ax is a

constant,
1 aP

Integration of x-momentun: u=——y'+ Cy+ G, (6)
2 dx )

where C; and . are constants of integration. Equation 5 (z-momentum) is

integrated once, resulting in

Integration of z-momentum: P= —pgz + fix) n

Note that since Pis now a function of both x and z, we add a function of x
instead of a constant of integration in Eq. 7. This is a partial integration
with respect to z, and we must be careful when performing partial
integrations (Fig. 9-64).

Step 3 From Eq. 7, we see that the pressure varies hydrostatically in the

Z-direction, and we have specified a linear change in pressure in the x-

direction. Thus the function f(x) must equal a constant plus aPfax times x.

If we set P = P, along the line x = 0, z = 0 (the j-axis), Eq. 7 becomes
0

I
Final result for pressure field: P=P, + 'l_l x — pez (8) 84
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We next apply the velocity boundary conditions (1) and (2) from step 2 of
Example 9-15 to obtain constants €, and C..

Boundary condition (1):

u=LE:—<D+C|‘xD+ C;=0 = C,=0
2 dx
and
Boundary condition (2):
u=lﬁh2+£’] Xh+0=V — C, =E—LE.&
2u ax h 2u dx
Finally, Eq. 6 becomes
Vi 1 aP | V
w=—=+———(y" = hy) (9 i BN
h 2 o = \”‘[.‘”
Equation 9 indicates that the velocity field consists of the superposition of h B —
two parts: a linear velocity profile from v = 0 at the bottom plate to u =V ?/ .
at the top plate, and a parabolic distribution that depends on the = ' B
magnitude of the applied pressure gradient. If the pressure gradient is :
zero, the parabolic portion of Eq. 9 disappears and the profile is linear, just
as in Example 9-15; this is skefched as the dashed line in Fig. 9-65. If , FIGURE 3-65
the pressure gradient is negative (pressure decreasing in the x-direction, The velocity profile of Example 9-16:
causing flow to be pushed from left to right), aB/ax < O and the velocity Couette flow between parallel plates
profile looks like the one sketched in Fig. 9-65. A special case is when with an applied negative pressure
V = O (top plate stationary); the linear portion of Eq. 9 vanishes, and the gradient; the dashed line indicates the
velocity profile is parabolic and symmetric about the center of the channel profile for a zero pressure gradient,
(¥ = h/2); this is sketched as the dotted line in Fig. 9-65. and the dotted line indicates the profile

Step & You can use Egs. 8 and 9 to verify that all the differential
equations and boundary conditions are satisfied.

for a negative pressure gradient with
the upper plate stationary (V = 0).
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(b) We use dimensional analysis to generate the dimensionless groups (I1
groups). We set up the problem in terms of velocity component v as a func-
tion of y, h, V, p, and aFfax. There are six variables (including the depen-
dent variable u), and since there are three primary dimensions represented
in the problem (mass, length, and time), we expect & — 3 = 3 dimension-
less groups. When we pick h, V, and p as our repeating variables, we get the
following result using the method of repeating variables (details are left for
you to do on your own—this is a good review of Chap. 7 material):

Result of dimensional analvsis: —=f (l h—z ﬂ—P) {(10)
Using these three dimensionless groups, we rewrite £Eq. 9 as
Dimensionless form of velocity field: u* = y* + %P':'_r"fi_r* — 1} (11)
where the dimensionless parameters are

¥ h* ap
1

H* —_ -‘I* =

=Ir

In Fig. 9-66, u* is plotted as a function of y* for several values of P*, using
Eq. 11.
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FIGURE 9-66 0 J_:
Nondimensional velocity profiles for -
Couette flow with an applied pressure i
gm'j'ient:prﬂﬂlﬂsa‘rESthnFDr ']_IIIIIIIIIIIII III|IIII|IIII|IIII|IIII
several values of nondimensional 15 1 05 0 0.5 | 15 2 715
pressure gradient. w*=wV
Discussion When the result is nondimensionalized, we see that Eq. 11 rep-
uly) resents a family of velocity profiles. We also see that when the pressure gra-
d dient is positive (flow being pushed from right to left) and of sufficient mag-
y nitude, we can have reverse flow in the bottom portion of the channel. For
I R all cases, the boundary conditions reduce to v* = 0 at y* = 0 and u* =

x at y* = 1. If there is a pressure gradient but both walls are stationary, the
flow is called two-dimensional channel flow, or planar Poiseuille flow (Fig.

FIGURE 3-67 9-67). We note, however, that most authors reserve the name Poiseuille flow
The velocity profile for fully for fully developed pipe flow—the axisymmetric analog of two-dimensional
developed two-dimensional channel channel flow (see Example 9-18).

flow (planar Poiseuille flow).
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FIGURE 9-68

Geometry of Example 9-17: a viscous
film of oil falling by gravity along a
vertical wall.

EXAMPLE 9-17 0il Film Flowing Down
a Vertical Wall by Gravity

Consider steady, incompressible, parallel, laminar flow of a film of oil falling
slowly down an infinite vertical wall (Fig. 9—68). The oil film thickness is h,
and gravity acts in the negative zdirection (downward in Fig. 9-68). There is
no applied (forced) pressure driving the flow—the oil falls by gravity alone.
Calculate the velocity and pressure fields in the oil film and sketch the nor-
malized velocity profile. You may neglect changes in the hydrostatic pressure
of the surrounding air.

SOLUTION For a given geometry and set of boundary conditions, we are to
calculate the velocity and pressure fields and plot the velocity profile.

Assumptions 1 The wall is infinite in the yz-plane (y is into the page for a
right-handed coordinate system). 2 The flow is steady (all partial derivatives
with respect to time are zero). 3 The flow is parallel (the x-component of
velocity, u, is zero everywhere). 4 The fluid is incompressible and Newtonian
with constant properties, and the flow is laminar. 5 Pressure P = P, = con-
stant at the free surface. In other words, there is no applied pressure gradient
pushing the flow; the flow establishes itself due to a balance between gravita-
tional forces and viscous forces. In addition, since there is no gravity force in
the horizontal direction, P = P, everywhere. 6 The velocity field is purely

two-dimensional, which implies that velocity component + = O and all partial
derivatives with respect to y are zero. 7 Gravity acts in the negative zdirection.
We express this mathematically as g= —gk, or g, = g,=0and g = —g&
Analysis We obtain the velocity and pressure fields by following the step-by-
step procedure for differential fluid flow solutions. (Fig. 9-52).

Step 1 Sef up the problem and the geometry. See Fig. 9-68.

Step 2 List assumptions and boundary conditions. We have listed saven
assumptions. The boundary conditions are: (1) There is no slip at the wall;
atx=0,u=v=w=0.(2) At the free surface (x = h), there is negligible
shear (Eq. 9-68), which for a vertical free surface in this coordinate system
means awlax = 0 at x = h.



Step 3 Write out and simplity the differential equations. We start with the
incompressible continuity equation in Cartesian coordinates,

TS ap aw aw
- + F + —= - = M
fx ay a4z @z

assumption 3 ;iauHml [

Equation 1 tells us that w is not a function of z i.e., it doesn't matter
where we place our origin—the flow is the same at any zlocation. In other
words, the flow is fully developed. Since w is not a function of time

(assumption 2), z (Eq. 1), or y (assumption &), we conclude that wis at
most a function of x,

Result of continuity: w = w(x) only (2)

We now simplify each component of the Navier—Stokes equation as far as
possible. Since v = v = 0 everywhere, and gravity does not act in the x- or
y-directions, the x- and y-momentum equations are satisfied exactly (in fact
all terms are zero in both equations). The z-momentum equation reduces to

(aw aw awr ar-gi) ap

+ v - + wi-|= —7 + :
;i'(_ WA iz br T LE
et S
assumption 2 assumption 3 assumplion & contimity assumption 3 i
aw a° a d*w
1 ( o }( ) - — = = (3
ax? I{‘Ir - ﬂfr dx L

bl |_r1rf| b continuity

The material acceleration (left side of Eq. 3) is zero, implying that fluid
particles are not accelerating in this flow field, neither by local nor
advective acceleration. Since the advective acceleration terms make the
MNavier—Stokes equation nonlinear, this greatly simplifies the problem. We
have changed from a partial derivative (a4/4x) to a total derivative (d/dx) in
Eq. 3 as a direct result of Eq. 2, reducing the partial differential equation
(PDE) to an ordinary differential equation (ODE). ODEs are of course much
easier than PDEs to solve (Fig. 9-69).

'y s 3
" NOTICE )

[f i = u(x) only,
change from
PDE to ODE:

e

ox ax

\S——
FIGURE 9-69

In Examples 9—135 through 9-18, the
equations of motion are reduced from
partial differential equations to
ordinary differential equations,
making them much easier to solve.
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FIGURE 9-70

The normalized velocity profile of
Example 9-17: an o1l film falling
down a vertical wall.

Step 4 Solve the differential equafions. The continuity and x- and
y-momentum equations have already been “solved.” Equation 3
(z-momentum) is integrated twice to get

w=£11+ Cix+ C, (4)
'lr:

Step 5 Apply boundary conditions. We apply boundary conditions (1) and
(2) from step 2 to obtain constants C, and G,

Boundary condition (1): w=0+0+0C;=0 Cy,=10

and

. dw P8 pgh
Boundary condition (2): — =—h+Ci=0 = C=—
dx =k H H

Finally, Eq. 4 becomes

) » o
_ P8 1“1—E1’1.1' — 8

2 Iz 2p

Since x < hin the film, w is negative everywhere, as expected (flow is
downward). The pressure field is trivial; namely, P = P, everywhere.

(x — 2i) (5)

Velocity field: W

Step & Verify the resulfs. You can verify that all the differential equations
and boundary conditions are satisfied.

We normalize Eq. 5 by inspection: we let x* = x'h and w* = wu/(pgh?).

Equation 5 becomes
o
Normalized velocity profile:  w* = % (x* — 2) (6)

We plot the normalized velocity field in Fig. 9-70.

Discussion The velocity profile has a large slope near the wall due to the
no-slip condition there (w = O at x = 0), but zero slope at the free surface,
where the boundary condition is zero shear stress (awfax = 0 at x = h). We
could have introduced a factor of —2 in the definition of w* so that w*
would equal 1 instead of —3 at the free surface.
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Geometry of Example 9-18: steady
laminar flow in a long round pipe with
an applied pressure gradient dP/dx
pushing fluid through the pipe. The
pressure gradient is usually produced
by a pump and/or gravity.

EXAMPLE 9-18 Fully Developed Flow in a Round Pipe—
Poiseuille Flow

Consider steady, incompressible, laminar flow of a Newtonian fluid in an infi-
nitely long round pipe of diameter D or radius R = D2 (Fig. 9-71). We
ignore the effects of gravity. A constant pressure gradient aP/ax is applied in
the x-direction,

ﬂP _ P! — Pl

Applied pressure eradient: —
p P B ax T 1

= constant (1}

where x; and x, are two arbitrary locations along the x-axis, and P; and Ps
are the pressures at those two locations. Note that we adopt a modified
cylindrical coordinate system here with x instead of z for the axial compo-
nent, namely, (r, #, x) and (u,, u,, u). Derive an expression for the velocity
field inside the pipe and estimate the viscous shear force per unit surface
area acting on the pipe wall.

SOLUTION For flow inside a round pipe we are to calculate the velocity
field, and then estimate the viscous shear stress acting on the pipe wall.
Assumptions 1 The pipe is infinitely long in the x-direction. 2 The flow is
steady (all partial time derivatives are zero). 3 This is a parallel flow (the
r-component of velocity, u,, is zero). 4 The fluid is incompressible and MNew-
tonian with constant properties, and the flow is laminar (Fig. 9-72). 5 A con-
stant pressure gradient is applied in the x-direction such that pressure
changes linearly with respect to x according to Eqg. 1. 6 The velocity field is
axisymmetric with no swirl, implying that v, = 0 and all partial derivatives
with respect to # are zero. 7 We ignore the effects of gravity.

Analysis To obtain the velocity field, we follow the step-by-step procedure
outlined in Fig. 9-52.

Step 1 Lay out the problem and the geomatry. See Fig. 9-71.
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Step 2 List assumptions and boundary conditions. We have listed seven

assumptions. The first boundary condition comes from imposing the no-slip

condition at the pipe wall: (1) at r = R, V = 0. The second boundary

condition comes from the fact that the centerline of the pipe is an axis of
symmetry: (2) at r= 0, aular = 0.

Step 3 Wrife out and simplify the differential equations. We start with the
incompressible continuity equation in cylindrical coordinates, a modified
version of Eq. 9-62a,

190wy  19@d | du _ au _
o a8 ax A (2
C .

assumption 3 assumption 6

Equation 2 tells us that v is not a function of x. In other words, it doesn't
matter where we place our origin—the flow is the same at any x-location.
This can also be inferred directly from assumption 1, which tells us that
there is nothing special about any x-location since the pipe is infinite in
length—the flow is fully developed. Furthermore, since v is not a function
of time (assumption 2) or # (assumption &), we conclude that v is at most
a function of r,

Result of continuity: u = w(r)only (3)

We now simplify the axial momentum equation (a modified version of Eq.
9-62d) as far as possible:

(ﬂé + - %ﬁ - /‘E )
i o

P\ 5t ar a0 ax
—_— o N’ S

assumplion 2 assumplion 3 assemplion & coalimity
L N (1 a(au)+133 +ai)
. : — 2 () A -
ax % = rar\ o ar an? X~
—— b il
assumpdion 7 assumplion & contiouity
or
1 d( du) 1 3P @
——lr—)=—
rdr\ dr Modx

CAUTION: EXACT
SOLUTIONS POSSIELE
FOR LAMIMAR FLOW
OmMLY

FIGURE 9-72

Exact analytical solutions of the
Navier-Stokes equations, as in the
examples provided here, are not
possible if the flow is turbulent.

92



As in Examples 9-15 through 9-17, the material acceleration (entire left
side of the x-momentum equation) is zero, implying that fluid particles are

not accelerating at all in this flow field, and linearizing the Mavier-Stokes
equation (Fig. 9-73). We have replaced the partial derivative operators for
the u-derivatives with total derivative operators because of Eq. 3.

In similar fashion, every term in the ~~-momentum equation (Eq. 9-62b)
except the pressure gradient term is zero, forcing that lone term to also be
ZEro,

aP
r-maomentum: —=10 (5)
ar
In other words, Pis not a function of r. Since Pis also not a function of
time (assumption 2) or # (assumption &), P can be at most a function of x,

Result of r-momentum: P = P(x) only (6)

Therefore, we replace the partial derivative operator for the pressure
gradient in Eq. 4 by the total derivative operator since P varies only with x.
Finally, all terms of the #-component of the Navier-Stokes equation (EqQ.
9-62c) go to zero.

Step 4 Solve the differential equations. Continuity and -momentum have
already been “solved,” resulting in Egs. 3 and 6, respectively. The
#-momentum egquation has vanished, and thus we are left with Eq. 4
(x-momentum). After multiplying both sides by r, we integrate once to obtain
r du _ ,-_1 dr +C )
dr  2ude
where C, is a constant of integration. Note that the pressure gradient dP/dx
is a constant here. Dividing both sides of Eq. 7 by r, we integrate a second
time to get
2
r- dP
H=EE+C‘LInr+E} (8)

where C, is a second constant of integration.

The Navier—Stokes Equation

P(ﬂﬂﬁ-ﬁﬁ ):jpﬂﬁmvlﬁ

di \

Monlinear term

FIGURE 9-73

For incompressible flow solutions in
which the advective terms in the
Navier—Stokes equation are zero, the
equation becomes linear since the
advective term is the only nonlinear
term in the equation.
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Axial velocity profile of Example
0—18: steady laminar flow 1n a long
round pipe with an applied constant-
pressure gradient dP/dx pushing fluid
through the pipe.
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Step 5 Apply boundary conditions. First, we apply boundary condition (2)
to Eq. 7,

Boundary condition (2): 0=0+ C, — =0

An alternative way to interpret this boundary condition is that u must
remain finite at the centerline of the pipe. This is possible only if constant

C, is equal to O, since In(0) is undefined in Eq. 8. Now we apply boundary
condition (1),

R* dP R dP
Boundary condition(1): u=——+0+C=0 —» C;=-——
Ap dx 4 dx
Finally, Eq. 7 becomes
1 dP .
Axial velocity: n=——(rt—RY (9)
' 4 dx

The axial velocity profile is thus in the shape of a paraboloid, as sketched
in Fig. 9-74.

Step 6 Verify the results. You can verify that all the differential equations
and boundary conditions are satisfied.

We calculate some other properties of fully developed laminar pipe flow as
well. For example, the maximum axial velocity obviously occurs at the cen-
terline of the pipe (Fig. 9-74). Setting r = 0 in EqQ. 9 yields

R* dP
Maxi ial velocity: = ———— 10

aximum axtal velocity (7 J— T (10)
The volume flow rate through the pipe is found by integrating Eq. 9 through
a cross-section of the pipe,

y Y R

. 27 dP TR dP

V= J ] ur dr di = —J (r! — ROrdr=— — (11)
a—i Jr—1 dpode | o B dx




Since volume flow rate is also equal to the average axial velocity times cross-
sectional area, we easily determine the average axial velocity V:

vV  (—7RYBu) (dP/d:
'I-“'=—=E TR /8p) (dPldx) R dP (12)
A TR 8 dx

Average axial velocity:

Comparing Egs. 10 and 12 we see that for fully developed laminar pipe
flow, the average axial velocity is equal to exactly half of the maximum axial
velocity.

To calculate the viscous shear force per unit surface area acting on the
pipe wall, we consider a differential fluid element adjacent to the bottom
portion of the pipe wall (Fig. 9-75). Pressure stresses and mathematically
positive viscous stresses are shown. From Eq. 9-63 (modified for our coordi-
nate system), we write the viscous stress tensor as

il
0 0 w—
Tr T T ar
TJ_.' = I_||Ilr I_|'II|| I_l'II = D ﬂ ﬂ {13}
'__r.r "__'rh "_.'H: .‘-"— ﬂ_u ﬂ ﬂ
ar

We use Eq. 9 for u, and set r = R at the pipe wall; component 7 of Eq. 13
reduces to

du RdP
Viscous shear stress at the pipe wall: TmT M= (14)
For flow from left to right, dP/dx is negative, so the viscous shear stress on
the bottom of the fluid element at the wall is in the direction opposite to
that indicated in Fig. S-75. (This agrees with our intuition since the pipe
wall exerts a retarding force on the fluid.) The shear force per unit area on
the wall is equal and opposite to this; hence,

Viscous shear force per unit area acting on the wall: 1 = ———1 {(15)

Centerline

' dP dx
| Pra s
dr= e
: Trr
|
---.==——-—-I

X Tx Pipe wall
d

FIGURE 9-75

Pressure and viscous shear stresses
acting on a differential fluid element
whose bottom face 1s In contact
with the pipe wall.
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Control volume used to obtain Eq. 15

of Example 9-18 by an alternative

method.

The direction of this force again agrees with our intuition; namely, the fluid
tries to pull the bottom wall to the right, due to friction, when dP/dx is
negative.

Discussion Since du/dr = O at the centerline of the pipe, =, = O there. You
are encouraged to try to obtain Eq. 15 by using a control volume approach
instead, taking your control volume as the fluid in the pipe between any two

x-locations, x, and x, (Fig. 9-76). You should get the same answer. (Hint:
Since the flow is fully developed, the axial velocity profile at location 1 is iden-
tical to that at location 2.) Note that when the volume flow rate through the
pipe exceeds a critical value, instabilities in the flow occur, and the solution
presented here is no longer valid. Specifically, flow in the pipe becomes furbu-
lenf rather than laminar; turbulent pipe flow is discussed in more detail in
Chap. 8. This problem is also solved in Chap. 8 using an alternative approach.

So far, all our Navier—Stokes solutions have been for steady flow. You can
imagine how much more complicated the solutions must get if the flow is
allowed to be unsteady, and the time derivative term in the Navier—Stokes
equation does not disappear. Nevertheless, there are some unsteady flow
problems that can be solved analytically. We present one of these in Exam-
ple 9-19.
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Infinite flat plate

FIGURE 9-77

Geometry and setup for Example

0-19; the y-coordinate is into the page.

EXAMPLE 9-19 Sudden Motion of an Infinite Flat Plate

Consider a viscous Mewtonian fluid on top of an infinite flat plate lying in
the xy-plane at z = 0 (Fig. 9-77). The fluid is at rest until time t = O, when
the plate suddenly starts moving at speed V in the x-direction. Gravity acts
in the —z-direction. Determine the pressure and velocity fields.

SOLUTION The wvelocity and pressure fields are to be calculated for the
case of fluid on top of an infinite flat plate that suddenly starts moving.
Assumptions 1 The wall is infinite in the x- and y-directions; thus, nothing
is special about any particular x- or j-location. 2 The flow is parallel every-
where (w = 0). 3 Pressure P = constant with respect to x. In other words,
there is no applied pressure gradient pushing the flow in the x-direction; flow
occurs due to viscous stresses caused by the moving plate. 4 The fluid is
incompressible and MNewtonian with constant properties, and the flow is lam-
inar. 3 The velocity field is two-dimensional in the xz-plane; therefore, v
= 0, and all partial derivatives with respect to y are zero. 6 Gravity acts in
the —z-direction.

Analysis To obtain the velocity and pressure fields, we follow the step-by-
step procedure outlined in Fig. 9-b2.

Step 1 Lay out the problem and the geometry. (See Fig. 9-77.)

Step 2 List assumptions and boundary condifions. We have listed six
assumptions. The boundary conditions are: (1) At f = 0, v = O everywhere
(no flow until the plate starts moving); (2) at z = 0, u = V for all values of
x and y (no-slip condition at the plate); (3) as z — =, v = O (far from the
plate, the effect of the moving plate is not felt); and (4)atz=0, P = P,
(the pressure at the wall is constant at any x- or j-location along the plate).

Step 3 Write out and simplify the differential equations. We start with the
incompressible continuity equation in Cartesian coordinates (Eq. 9-61a),

au arr ) du

— + = + = =0 = =0 1
ax Ay fz dix “
—_— —_—

assemplion 5 assumption 2

Equation 1 tells us that v is not a function of x. Furthermore, since v is not
a function of y (assumption 5), we conclude that v is at most a function of
Zand f,



Result of confinuity: u = ul(z, t)only (2)

The y-momentum equation reduces to
apP
—=10 3
3y (3)

by assumptions 5 and & (all terms with v, the y-component of velocity,
vanish, and gravity does not act in the y-direction). Equation 3 simply tells

us that pressure is not a function of y; hence,

Result of yv-momentum: P = P(z, 1) only (4)
Similarly the z-momentum equation reduces to
(L (5)
3z PE

We now simplify the x-momentum equation (Eqg. S-&1b) as far as possible.

(ﬁlu N Lo ) P

— m v w = —

P\ at ax ay 3 ax | PE&
‘-\_._‘_,_-' ‘\_“,_-' L rl ‘\_._‘_,_-'

conlipuity  assumplion 5 sssumplion 2 assumption 3 assamplion &

a’ w  du au a*u
W) - e
N .

contingity  assumplicn 5

It is convenient to combine the viscosity and density into the kinematic
viscosity, defined as » = p/p. Equation 6 reduces to the well-known one-
dimensional diffusion equation (Fig. 9-78),

du a’u

—=r— M
at

Result of x-momentum: ¥ —
a3

Step4 Solve the differential equations. Continuity and y-momentum have
already been “solved,” resulting in Egs. 2 and 4, respectively. Equation 5
(z-momentum) is integrated once, resulting in

P = —pgz + fit) (8)

FIGURE 9-78

The one-dimensional diffusion
equation is [inear, but it 1s a partial
differential equation (PDE). It
occurs in many fields of science
and engineering.

98



where we have added a function of time instead of a constant of integration
since P is a function of two variables, z and f (see Eq. 4). Equation 7
(x-momentum) is a linear partial differential equation whose solution is
obtained by combining the two independent variables 7 and t into one
independent variable. The result is called a similarity solution, the details of
which are beyond the scope of this text. Note that the one-dimensional
diffusion equation occurs in many other fields of engineering, such as
diffusion of species (mass diffusion) and diffusion of heat (conduction);
details about the solution can be found in books on these subjects. The
solution of Eq. 7 is intimately tied to the boundary condition that the plate
Is impulsively started, and the result is

Integration of x-momentum: u=0C l[l — erf ( z._)] (9
2% vt

where erf in Eq. 9 is the error function (Cengel, 2003), defined as

S
—

T

2 [F
Error function: erf(é£) = — J E_"Ifi‘rjl (10)
0

The error function is commonly used in probability theory and is plotted in
Fig. 9-79. Tables of the error function can be found in many reference
books, and some calculators and spreadsheets can calculate the error
function directly. It is also provided as a function in the EES software that
comes with this text.

Step 3 Apply boundary condifions. We begin with Eq. 8 for pressure.
Boundary condition (4) requires that P = P, at z= 0 for all times, and
Eq. 8 becomes

Boundary condition (4): P=0+ flt) = Py — A = Py

In other words, the arbitrary function of time, f(f), turns out not to be a
function of time at all, but merely a constant. Thus,

Final result for pressure field: P =Py — pez (11)
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FIGURE 9-79
The error function ranges from 0 at
E=0to]lasé— =
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which is simply hydrostatic pressure. We conclude that hydrostafic
prassure acts independently of the flow. Boundary conditions (1) and (3)
from step 2 have already been applied in order to obtain the solution of the
x-momentum equation in step 4. Since erf(0) = 0, the second boundary
condition yields

Boundary condition (2): u=Cil—-mm=V — C,=V

= rll - -.-ri'( :_ﬂ (12)
20 i

kY

and Eq. 9 becomes

Final result for velocity field:

Several velocity profiles are plotted in Fig. 9—-80 for the specific case of
water at room temperature (r = 1.004 = 10-% m?/s) with V = 1.0 m/s. At
f = 0, there is no flow. As time goes on, the motion of the plate is felt
farther and farther into the fluid, as expected. Notice how long it takes for
viscous diffusion to penetrate into the fluid—after 15 min of flow, the
effect of the moving plate is not felt beyond about 10 cm above the plate!
We define normalized variables u* and z* as
Normalized variables: u* = il and * = "__
v 2N vt

Then we rewrite Eq. 12 in terms of nondimensional parameters:

Normalized velocity field: u* =1 — erf(z*) (13)

The combination of unity minus the error function occurs often in
engineering and is given the special name complementary error function
and symbol erfc. Thus Eg. 13 can also be written as

Alternative form of the velocity field: u* = erfc(z*) (14)

The beauty of the normalization is that this one equafion for u* as a
function of z* is valid for any fluid (with kinematic viscosity ») above a
plate moving at any speed V and at any location zin the fluid at any time A
The normalized velocity profile of Eq. 13 is sketched in Fig. 9-81. All the
profiles of Fig. 9-80 collapse into the single profile of Fig. 9-81; such a
profile is called a similarity profile.
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FIGURE 9-80

Velocity profiles of Example 9-19:
flow of water above an impulsively
started infinite plate; »r = 1.004
10 ®* m¥s and V = 1.0 m/s.
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Step 6 Verify the resulifs. You can verify that all the differential equations
and boundary conditions are satisfied.

Discussion The time required for momentum to diffuse into the fluid seems
much longer than we would expect based on our intuition. This is because
the solution presented here is valid only for laminar flow. It turns out that if
the plate's speed is large enough, or if there are significant vibrations in the
plate or disturbances in the fluid, the flow will become turbulent. In a turbu-
lent flow, large eddies mix rapidly moving fluid near the wall with slowly
moving fluid away from the wall. This mixing process occurs rather quickly,
so that turbulent diffusion is usually orders of magnitude faster than laminar
diffusion.

Examples 9-15 through 9-19 are for incompressible laminar flow. The
same set of differential equations (incompressible continuity and Navier—
Stokes) is valid for incompressible furbulent flow. However, turbulent flow
solutions are much more complicated because the flow contains disordered,
unsteady, three-dimensional eddies that mix the fluid. Furthermore, these
eddies may range in size over several orders of magnitude. In a turbulent flow
field, none of the terms in the equations can be ignored (with the exception
of the gravity term in some cases), and thus solutions can be obtained only
through numerical computations. Computational fluid dynamics (CFD) is dis-
cussed in Chap. 15.
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FIGURE 9-81

Normalized velocity profile of
Example 9-19: laminar flow of a
viscous fluid above an impulsively
started infinite plate.
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Ozet

Giris

Kutlenin korunumu —Sureklilik denklemi
v' Diverjans teoremi ile tiretme
v' Sonsuz kicuk kontrol hacmi ile tliretme
v’ Sureklilik denkleminin alternatif formu
v Silindirik koordinatlarda stireklilik denklemi
v Sureklilik denkleminin 6zel halleri

Akim Fonksiyonu
v’ Kartezyen koordinatlarda akim fonksiyonu
v" Silindirik koordinatlarda akim fonksiyonu
v’ Sikistirilabilir akim fonksiyonu

Diferansiyel lineer momentum denklemi-Cauchy
Denklemi

v' Diverjans teoremi ile tiretme
v Sonsuz kicuk kontrol hacmi ile tliretme
v Cauchy denkleminin alternatif formu

v' Newton’un ikini kanunu ile tiiretme 102



* Navier-Stokes Denklemleri
v Giris
v" Newtonyen ve Newtonyen olmayan akiskanlar

v Navier—Stokes denklemlerinin sikistirilamaz ve
izotermal akislar icin turetimi

v" Sureklilik ve Navier—Stokes denklemlerinin
kartezten ve silindirik koordinatlardaki ifadeleri

» Aks problemlerinin diferansiyel analizi

v" Bilinen hiz alanindan basing¢ alani hesabi

v" Sireklilik ve Navier—Stokes denklemlerinin
kesin cozumleri
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