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Abstract
Nowadays, problems relating to the inadequacy of energy resources are emerging, due to fast population growth and inevitable 
urban sprawl. Renewable energy resources are of vital importance in order to overcome these problems that endanger coun-
tries in terms of economic, social, and environmental factors. The determination of suitable facility locations is a key matter 
to solve, in order to effectively exploit biomass energy potential. This paper proposes an approach to biomass facility location 
that integrates open-source geographic information systems (GIS), fuzzy logic, and a best worst method (BWM) solution, 
which is a newly developed multi-criteria decision-making (MCDM) method to address optimal facility location. Suitable 
locations take different criteria into consideration, including potential biomass amount (e.g., agricultural and animal wastes), 
slope, and distances to roads and water bodies. By utilizing MCDM, the most critical criterion can be determined. Moreover, 
the paper demonstrates that fuzzy logic allows intermediate values for suitability criteria and is preferable to Boolean logic. 
The proposed approach is illustrated using all cities of Turkey as an empirical case study. Four specific regions that greatly 
have highly suitable areas are presented. Sensitivity analysis shows that different agendas such as economic cost and social 
impact might change the suitability results, specifically in areas of the highly suitable class. These results are most strongly 
affected by potential biomass amount, population density, and distances to roads and settlements.
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Introduction

Energy is indispensable for the development and welfare 
of countries. Fossil fuel energy production persists even 
though its consumption damages the environment and con-
tributes to global warming especially in areas of popu-
lation growth and an increase in industrialization (IEA 
(International Energy Agency) 2018; EIA (U.S. Energy 
Information Administration) 2019). In 2018, while fossil 
fuel consumption globally ranked highest (79.9%) among 
energy sources, energy consumption from modern renew-
able energy sources (defined as wind, solar, geothermal, 
ocean power, hydropower, and biomass) was only 17.9% 
collectively (REN21 2020). Replacement of fossil fuel 
with renewable energy sources is argued to reduce harmful 
gas emissions and satisfy growing demand (Abdul Malek 
et al. 2020). Increased use of renewable energy sources can 
also reduce foreign dependencies in several countries, for 
example, Brazil (Guerini Filho et al. 2019), Bangladesh 
(Masud et al. 2019), and Poland (Igliński et al. 2015). It 
is expected that renewable energy sources will play an 
important role in coming decades (BP 2020).

Biomass is of vital importance to sustainable energy 
production because (in contrast to solar and wind sources) 
it is a steadily reliable source that can provide a base-
load energy supply. Any renewable or organic by-products 
from crops/plants and animals can be defined as biomass, 
including residues of husbandry, agriculture, and forestry 
(DoE (U.S. Department of Energy) 2020). In other words, 
biomass can be described as a naturally occurring material 
that is directly used as a fuel or easily converted to biofuel. 
Biomass can be used to generate electricity and heat by 
applying different conversion techniques such as gasifica-
tion and anaerobic digestion (WEC 2016).

This paper examines the adoption of biomass renewable 
fuel sources using Turkey as a case study. This country 
provides an example of the complexities of situating bio-
mass production and transitioning from fossil fuel as a 
primary energy source. Turkey is located between south-
eastern Europe and western Asia. Its geographical location 
provides an energy bridge of fossil fuel between Middle 
East countries and Europe (Melikoglu 2017). Turkey pro-
vides a large study area (783,562  km2). Fossil fuels (prin-
cipally coal and natural gas) account for a large portion of 
the energy consumption of Turkey. The net electricity con-
sumption in Turkey is gradually increasing due to expo-
nential population growth, urbanization, and economic 
development (TurkStat 2020). Concurrently, greenhouse 
gas (GHG) emissions are also growing considerably.

Another factor justifying the Turkey case study is the 
recent adoption of policies favoring regulated transition 
toward renewable energy. Energy security becomes a 

significant issue for Turkish policies aiming to reduce for-
eign dependence on fossil fuels. The government recently 
announced goals to diversify energy (IOPRT 2021). These 
goals will increase the percentage of renewable sources 
in the energy sector, decrease harmful gas emissions, and 
reduce dependence on fossil fuel imported from other 
countries. The 11th Development Plan (PRT 2019) intends 
to increase renewable energy shares in electricity produc-
tion to 38.8% by 2023.

A third factor is that Turkey has a notable production 
potential for biomass energy (Toklu 2017). The total biomass 
energy potential of the country was predicted on average at 
17.0 Mtoe (million tons of oil equivalent) per annum. The 
energy potential from animal waste and agricultural residues 
was recently calculated as 23,760 terajoule (TJ) (Melikoglu 
and Menekse 2020) and 998,473 TJ, respectively (Avcıoğlu 
et al. 2019). For all of the reasons described above, deter-
mination of suitable locations for biomass energy facilities 
becomes crucial to exploit the renewable energy potential of 
Turkey. The objective of this paper is to obtain a suitability 
index for locating potential biomass energy facilities in Tur-
key for future adoption as one source of renewable energy.

The locations of biomass energy facilities should take 
into account economic and environment parameters. For 
example, biomass facilities should be located at specific 
distances from road networks to optimize transportation effi-
ciency (Zheng and Qiu 2020). Also, the suitable locations 
must follow constraints that are indicated in regulations to 
protect the environment (Bojesen et al. 2015).

Geographic information systems (GIS) technology pro-
vides a powerful tool to assess suitability for biomass energy 
facilities, since it offers a number of strategies to manipulate 
both spatial and semantic data (Díaz-Cuevas et al. 2018) 
in order to meet multiple constraints. For example, Sahoo 
et al. (2018) assessed the location suitability for bioenergy 
facilities using GIS-based location–allocation analysis in 
Ohio, USA. Zareei (2018) found suitable sites for a biogas 
plant in Iran using GIS-based overlay analysis. Van Hols-
beeck and Srivastava (2020) proposed possible locations for 
bioenergy conversion facilities in Queensland, Australia, by 
means of GIS-based local index of spatial autocorrelation 
(LISA) analysis. Latterini et al. (2020) found suitable loca-
tions for small-size biomass plants in Lazio, Italy, using a 
GIS-based approach. Díaz-Vázquez et al. (2020) selected 
suitable locations for anaerobic digesters in Mexico using 
GIS overlay analysis after evaluating the biogas potential 
from livestock manure.

Multi-criteria decision-making (MCDM) methods applied 
in a GIS environment can quantify the relative importance 
of various environmental and social criteria (Uyan 2017; Li 
2018; Aydin and Sarptas 2020; Settou et al. 2020; Barze-
hkar et al. 2020). GIS-based MCDM and variants have been 
relied upon to rank optimal locations for bioenergy plants in 
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Colombia (Rodríguez et al. 2017), Japan (Babalola 2018), 
Spain (Jeong et al. 2017; Díaz-Cuevas et al. 2019), Brazil 
(Costa et al. 2020), Australia (Jayarathna et al. 2020), Iran 
(Davtalab and Alesheikh 2018), Italy (Famoso et al. 2020), 
Tasmania (Woo et al. 2018), and Nigeria (Chukwuma et al. 
2021). In Turkey, GIS and MCDM methods have been dem-
onstrated for several local studies in the Aegean region (Cebi 
et al. 2016), in several cities (Yuruk and Erdogmus 2018; 
Yücenur et al. 2020; Yalcinkaya 2020; Gital Durmaz and 
Bilgen 2020). One contribution of this paper differs from 
previous studies in using GIS and MCDM to examine the 
entire nation of Turkey, rather than creating suitability mod-
els for localized study areas.

The work reported here also incorporates three method-
ologies that have not been incorporated in previous suitabil-
ity assessments. First is the use of fuzzy logic, which can 
represent the complex spatial characteristics of decisive cri-
teria more realistically than deterministic functions. Second 
is the use of open-source GIS software to make modeling 
parameters and workflows transparent, ensuring reproduc-
ibility and replicability (Kedron et al. 2020). A third meth-
odology is the best worst method (BWM), a type of MCDM 
that operates on relative ranking to generate weights. BWM 
has been used in some recent suitability studies (Kheybari 
et al. 2019; Wu et al. 2019) albeit without integration with 
GIS or fuzzy logic.

The results shown here report a first study on biomass 
energy facility location selection using a holistic approach 
that integrates open-source GIS, BWM, and fuzzy logic and 
applies that approach to an entire nation. The approach can 
be replicated easily in other locations and can accommo-
date varying administrative policies as well as alternate sets 
of criteria. Additionally, the utility of fuzzy logic permits 
expansion of candidate sites in the event that no single loca-
tion meets all criteria fully. A sensitivity analysis is pre-
sented to demonstrate how the work can also benefit the 
planning process in validating where modeling outcomes 
are stable under differing agendas and priorities.

Research methodology

This study finds suitable locations for biomass energy facili-
ties by integrating GIS, BWM, and fuzzy logic techniques. 
GIS is used to conduct enhanced spatial analyses and spa-
tial data manipulation, while MCDM methods enrich the 
trustworthiness of the analysis. Fuzzy logic (rather than 
Boolean logic) is used to quantify uncertainty and establish 
the relative importance of each criterion. The implemented 
workflow is shown in Fig. 1.

The analysis is divided into three parts. In the first part, 
a BWM analysis allows the decision-makers to create com-
parison matrices by ranking the relative effectiveness of 

each criterion. The criteria can have values in different units 
such as meter, kilometer, and percentages. The criteria are 
ranked by assigning weights according to specific agendas 
(e.g., pro-development, pro-environment, etc., as described 
below). Weights are normalized into a 0–1 range, relative 
to the most important (best) and least important (worst) 
weights. Once normalized, weights are averaged for each 
criterion. The BWM will be demonstrated in the analysis to 
show how weights are selected, normalized, and averaged.

In the second part of the methodology, threshold values 
related to each criterion are determined in relation to their 
suitability to biomass facility location, taking literature and 
regulations into account. Fuzzy logic (Zadeh 1965, 1997) is 
utilized to assign a numeric probability for threshold values 
and to permit some flexibility in identifying spatial extents 
for each criterion. For example, facility locations should 
be situated neither too far nor too close to water bodies. 
Although it is not a familiar phrase in popular language, 
“fuzzification” and “defuzzification” have appeared in recent 
literature on remote sensing applications (Hofmann 2016). 
Several membership functions can be selected depending on 
the characteristics of the studied case. In this study, S-shaped 
and linear functions are used to conduct fuzzification of 
spatial layers from determined threshold ranges (Guler and 
Yomralioglu 2021), creating raster layers for each criterion 
by reclassifying pixels with probabilities assigned from the 
fuzzified membership functions.

The third part of the analysis involves weighted linear 
combination (WLC) and GIS overlay of probability layers to 
obtain the location suitability index. WLC multiplies pixel 
values of each criterion layer by its fuzzy probability, sum-
ming values to derive a suitability index. Suitability indices 
may be classed. The final result is obtained by extracting 
constrained areas from the study area that fall within the 
most suitable class ranges.

In this study, all spatial analyses are executed by using 
open-source GIS tools, namely QGIS (QGIS Development 
Team 2021), SAGA (SAGA Development Team 2021), 
GRASS GIS (GRASS Development Team 2021), and GDAL 
(GDAL/OGR Contributors 2021). Tools for this study that 
are created in the QGIS environment are publicly available 
for the interested readers (Guler et al. 2021).

Criteria and data sources

For this study, all criteria and thresholds are drawn from the 
published literature (Table 1). For localized case studies, 
scholars investigated the renewable energy-related legisla-
tion in specific jurisdictions to determine suitable locations 
for biomass facilities. The research reported here was limited 
to choosing from existing criteria in past studies because, 
to the best of the authors’ knowledge, there is no uniform 
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legislation in Turkey to follow in choosing optimal locations 
of biomass facilities.

The seven criteria in Table 1 are used in BWM calcu-
lations. In this step, spatial data that represent the criteria 
and constraints are created, using open-source informa-
tion. Spatial data are available across a range of resolutions 
(10–100 m). Data layers are resampled to 100 m resolution 

to harmonize the resolutions of multiple data sources to a 
common level.

The population density (C1) computed as people per 
square kilometer evaluates the demand for biomass facilities. 
Areas with high population density are more suitable for bio-
mass facilities because the energy can be transported to these 
areas easily. Also, these areas likely need more energy, due 

Fig. 1  The methodology implemented in this study

Table 1  The criteria used in this study and their acronyms. Estimated biomass energy based on agricultural and animal wastes is measured in 
petajoules (PJ), and proximity values are measured in meters (m)

Acronym Criterion References

C1 Population density (people per  km2) Jayarathna et al. (2020), Silva et al. (2017), Franco et al. (2015)
C2 Estimated biomass energy (PJ) Costa et al. (2020), Jayarathna et al. (2020), Wu et al. (2019)
C3 Slope (%) Costa et al. (2020), Jayarathna et al. (2020), Famoso et al. (2020)
C4 Proximity to a water body (m) Costa et al. (2020), Famoso et al. (2020), Gital Durmaz and Bilgen (2020)
C5 Proximity to road network (m) Costa et al. (2020), Jayarathna et al. (2020), Gital Durmaz and Bilgen (2020)
C6 Proximity to railway network (m) Zareei (2018), Sahoo et al. (2018), Costa et al. (2020)
C7 Proximity to settlement area (m) Costa et al. (2020), Famoso et al. (2020), Gital Durmaz and Bilgen (2020)
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to higher demand. The 2018 population data were obtained 
from the Turkish Statistical Institute in tabular form (Turk-
Stat 2019). Spline interpolation creates a final interpolated 
surface at 100 m resolution for the whole country.

The estimated biomass energy (C2) values determine 
potential biomass energy yield from animals and crops/
plants. Areas with high biomass production can provide a 
higher concentration of waste to a biomass facility. Infor-
mation for 2014 is provided through the General Directo-
rate of Energy Affairs of Turkey (MENRRT 2014). The 
data source contains potential bioenergy values that can be 
obtained from different kinds of animal and agricultural resi-
dues. Spline interpolation is used again to create a national 
potential yield surface of biomass energy.

The terrain slope (C3) can affect biomass facility con-
struction costs and the difficulty of site preparation. Turkey 
has several regions with steep slopes, and the areas with 
lower slope are evaluated as more suitable. Slope data are 
derived at 100 m from the 25 m European Union Digital 
Elevation Model (EU-DEM) (EUC 2016). The proximity to 
a water body (C4) is an important factor for location selec-
tion due to environmental impact and facility management. 
In this study, the criterion includes surface water but not 
groundwater proximity. Water quality can be impacted by 
biomass facilities, and hence, the facilities should not be 
immediately adjacent. On the other hand, biomass facilities 
benefit from water availability for processing, and therefore, 
facilities should not be built too far away from water sources. 
CORINE (EUC 2019a) land cover data at 100 m are used 
for this layer.

The proximity to road network (C5) plays an important 
role in transporting waste to a biomass facility. The Global 
Roads Open Access Data Set (gROADS) (Center for Inter-
national Earth Science Information Network—CIESIN and 
Information Technology Outreach Services—ITOS 2013) 
provides the source create the network of major roads in 
Turkey. A similar consideration should be made for proxim-
ity to railway network (C6), since sites that are close to a 
railway network can offer advantages in terms of transporta-
tion. Railway data were drawn from OpenStreetMap (OSM 
Contributors 2021).

The proximity to settlement area (C7) criterion can be 
used to estimate proximity to population (demand) as well 
as assessing impacts of a biomass energy facility on residen-
tial living environments and service areas. High-resolution 
(10 m) settlement areas are obtained from the European Set-
tlement Map (EUC 2019b) which is a public data domain 
from the EU.

Five additional data layers refine the selection of suit-
able areas. None of these are utilized for criteria weight-
ing. Instead, they are applied in binary form, meaning a 
discrete threshold is applied. Areas not meeting the criteria 
are immediately determined to be unsuitable and eliminated 

from consideration. All four binary criteria carry important 
environmental protections. The wetland layer and the mining 
area layer are drawn from CORINE. A layer representing 
green and protected area layers incorporates data from the 
Tree Cover Density (TCD) (EUC 2018) dataset from EU and 
from the General Directorate of Nature Conservation and 
National Parks of Turkey (MAFRT 2021). Lastly, the airport 
layer is drawn from the General Directorate of State Airports 
Authority of Turkey (MTIRT 2021). Figure 2 illustrates the 
geography of all spatial data layers prepared for this study.

Best worst method (BWM)

BWM is a newly developed and widely accepted MCDM 
method (Rezaei 2016; Mi et al. 2019). It is based on pairwise 
comparisons that is a commonly used method in biomass 
facility site selection studies. BWM carries several advan-
tages over other MCDM methods (Rezaei 2015):

• BWM is a vector-based method that requires a minimal 
number ( 2n − 3 ) of pairwise comparisons. In contrast, 
another MCDM method is AHP that requires n(n − 1)∕2 
pairwise comparisons. Fewer comparisons facilitate deci-
sion making.

• BWM generates more consistent results in determin-
ing criteria weights, since the best and worst criteria are 
decided at the beginning of the decision process. BWM 
calculates a consistency ratio in order to check the reli-
ability of decisions. The closer that the consistency ratio 
is to zero, the more reliable are the decisions.

• BWM uses integer ranks instead of floating-point num-
bers. This speeds computations and simplifies interpreta-
tions.

• BWM allows integration of other MCDM methods to 
obtain criteria weights, although that integration is not 
utilized in this paper.

Fuzzification of the spatial layers

Fuzzification in the GIS environment is executed by means 
of raster-based calculations, controlled by one or multi-
ple threshold values. A number of equations can be used 
to guide fuzzification, depending on the study area and on 
the particular criteria. Threshold values used here are deter-
mined based upon previously published studies. Four func-
tions will be applied and are shown in the following. In all 
equations, fuzzified pixel values are represented as �

M
(x) 

, where x expresses the specific pixel value. Equation (1) 
shows the linear function with four threshold parameters ( a , 
b , c , d ) to stratify pixel membership into suitability levels. 
The linear equation will be applied to all four proximity-
based criteria. Equations (2) and (3) show increasing and 
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Fig. 2  The spatial data layers 
that are used in this research. 
These maps show spatial layers 
of the seven weighted criteria 
used in the BWM, and the five 
binary layers that are used to 
create a constraint layer. All 
layers are resampled to 100 m 
spatial resolution
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decreasing S-functions, respectively. These functions rely 
on two parameters ( a , b ), to compose membership. The 
increasing S-function will be applied to population density 
and estimated biomass energy, and the decreasing function 
will be applied to slope.

Table 2 shows the fuzzy threshold values for each crite-
rion that is used in this study, drawing upon relevant litera-
ture as shown in Table 1 and taking features of the study area 
into consideration.

Weighted linear combination

After deciding the criteria and their threshold values for the 
fuzzification process, the next step of the spatial analysis is 
to calculate a biomass facility location suitability index for 
each pixel in the study area. Weighted linear combination 
is widely applied in GIS-based suitability modeling studies. 
Equation (4) shows a formula for linear combination:

(1)𝜇
M
(x) =

⎧⎪⎪⎨⎪⎪⎩

0 x < a
x−a

b−a
a ≤ x ≤ b

1 b < x < c
d−x

d−c
c ≤ x ≤ d

0 x > d

(2)𝜇
M
(x) =

⎧
⎪⎨⎪⎩

0 x < a

sin

�
x−a

b−a
×

𝜋

2

�
a ≤ x < b

1 x ≥ b

(3)𝜇
M
(x) =

⎧
⎪⎨⎪⎩

1 x < a

sin

�
b−x

b−a
×

𝜋

2

�
a ≤ x < b

0 x ≥ b

.

where w
k
 represents the weight of each relevant criterion and 

v
(
a
ik

)
 expresses the pixel values of the spatial layer of that 

criterion. In this research, the final suitability index of each 
pixel in the study area is computed as the multiplied prod-
uct of fuzzified pixel values and weight of relative criteria, 
summed across all criteria.

Analysis and results

Comparing among three best–worst criteria 
weighting methods

For a comparative view of how BWM can operate, the 
weights of criteria were first determined by three different 
decision-makers separately and then the average of these 
three weights was calculated to find a final weight for each 
criterion. All three decision-makers are GIS researchers 
with scholarly interest in suitability modeling and sustain-
able energy. The reader should keep in mind that the pur-
pose of the case study presented here is to demonstrate the 
BWM method, rather than to achieve a definitive solution to 
the Turkish facility location. Thus, the three sets of weights 
are intended to generate a variety of responses rather than 
to prioritize a single agenda (e.g., pro-development, pro-
environment, cost-minimizing, etc.).

It is realistic to assume that decision-makers would 
approach the topics from a different point of view, which 
represent differing agendas. For example, while DM1 and 
DM2 selected C2 (estimated biomass energy) as the best 
criterion, DM3 chose C5 (proximity to the road network) as 
the best criterion. All three decision-makers differentially 
selected the worst criterion, C6 (proximity to the railway 

(4)V
(
A
i

)
=

n∑
k=1

w
k
v
(
a
ik

)

Table 2  The threshold values 
of criteria that are used for the 
fuzzification process

i increasing, d decreasing

Criterion Fuzzy threshold values Function type

0 0–1 1

C1 Population density (people per  km2)  <30 30–200  >200 S(i)
C2 Estimated biomass energy (PJ)  <10 10–70  >70 S(i)
C3 Slope (%)  >15 2–15  <2 S(d)
C4 Proximity to a water body (m)  <200, >2000 200–500,

1000–2000
500–1000 Linear

C5 Proximity to road network (m)  <100, >3000 100–500,
1000–3000

500–1000 Linear

C6 Proximity to railway network (m)  <100, >3000 100–500,
1000–3000

500–1000 Linear

C7 Proximity to settlement area (m)  <1000, >5000 1000–1500, 
3500–5000

1500–3500 Linear
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network), C1 (population density), and C7 (proximity to set-
tlement area), respectively. All pairwise comparisons created 
by decision-makers are shown in Table 3.

Table 4 shows the normalized weights of criteria that are 
calculated from those pairwise comparisons. The normal-
ized weights sum to 1 for each decision-maker. As men-
tioned before, BWM enables the calculation of a consist-
ency ratio (CR) for checking the stability of decisions. The 
consistency ratio determines whether the obtained weights 
are consistent relative to the best and worst as chosen by a 
decision-maker. Table 4 indicates that all consistency ratios 
are less than 0.25, meaning that they are consistent accord-
ing to the literature (Gómez-Limón et al. 2020).

To find a common ground for different decision-makers, 
the weights are averaged in MCDM studies. From the col-
umn of average weights, one can note that all criteria have 
different weights. C2 has the highest weight and C6 has the 
lowest weight. Among the group of decision-makers then, 
the value of estimated biomass energy (C2) is evaluated as 
the most important factor that affects the biomass facility 
location selection, and proximity to railways (C6) is selected 
as the least important factor.

Obtaining the location suitability index

The next step is the fuzzification of criteria layers using 
fuzzified threshold values of criteria. The choice of the 
s-curve or linear model is selected depending on the cri-
terion. Figure 3 illustrates the fuzzified spatial data layers 
of criteria. As can be seen from the figure, the pixels of all 
layers have values normalized between zero and one. Pixels 
with values closer to one have the highest suitability for 
biomass facility.

Candidate pixels for location selection of biomass facility 
are determined by summing the product of averaged weights 
and fuzzified values for all seven criteria, for each pixel. 
Candidate suitable areas are refined in two steps. A first 
step considers four binary constraints, including proximity 
to wetlands, to mining areas and to airports, and proxim-
ity to green space and protected areas. Proximity thresholds 

for the first three are set at 1,000 m, and for the fourth, a 
threshold of 500 m was defined, again following the pub-
lished literature. Any pixel not meeting one of the binary 
criteria is removed from the candidate set. A second step 
filters the remaining candidates to exclude areas of contigu-
ous pixels that are smaller than 4 ha, reasoning that a suit-
able site must exceed this size to accommodate processing 
and infrastructure.

Figure 4 illustrates the final suitability map for bio-
mass energy facility location. The suitability index ranging 
between zero and one is divided into five classes. Figure 5 
shows relative coverage of suitability classes. As is often the 
case, the regions of highest suitability are much less frequent 
than regions that are less suitable. This finding demonstrates 
a real advantage of integrating MCDM and fuzzification, 
namely that the method can identify location sites that meet 
all criteria, as well as sites that are nearly optimal and meet 
some but not all criteria thresholds. Four specific areas are 
picked to show the suitability locally (Fig. 6).

Area 1 is located in the northwest of Turkey and includes 
cities such as Edirne, Tekirdag, Balikesir, Bursa, and Istan-
bul of the Marmara region. This area abounds in biomass 
energy potential and also has a high population density. 
The selected area has numerous pixels that have suitable 

Table 3  The pairwise 
comparisons composed by 
DM1, DM2, and DM3

BO Best to others, OW others to the worst, DM decision-maker

DM1 BO C1 C2 C3 C4 C5 C6 C7 Worst criterion:  C6

Best criterion:  C2 3 1 6 5 4 9 3
OW 6 9 2 3 4 1 6

DM2 BO C1 C2 C3 C4 C5 C6 C7 Worst criterion:  C1

Best criterion:  C2 9 1 2 2 3 5 5
OW 1 9 7 6 2 3 2

DM3 BO C1 C2 C3 C4 C5 C6 C7 Worst criterion:  C7

Best criterion:  C5 2 2 4 5 1 6 9
OW 2 6 4 3 9 3 1

Table 4  Normalized ranking and averaged criteria weights. The 
weights always sum to 1 and the consistency ratio (CR) should 
remain as low as possible, ideally under 0.25 (Gómez-Limón et  al. 
2020)

Criterion DM1 DM2 DM3 Average Rank

C1 0.1502 0.0327 0.1448 0.1092 5
C2 0.3861 0.3350 0.2069 0.3093 1
C3 0.0751 0.1879 0.1034 0.1221 3
C4 0.0901 0.1879 0.0828 0.1203 4
C5 0.1126 0.1062 0.3517 0.1902 2
C6 0.0358 0.0752 0.0690 0.0600 7
C7 0.1502 0.0752 0.0414 0.0889 6
Sum 1 1 1 1
CR 0.06 0.04 0.06
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Fig. 3  The fuzzified spatial data layers of criteria that are used in this research
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and highly suitable classes because it does not contain con-
straints such as forested, green, or protected areas. In addi-
tion, it is characterized by lower slope gradients. This area 
is also close to Istanbul, which carries a high demand for 
energy. Hence, Area 1 can be considered a suitable candidate 
for the allocation of facilities.

Area 2 lies in the west along the Aegean Sea and contains 
the cities of Izmir, Aydin, and Manisa. The suitability of 
pixels is due to high potential biomass energy from plant and 

animal waste. High demand for energy would come from 
Izmir, the third most populated city in Turkey.

Area 3 lies in the central Anatolia region of Turkey and 
is mainly composed of the Ankara and Konya cities. This 
region has large areas of suitable and highly suitable pixels, 
with lower gradients of slope and with few (binary) spatial 
constraints. In addition, Konya has the significant advantage 
of being the first ranked city in Turkey in terms of biomass 
energy yields. Moreover, the proximity to settlement areas 
and roads plays a significant role in establishing the large 
number of suitable pixels.

Area 4 in the southern Anatolia region is composed of the 
cities Sanliurfa, Diyarbakir, and Mardin. The cities are good 
candidates transforming waste resources into usable energy. 
Similar to other selected areas, the slope is relatively flat. It 
is clear that in all four local areas, the most suitable locations 
are directly affected by high estimated biomass energy yield 
values and flatter slopes.

The results of these localized studies concur with Morato 
et al. (2019) in terms of criteria weights, because biomass 
energy potential and proximity to road networks, respec-
tively, come first and second in the ranking of criteria. In 
addition, the obtained results in this research share simi-
larity with another study (Yücenur et al. 2020), since two 

Fig. 4  The final map of biomass energy facility location suitability, accounting for binary constraints and filtering sites with an area greater than 
4 ha. Inset boxes refer to the local suitability discussion that follows
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cities, Aydin and Konya, are commonly identified as suitable 
locations for biomass facility. Other locations in different 
cities show greater dissimilarities, perhaps because of the 
utilization of estimated biomass yield that is obtained from 
the theoretical use of both plant and animal waste. Moreo-
ver, the results related to Area 2 support previous findings 
(Cebi et al. 2016) identifying the city of Aydin as a suitable 
location.

Sensitivity analysis

A sensitivity analysis is carried out to reveal possible uncer-
tainties introduced in the study. The sensitivity analysis can 
identify how responsive is the suitability index to specific 
agendas or priorities of decision-makers. The sensitivity 
analysis can present different points of view to policymakers 
and planners with respect to suitable locations of the bio-
mass energy facilities. The suitability location of renewable 
energy facilities is usually evaluated in terms of economic, 
environmental, and social impacts (Barzehkar et al. 2020) 

because these aspects affect their efficiency. In the analysis, 
multiple suitability indexes are created by considering dif-
ferent scenarios and form a comparative basis on which to 
make informed decisions.

Four different scenarios are identified in the present study, 
each with a different stakeholder agenda. The environmen-
talist scenario advocates for minimizing impacts on the envi-
ronment. The social impact scenario promotes social benefit, 
giving priority to communal benefits such as job opportuni-
ties. The economic cost scenario promotes a facility location 
that balances investment and operational costs. Finally, the 
developer profits scenario pays attention to obtaining the 
highest production rate and most efficient transfer of waste.

Criteria ranks for each scenario were identified using 
BWM by three hypothetical decision-makers (the first three 
authors)1 and then normalized, and final criteria weights 
were obtained by averaging. Table 5 lists the weights of 

Fig. 6  The inset maps of the areas that are determined for closer examination of suitability

1 See Supplementary Tables 3–6.
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criteria that were generated according to different scenarios. 
All consistency ratios are less than 0.12 (dramatically lower 
than the 0.25 threshold cited in Gómez-Limón et al. (2020)), 
indicating that each decision-maker followed a consistent 
preference when ranking against best and worst criteria. The 
estimated biomass energy (C2) criterion ranks first in three 
of the four scenarios and second in the fourth scenario. This 
means that the potential biomass energy yield is considered 
by most decision-makers in this exercise to considerably 
affect the productivity of facilities, even among different 
scenarios. Another criterion is population density (C1) that 
ranks first in the social impact scenario and second in the 
economic cost and developer profits scenarios. This implies 
that the magnitude of demand for biomass energy plays an 
important role in several agendas.

The economic cost scenario is defined by the respective 
ranking of estimated biomass energy (C2), population den-
sity (C1), proximity to road network (C5), and slope (C3), 
which balances among costs. In the social impact scenario, 
the population density (C1), estimated biomass energy (C2), 
and proximity to settlement area (C7) have almost the same 
weight as the first three criteria, and the scenario attaches 
importance to social benefit. In contrast, the environmen-
talist scenario prioritizes conservation of the environment 
using criteria including proximity to a water body (C4) and 
proximity to settlement area (C7) in addition to the estimated 
biomass energy (C2). And fourth, the developer profits sce-
nario emphasizes proximity to road network (C5) and prox-
imity to settlement area (C7) along with estimated biomass 

energy (C2) and population density (C1) to prioritize pro-
ductivity and efficiency.

The location suitability indexes with reference to dif-
ferent scenarios are mapped in Fig. 7. The general pattern 
is similar among scenarios, with highest suitability pixels 
situated around Ankara and Konya. Some visible differ-
ences are apparent in the southeast near Sanliurfa, where 
the developer profits scenario shows fewer high suitability 
pixels than other scenarios, while the social impacts scenario 
shows more high suitability pixels in this area.

As can be seen from Fig. 7, the four scenarios do not 
show considerable differentiation in the suitability results. 
One likely reason is that the population density (C1) and 
estimated biomass energy (C2) criteria rank first or second 
in all scenarios. Another reason may be that the proxim-
ity to road network (C5) and proximity to settlement area 
(C7) rank third or fourth in three scenarios, respectively. It is 
important to note that the results in this study show low sen-
sitivity for changing criteria weights. The stability of results 
under all four scenarios implies that the suitability of chosen 
locations is robust, with respect to these specific criteria.

Figure 8 shows the comparison of relative coverage for 
each suitability class in each scenario. As in the first experi-
ment, the moderately suitable class has the highest coverage 
and the two extreme classes (high suitability and unsuit-
ability) show the lowest coverage, in all scenarios. Coverage 
appears to be least balanced, however, in the social impact 
and environmentalist scenarios, as both show proportion-
ately fewer less suitable pixels than do the economic cost 

Table 5  The weights of 
criteria for each scenario. 
Weights always sum to 1.0 and 
consistency ratios (CRs) are 
consistently below 0.25

DM1 DM2 DM3 Average Rank DM1 DM2 DM3 Average Rank
Economic cost scenario Social impact scenario

C1 0.0778 0.0769 0.3433 0.1660 2 C1 0.1901 0.3095 0.2204 0.2400 1
C2 0.3388 0.4330 0.2090 0.3269 1 C2 0.1901 0.1897 0.3354 0.2384 2
C3 0.1297 0.0897 0.0697 0.0964 4 C3 0.0634 0.0266 0.1102 0.0667 6
C4 0.0320 0.1794 0.0299 0.0804 7 C4 0.0951 0.0632 0.0256 0.0613 7
C5 0.1946 0.1076 0.1393 0.1472 3 C5 0.0760 0.1265 0.0882 0.0969 4
C6 0.1297 0.0364 0.1045 0.0902 6 C6 0.0355 0.0948 0.0735 0.0679 5
C7 0.0973 0.0769 0.1045 0.0929 5 C7 0.3498 0.1897 0.1469 0.2288 3
Sum 1 1 1 1 Sum 1 1 1 1
CR 0.05 0.11 0.07 0.08 CR 0.03 0.07 0.11 0.07
Environmentalist scenario Developer profits scenario
C1 0.1203 0.0572 0.1632 0.1136 4 C1 0.1863 0.1949 0.1992 0.1935 2
C2 0.1804 0.3848 0.1632 0.2428 1 C2 0.3186 0.3353 0.1328 0.2622 1
C3 0.0601 0.1526 0.0326 0.0818 6 C3 0.1242 0.0312 0.0285 0.0613 6
C4 0.3228 0.2290 0.0979 0.2165 2 C4 0.0294 0.0487 0.0797 0.0526 7
C5 0.1203 0.0654 0.0816 0.0891 5 C5 0.1242 0.0975 0.3273 0.1830 3
C6 0.0316 0.0763 0.0699 0.0593 7 C6 0.0931 0.0975 0.0996 0.0967 5
C7 0.1646 0.0346 0.3916 0.1969 3 C7 0.1242 0.1949 0.1328 0.1506 4
Sum 1 1 1 1 Sum 1 1 1 1
CR 0.04 0.07 0.1 0.07 CR 0.05 0.05 0.07 0.06
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Fig. 7  The maps of location suitability according to four different scenarios

Fig. 8  The relative coverage of 
suitability classes according to 
different scenarios
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or developer profits scenarios. The social impact scenario 
classifies the highest number of pixels as suitable or highly 
suitable. This shows that relative suitability of locations 
can differ when specific agendas (scenarios) are taken into 
account.

Discussion and prospects for future work

This paper finds suitable locations for biomass facilities 
using an integrated approach that integrates several methods 
including MCDM, GIS, BWM, and fuzzy logic. The analysis 
differs from previously published work in being applied to 
the whole of Turkey. The use of open-source tools and data 
supports both the accessibility of study methods and the rep-
licability of the results. Another strong point of the study lies 
in obtaining results by merging different criteria sets estab-
lished by a triad of decision-makers. This approach enables 
highly flexible decision making. Additionally, the sensitivity 
analyses take various scenarios into consideration; thus, the 
comprehensive suitability modeling results can be provided 
to administrative organizations for involving stakeholders 
with diverse or even divergent viewpoints and still develop-
ing efficient and feasible policies. In this connection, direc-
tives, policies, and regulations relating to the selection of 
biomass energy facility location are of great importance, 
because jurisdictions can incorporate idiosyncrasies that are 
germane to the locale but can nonetheless impact the selec-
tion of significant factors for location selection.

Renewable energy demands continue to increase in both 
Turkey and the world. The paper implements a methodol-
ogy to select suitable locations of biomass facilities in large 
regions so as to efficiently benefit from energy potentials 
locally and nationally. The results of this study could guide 
discussions on prospective policies as well as spatial plan-
ning decisions related to biomass energy in other geographic 
regions and economic conditions across the globe. Further-
more, the study outcomes can help efforts in Turkey that aim 
to reach and exceed the objectives of the EU with respect to 
increasing the usage of renewable energy resources (Scarlat 
et al. 2019).

One important limitation of the study is that the weights 
of criteria were not determined according to a large num-
ber of experts from different sectors such as energy, trans-
portation, and environment, and future work can concen-
trate on this issue. A second possible limitation is that this 
study was conducted at a 100-m spatial resolution. Other 
studies that address biomass facility location in smaller, 
more localized regions might warrant finer resolution, 
which could highlight local constraints that remain latent 
in this study. A finer resolution study could show anoma-
lies in the criteria or constraints that are not evident in 
national-level results. In addition, the proximity to a power 

grid connection can be used as a criterion that represents 
the demand for energy facilities and embodies the popula-
tion density criterion in future studies. Future work might 
consider the proximity to groundwater alongside water 
bodies. Another possible limitation of this study stems 
from not differentiating the bioenergy pathways, e.g., bio-
fuel and biopower. For example, in a region exhibiting a 
higher demand for biopower than biofuels, wet biomass 
might not provide the most suitable source for biopower 
generation. Regional bioenergy that fits the demand of the 
geographical region is of vital importance for the most 
effective renewable energy transition. Considering that the 
relative suitabilities of different biomass types for bioen-
ergy pathways notably differ across expansive regions such 
as Turkey, it will be beneficial in future studies to prior-
itize biomass types that fit localized bioenergy potential, 
in the context of sustainable supply chain management.

This research provides an applicable workflow for site 
selection of biomass energy facilities. The findings have 
important implications for deciding where to build new 
bioenergy facilities, and doing so in a manner that can be 
replicated in wide-ranging local and regional study areas. 
This research demonstrates the importance of encouraging 
stakeholders to participate in the decision-making process 
and shows that with robustly chosen criteria, one particular 
agenda will not unnecessarily bias final outcomes. Indeed, 
one finding of this work is that multiple and possibly 
incompatible agendas can produce similar site selection 
outcomes. The results of this study also suggest that a mul-
tifaceted approach consisting of open-source GIS, BWM, 
and fuzzy logic can guide precise investments with regard 
to bioenergy planning. The proposed approach could also 
be applied to decision-making problems related to other 
renewable energy sources such as solar and wind.

Turkey is obviously a landscape with highly varied ter-
rain, population density, settlement patterns, and a balance 
between urban and agrarian economies. The characteristics 
of other study areas might affect the selection of constraints 
or the relative coverage of suitability classes. For example, 
some study areas might warrant additional constraints in 
terms of environmental impact, for example, natural heritage 
regions. Alternatively, areas lacking reliable road or rail net-
works might warrant selection of different proximity criteria.

Nonetheless, the objective of this paper to demonstrate 
the interplay of open-source GIS, fuzzy logic, and BWM 
for effective suitability modeling has offered valuable 
insights into the renewable energy situation in Turkey, as 
well as obtaining results that concur with the published 
literature. Future work will continue to explore the meth-
ods and the problem of biomass facility siting problems.
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