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Over the last few decades, many researchers have produced landslide susceptibility maps using different
techniques including the probability method (frequency ratio), the analytical hierarchy process (AHP),
bivariate, multivariate, logistics regression, fuzzy logic and artificial neural network In addition, a number of
parameters such as lithology, slope, aspect, land cover, elevation, distance to stream, drainage density,
distance to lineament, seismicity, and distance to road are recommended to analyze the mechanism of
landslides. The data quality is a very important issue in landslide studies, and more accurate results will be
achieved if the data is adequate, appropriate and drawn from a wide range of parameters. The aim of this
study was to evaluate the susceptibility of the occurrence of landslides in Trabzon province, situated in north
east Turkey. This was achieved using the following fivemethods the frequency ratiomodel, AHP, the statistical
index (Wi), weighting factor (Wf) methods, and the logistics regression model, incorporating a Geographical
Information System (GIS) and remote sensing techniques. In Trabzon province there has been an increasing
occurrence of landslides triggered by rainfall. These landslides have resulted in death, significant injury,
damage to property and local infrastructure and threat of further landslides continues. In order to reduce the
effects of this phenomenon, it is necessary to scientifically assess the area susceptible to landslide. To achieve
this, landslide susceptible areas were mapped the landslide occurrence parameters were analyzed using five
different methods. The results of the five analyses were confirmed using the landslide activity map containing
50 active landslide zones. Then the methods giving more accurate results were determined. The validation
process showed that theWfmethod is better in prediction than the frequency ratio model, AHP, the statistical
index (Wi), and logistics regression model.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Landslides are amongst the most damaging natural hazards in
mountainous regions. Every year, hundreds of people all over the
world lose their lives in landslides; furthermore there are large
impacts on the local and global economy from these events. Over the
past 25 years, many government and international research institu-
tions across the world have invested considerable resources in
assessing landslide susceptibilities and in attempting to produce
maps portraying their spatial distribution (Guzzetti et al., 1999). In
Turkey, landslides are the second most common natural hazard after
earthquakes (Ildir, 1995) and the Eastern Black Sea region is
especially affected. This region exhibits mountainous topographical
features, and is frequently subjected to heavy precipitation. This

combination results in the region being prone to extensive and severe
landslides. In Turkey, during the last 50 years, natural hazards caused
losses related to housing amounting to an estimated US$15.5 billion.
The annual economic loses emanating from landslides are about US
$80 million, and the majority of the losses are in the Eastern Black Sea
region (Yalcin, 2007). A number of different methods for landslide
susceptibility mapping have been utilized and suggested. The process
of creating these maps involves several qualitative or quantitative
approaches. Early attempts defined susceptibility classes by the
qualitative overlaying of geological and morphological slope-attri-
butes to landslide inventories (Nielsen et al., 1979). More sophisti-
cated assessments involved, for example, AHP, bivariate, multivariate,
logistics regression, fuzzy logic and artificial neural network analysis
(Carrara, 1983; van Westen, 1997; Lee and Min, 2001; Ercanoglu and
Gokceoglu, 2004; Lee et al., 2004; Komac, 2006; Yalcin, 2008).

Landslide susceptibility mapping may be defined as qualitative or
quantitative, and direct or indirect (Guzzetti et al., 1999). Qualitative
methods are subjective; they represent the susceptible levels in
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descriptive expressions, and depend on expert opinions. The most
common types of qualitative methods basically use landslide
inventories to recognize sites of comparable geological and geomor-
phologic characteristics that are susceptible to failure. However,
weights of the parameters are determined from the knowledge of
specialists on the subject and the area. The designating weights are
thus, highly personal and may be include some virtual admission.
Quantitative methods are based on numerical expressions of the
relationship between controlling factors and the landslides. There are
two types of quantitative methods: deterministic and statistical
(Aleotti and Chowdhury, 1999). Deterministic methods are based on
slope stability studies, expressed in terms of the safety factor (Refice
and Capolongo, 2002; Zhou et al., 2003). The statistical approaches
analyze the historical link between landslide-controlling factors and
the distribution of landslides. Quantitative methods may be used to
decrease the personality and bias in the weight assessment process.
Therefore, more realistic susceptibility maps can be produced from an
objective measure of values. During the past few years, quantitative
methods have been implemented for landslide susceptibility zonation
studies in different regions (Clerici et al., 2002; Suzen and Doyuran,
2004; Ercanoglu and Gokceoglu, 2004; Yesilnacar and Topal, 2005;
Kanungo et al., 2006; Yalcin and Bulut;, 2007; García-Rodríguez et al.,
2008; Nefeslioglu et al., 2008; etc.).

The aim of this study was to use widely-accepted models, a
statistical method (frequency ratio model), a multi-criteria decision
making approach (AHP), bivariate, and multivariate approaches
(logistic regression) and evaluate their performances.

Frequency ratio model is based on the observed associations
between allocation of landslides and each associated factors of
landslide occurrence to display the correlation between landslide
locations and the parameters controlling landslide occurrence in the
area (Lee, 2005). Therefore, the method gives very good results for
determining the landslide inventory with rigorous accuracy. The
weights of the parameters and the decision alternatives used in
producing landslide susceptibility map are determined with the AHP.
When these weights are determined, both the comparison of the
parameters relative to each other, and determination of the effect
values of the decision alternatives, namely the sub-criteria, are based
on a landslide inventory map obtained with the help of aerial photos
and satellite images. As a result of dual comparisons, a pair-wise
comparison matrix is obtained for each parameter and sub-criteria.
Consequently, the weight values were determined correctly for the
real land data. It has been shown that the use of the AHP method
produces a practical and realistic result to define the factor weights in
the landslide susceptibility model. In statistical models, using
bivariate or multivariate techniques for landslide susceptibility
analysis, is widespread (Nandi and Shakoor, 2009). There are a
number of ways to apply bivariate andmultivariate statistics to assess
landslide susceptibility of a region. More than a few instability
parameter variables are used in the present bivariate approach; the
influence of each variable on the occurrence of landslide is evaluated
independently and the variables are combined in the form of a unique
equation (Conoscenti et al., 2008; Nandi and Shakoor, 2009). In
multivariate approaches, logistic regression was detected to be the
most appropriate approach for the present study. In this analysis,
spatial distribution of landslides is assessed on the basis of interaction
of only statistically significant instability factor data; insignificant data
are excluded from consideration. Additionally, logistic regression
analysis is free of data distribution issues and can handle a variety of
datasets, such as continuous, categorical, and binary, common types of
instability factor data used in landslide studies (Dai et al., 2001; Lee
and Min, 2001; Lee and Sambath, 2006; Akgun et al., 2008; Nandi and
Shakoor, 2009). Any effort to make certain landslide susceptibility in a
region needs proper validation. Confirmation should establish the
quality (i.e., consistency, robustness, degree of fitting and prediction
skill) of the proposed susceptibility estimate. The excellence of a

landslide susceptibility model can be ascertained using the same
landslide data used to obtain the susceptibility estimate, or by using
independent landslide information not available to construct the
model (Chung and Fabbri, 2003; Guzzetti et al., 2005; 2006). In this
paper, we provide a comprehensive validation of a landslide
susceptibility model prepared through five different methods for the
Trabzon City (Fig. 1).

2. Description of the study area

The study area, in Trabzon province, consisted of approximately
4660 km2 located between 39° 15′ and 40° 15′ west–east longitudes
and 41° 8′ and 40° 30′ north–south latitudes in the middle of Eastern
Black Sea region (Fig. 1). Altitudes reach 3400 m in parts of the region
and steep slopes are very common. The climate is characteristic of the
Black Sea region, with temperate climate summers and a rainy season
normally lasting from September to April. Nevertheless, the rainfall
regime is irregular, with some periods of rare precipitation with long-
lasting heavy rains. Very intense precipitation has caused disastrous
flash floods in river basins and many landslides on slopes (Reis and
Yomralioglu, 2006; Yalcin, 2008). According to observations result 22
yearly in Trabzon province, February is the coldest month with an
average temperature of 6.7 °C, the hottest month is August with an
temperature average of 23.2 °C. The annual precipitation of Trabzon
city is 838 mm, and precipitations disperse every month symmetrical.
The main commercial agricultural products in the region are hazel-
nuts and green tea. Apart from the agricultural areas, the other main
land cover types are forest and pasture. The population of the
province was 740,569 in 2007 year (TUIK, 2008).

3. Thematic data layers

The study beganwith the preparation of a landslide inventorymap
based on extensive field work, a previous inventory map, and satellite
images. Furthermore, the following seven possible landslide causing
layers; lithology, slope, aspect, land cover, elevation, distance to
stream, and distance to roadwere analyzed for landslide susceptibility
mapping using the logistic probability method (frequency ratio
method — FRM), the analytical hierarchy process (AHP), bivariate
(Wi and Wf), and logistics regression (LR) methods. Finally, the
susceptibility maps produced from the five different methods were
compared and evaluated using validation data sets.

3.1. Landslide inventory map

Themaps show the locations and properties of landslides that have
moved in the past. These slope failures were related to geological,
topographical, and climatic conditions, thus, they can often facilitate
the prediction of locations and conditions of future landslides. For this
reason, it is important to determine the location and area of the
landslide accurately when preparing the landslide susceptibility
maps. Landslide susceptibility assessment is performed in a range of
phases. The initial phase is identifying and evaluating landslide-prone
areas, and constructing a landslide inventory map for future use.
Landslide inventory mapping is the systematic mapping of existing
landslides in a region using different techniques such as field survey,
air photo/satellite image interpretation, and literature search for
historical landslide records. A landslide inventory map provides the
spatial distribution of locations of existing landslides. The landslides
in the study area were determined by comprehensive field surveys.
The landslides which are currently indefinite in characteristics and
boundaries were identified using old dated satellite images. As a
result, the satellite images were very useful in determination of
landslides inventory map (Yalcin and Bulut, 2007). In this study, the
susceptibility mapping started with the preparation of an inventory
map of 250 landslides from field studies, a previous inventory map,
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and satellite image analyses from Quickbird (Fig. 2). Also, to confirm
the practicality of producing five susceptibility maps, 50 active
landslides zones were determined separately from the inventory

map. In the Trabzon region the rough topography, susceptible
weathering units and the temperate climate means that many new
landslides appear from time to time, as a result of heavy rainfalls. High

Fig. 1. Location map of the study area.

Fig. 2. Landslide inventory map.
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intensity rainfalls produce flash floods which cause shallow land-
slides. So, the landslides in this region show shallow translational
characteristics. The field surveys and drilling data with previous
studies were used to determine the depth of the weathering zones in
rocks and the groundwater table. The weathering zone has reached to
maximum approximately 20 m. However, the groundwater table
wasn't observed 30 m depth and thus there were no landslides with
deeper slip surfaces.

3.2. Lithology map

Lithology is one of the most important parameters in landslide
studies because different lithological units have different susceptibil-
ity degrees (Dai et al., 2001; Yesilnacar and Topal, 2005; Yalcin and
Bulut;, 2007; Garcia-Rodriguez et al., 2008; Nefeslioglu et al., 2008).
The landslide event, a component of the geomorphological research, is
related to the lithological characteristics of the land. It is extensively
accepted that lithology significantly influences the occurrence of
landslides, because lithological variations often lead to a difference in
the strength and permeability of rocks and soils. The lithologymaps of
the study area were differentiated into eight lithological units. As a
result of the aerial distributions analysis performed according to the
lithological units, most landslides (25.62%) are located within basalt,
andesite, pyroclastics, and intercalations of mudstone, sandstone and
tuffs (Table 1).

3.3. Slope map

The major parameter of slope stability analysis is the slope angle
(Lee and Min, 2001). Slope angle is very regularly used in landslide
susceptibility studies since landsliding is directly related to slope
angle (Dai et al., 2001; Cevik and Topal, 2003; Lee, 2005; Yalcin, 2008;
Nefeslioglu et al., 2008). The slope map of the study area was divided
into five slope categories. ArcGIS 9.2 analysis was performed to
discover in which slope group the landslide happened and the rate of
occurrence was observed. The landslide percentage in each slope
group class is determined as a percentage of slopes. The result
indicates that most of landslides (49.26%) occur when the percentage
of the slope more than 50% (Table 1).

3.4. Aspect

Aspect is also considered an important factor in preparing
landslide susceptibility maps (Cevik and Topal, 2003; Lee, 2005;
Yalcin and Bulut, 2007; Galli et al., 2008). Aspect associated
parameters such as exposure to sunlight, drying winds, rainfall
(degree of saturation), and discontinuities may affect the occurrence
of landslides (Suzen and Doyuran, 2004; Komac, 2006). The
association between aspect and landslide is shown with aspect
maps. Aspect regions are classified in nine categories according to the
aspect class as; flat (−1°), north (0°–22.5°; 337.5°–360°), northeast
(22.5°–67.5°), east (67.5°–112.5°), southeast (112.5°–157.5°), south
(157.5°–202.5°), southwest (202.5°–247.5°), west (247.5°–292.5°),
and northwest (292.5°–337.5°). Analyses were performed using
aspect and landslide inventory maps to determine the distribution
of landslides, according to the aspect class, and the percentage of
landslides that occurred in each aspect class (Table 1).

3.5. Elevation

Elevation is useful to classify the local relief and locate points of
maximum and minimum heights within terrains. To calculate
landslide densities for different relief classes, the relief map was
divided into seven altitude classes on 500-m basis and the study area
reveals that the elevation ranges from 0 to 3,500 m above mean sea
level. However, landslides below 1500 m are dominant (89.28%) due

to the lithological character of the units that have pyroclastic
compositions.

3.6. Land cover

The effect of land cover on slope stability can be clarified by an
amount of hydrological and mechanical effects. Land cover acts as a
shelter and reduces the susceptibility of soil erosion, landslides and
the get water on action of the precipitation. Vegetation extensively
changes soil hydrology by increasing rainfall interception, infiltration,
and evapo-transpiration. Interception and evapo-transpiration de-
crease the quantity of water that reaches the soil and is stored in it.
They don't play a vital function during the short heavy rainfall events
generally required to trigger shallow landslides, but they can be of
importance for the long term evolution of water in soil, and thus for

Table 1
Frequency ratio values of the landslide-conditioning parameters.

Parameter Classes % of total
area (a)

% of landslide
area (b)

Frequency
ratio (b/a)

Geologya Alv 3.86 1.54 0.40
Pl 2.39 2.23 0.94
Ev 36.63 13.17 0.36
Kru 54.65 80.02 1.46
Jkr 0.11 0.00 0.00
Jlh 0.67 0.00 0.00
γ2 1.63 3.04 1.87
Kk 0.07 0.00 0.00

Slope (%) 0–10 13.72 2.41 0.18
10–20 6.94 5.71 0.82
20–30 11.07 11.79 1.07
30–50 26.82 30.83 1.15
N50 41.45 49.26 1.19

Aspect Flat 10.55 0.72 0.07
North 12.39 8.74 0.71
Northeast 12.90 12.65 0.98
East 11.86 17.14 1.45
Southeast 9.24 11.17 1.21
South 8.68 8.49 0.98
Southwest 10.54 11.46 1.09
West 11.73 16.36 1.40
Northwest 12.12 13.27 1.10

Elevation (m) 0–500 23.77 25.33 1.07
500–1000 22.23 29.67 1.33
1000–1500 19.85 34.28 1.73
1500–2000 17.69 6.36 0.36
2000–2500 13.96 4.35 0.31
2500–3000 2.33 0.00 0.00
3000–3500 0.17 0.00 0.00

Land cover Tea 1.09 1.69 1.56
Hazelnut 15.39 23.15 1.50
Deciduous 37.99 42.85 1.13
Coniferous 2.31 1.65 0.72
Mix wood 5.17 4.77 0.92
Rocky 1.14 1.02 0.89
Pasture 18.61 8.03 0.43
Agriculture 17.14 16.48 0.96
Settlement 1.16 0.35 0.30

The distance to
stream (m)

0–25 29.20 28.21 0.97
25–50 10.68 9.62 0.90
50–75 19.71 20.37 1.03
75–100 11.26 11.28 1.00
100–150 9.17 9.80 1.07
150–200 9.75 10.38 1.06
200–250 10.23 10.33 1.01

The distance to
road (m)

0–25 19.89 21.09 1.06
25–50 20.01 20.20 1.01
50–75 20.07 19.52 0.97
75–100 20.04 19.46 0.97
100–125 19.98 19.72 0.99

a Alv—Alluvium, Pl—Pliocene, continental units, Ev—Eocene, volcanic facies, Kru—
Basalt, andesite, pyroclastics, and intercalations of sandstone clayey limestone and
siltstone, Jkr—Jurassic–Cretaceous units, Jlh—Lias units, γ2—Kaçkar granites, Kk—
Carboniferous units.
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initial moisture conditions when an extreme event occurs. Roots
increase soil permeability and thus infiltration and conductivity,
which cause greater accumulation of water in the soil during both
short term events and long rainfall periods. The vegetation cover also
introduces some mechanical changes through soil reinforcement and
slope loading. The increase in soil strength due to root reinforcement
has great potential to reduce the rate of landslide occurrence (Wu and
Swanston, 1980; Blijenberg, 1998; Cannon, 2000; Beguería, 2006).
Several researchers (Ercanoglu and Gokceoglu, 2004; Tangestani,
2004; Reis and Yomralioglu, 2006; Yalcin, 2007) have emphasized the
importance of land cover on slope stabilities. In this study, a single
date image of Landsat ETM+ (Path 173; Row: 32) on October 19, 2000
was used to generate the land cover types. Using the image, after
extracting an application area of approximately 120×90 km covering
the administrative boundaries of Trabzon province, other studies, as
required, were implemented on this area. The Landsat ETM+ image
has six multi-spectral bands with 28 m resolution, one thermal band
with a 60 m resolution and a panchromatic bandwith 15 m resolution
(Reis and Yomralioglu, 2006). The study area was divided into nine
land cover classes (Table 1), being mostly covered with deciduous,
pasture, and agriculture areas. Landslides are largely observed in
deciduous and hazelnut areas. The deciduous areas include different
tree types of tree growth such as brake, thicket and small wood. These
types obstruct the surface flow of precipitations and this increases the
pore water pressure of soil, thus the potential of the occurrence of
landslides has increased in these areas.

3.7. Distance to stream

Distance to stream is one of the controlling factors for the stability
of a slope. The saturation degrees of the materials directly affect slope
stability. The proximity of the slopes to the drainage structures is also
important factor in terms of stability. Streams may negatively affect
stability by eroding the slopes or by saturating the lower part of
material until the water level increases (Dai et al., 2001; Saha et al.,
2002). In this respect, the relation streams and groundwater are also
important. Groundwater exchanges directly the characteristics of
surface water by sustaining stream base flow. Groundwater affects
surface water by providing moisture for riparian vegetation, and
controlling the shear strength of slope materials, thereby affecting
slope stability and erosion processes. Low river flow during periods of
no rain or snowmelt input is called base flow, which represent the
normal condition of rivers. Groundwater provides base flow for
essentially all rivers and has amajor effect on the amount of water and
chemical composition of rivers. In smaller, low-order streams,
groundwater also provides much of increased discharge during and
immediately following storms. The effect of streams to landslide
increases all of these events. The study area was divided into seven
different buffer ranges. Primary streams and secondary streams were
branched and the proximity buffers were constructed for intervals of
100–250 m, although extra classes were defined for 0–25 m, 25–50 m,
50–75 m, and 75–100 m.

3.8. Distance to roads

The road density is one of the causal factors for landslides and is
parallel to the effect of the distance to streams. The load in the toe of
slope can be reduced by road-cuts. A drop-down road section may
behave like a wall, a net source, a net sink or a corridor for water flow,
and depending on its location in the mountains, this type of road is
usually a contributing factor in causing landslides (Ayalew and
Yamagishi, 2005; Yalcin, 2008). The study area was divided into five
different buffers categorized to designate the influence of the road on
the slope stability. The landslide percentage distribution was
determined according to the buffer zones by comparing the map of
the distance to the road and the landslide inventory (Table 1).

4. Landslide susceptibility analyses

In this study, the landslide susceptibility analyses were imple-
mented using the methods of frequency ratio, analytical hierarchy
process, bivariate (Wi and Wf) and logistics regression. In order to
achieve this, landslide factors related to the causes of landslide
occurrence in the study area, such as the geology, slope, aspect,
elevation, land cover, distance to streams, and distance to roads layers
were used. The Digital Elevation Model (DEM) was digitized from 1/
25.000 scaled Standard Topographic Maps and the contours on these
maps are drawn at 10 m intervals. The DEM of the study area was
created using ArcGIS 9.2 software. 10×10 m pixel dimensions of the
landslide and parameter maps were chosen. Precipitation data was
not included in the susceptibility analyses because it was approxi-
mately same over the whole area. Seismic data was also discounted
because the study area is far away from seismic activity. Landslide
areas were determined using previous inventory map and Quickbird
satellite images. Furthermore, the landslide data were achieved and
confirmed in the field studies.

4.1. Frequency ratio method

When evaluating the probability of landsliding within a specific
period of time and within a certain area, it is of major importance to
recognize the conditions that can cause the landslide and the process
that could trigger the movement. The correlation between landslide
areas and associated factors that cause landslides can be allocated
from the connections between areas without past landslides and the
landslide-related parameters. In order to prepare the landslide
susceptibility map quantitatively, the frequency ratio method was
implemented using GIS techniques. Frequency ratio methods are
based on the observed associations between distribution of landslides
and each landslide-related factor, to expose the correlation between
landslide locations and the factors in the study area. Using the
frequency ratio model, the spatial associations between landslide
location and each of the factors contributing landslide occurrence
were derived. The frequency is calculated from the analysis of the
relation between landslides and the attributed factors. Therefore, the
frequency ratios of each factor's type or range were calculated from
their relationship with landslide events as shown in Table 1. The
frequency ratio was calculated for sub-criteria of parameter, and then
the frequency ratios were summed to calculate the landslide
susceptibility index (LSI) (Eq. 1) (Lee and Talib, 2005).

LSI = Fr1 + Fr2 + Fr3 + :::::: + Frn ð1Þ

where, Fr is rating of each factor's type or range.
According to the frequency ratio method, the ratio is that of the area

where the landslide occurred, to the total area, so that a value of 1 is an
average value. If the value is N1, itmeans the percentage of the landslide
is higher than the area and refers to a higher correlation,whereas values
lower than 1 mean a lower correlation (Akgun et al., 2007).

The geological characteristics of the study area are very important
factors in susceptibility analyses. There are eight classes of lithological
units in the study area, Kru-basalt, andesite, pyroclastics, and intercala-
tions of sandstone clayey limestone and siltstone (Kru) and Kaçkar
granites (γ2) unitswere found to bemore susceptible lithology.Kru and
γ2 include 1.46%, 1.87% of the higher frequency ratio, respectively.

The slope angle is a one of the most important factors controlling
slope stabilities and landslides mostly occur at certain critical slope
angles. Mild slopes are estimated to have a low frequency for shallow-
domiciled landslides because of the minor shear stresses commonly
related to low slopes. Frequency ratio analyses showed that a slope
angle in a range of 20–50% and N50% shows high probability of
landslide occurrence. As expected, a low gradient indicated a low
frequency ratio, in a range of 0–10% giving a 0.18 ratio (Table 1).
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Like slope, aspect is another important parameter in preparing
landslide susceptibility maps. In the study area, landslides generally
occurred on east-southeast and west-northwest-southwest side slopes.
The aspect assessments showed that landslideswere not likely to happen
on the slope surfaces. The assessment of the aspect factor on east-facing
slopes shows high probability (1.45) of landslide occurrence (Table 1).

The elevation–landslide analyses showed that landslides mostly
occurred from sea level to 1500 m, in particular, the frequency ratio is
very high in the elevation range of 1000–1500 m (Table 1). The results
are related to geological characteristics because the areas in the
elevation range of 0–1500 m are generally overlaid to volcanic units as
rhyolite, rhyodacite, dacite, andesite and pyroclastics.

The land cover type is very important for landslide studies,
especially the areas that are covered with intense vegetation. As in tea
plantations, intensely vegetated areas exhibit more saturation and
greater instabilities than forest. Land cover analyses showed that
landslides commonly occurred in the tea and hazelnut areas, the
frequency ratio being 1.56 and 1.50, respectively (Table 1).

The degree of soil saturation is one of the controlling factors for slope
stabilities. The rivers rose to water content of soil until water level and
around in the slope. The connection between landslides and distance to
streams gives reverse values. Normally, the distance from streams
augments the landslide constituting should be declines. However, in the
study, the distance from streams increases the landslide constituting
ascends (Table 1). The reason for this is related to the topographical
modification resulting from the caving of the slopes in the study area,
and thus, retrogressive failures were formed in the slopes.

A road constructed alongside slopes causes a decrease in the load on
both the topography and on the heel of slope. Tension cracks may be
created as a result of an increase in stress on the back of the slope because
of changes in topography and the decrease of load (Yalcin, 2008). The
distance from roads increases the landslide constituting declines in the
study and this is compatible with what is expected. The distance to roads
analyses showed that landslides usually occurred at the distance range of
0–50 m (Table 1). On completion of the analyses the frequency ratio of

each layer's classes was determined, and a landslide susceptibility map
(Fig. 3) was produced by the LSI map using Eq. (1).

4.2. Analytical hierarchy process (AHP)

The AHP improved by Saaty (1980) supplies a flexible and easily
understood way of analyzing complicated problems. The AHP is a
multi-objective, multi-criteria decision-making approach that enables
the user to arrive at a scale of preferences drawn from a set of
alternatives. The AHP gained wide application in site selection,
suitability analysis, regional planning, and landslide susceptibility
analysis (Ayalew et al., 2005). The AHP is a problem-solving
construction and a methodical process for representing the elements
of any problem (Saaty and Vargas, 1991). To apply this approach, it is
necessary to break a complex unstructured problem down into its
component factors; arrange these factors in a hierarchic order; assign
numerical values to subjective judgments on the relative importance
of each factor; and synthesize the judgments to determine the
priorities to be assigned to these factors (Saaty and Vargas, 2001). One
set of models was enhanced using the values from the statistics to
manually describe the relationships between the different parameters
according to the AHP methodology and later these values were
imported into the AHP matrixes. The other set of models was
developed by automatically importing the calculated relationship
values of different factors, based on the statistical values, into the AHP
matrixes (Table 2). The pair-wise comparison matrix was created by
making dual comparisons made in this context. The weights are
calculated from the pair-wise comparison matrix undertaking an
eigenvalues and eigenvectors calculation. It has been demonstrated
that the eigenvector corresponding to the largest eigenvalue of the
matrix provides the relative priorities of the factors, i.e., if one factor
has preference; its eigenvector component is larger than that of the
other. The components of the eigenvector sum to unity. Thus, a vector
of weights is obtained, which reflects the relative importance of the
various factors from the matrix of paired comparisons.

Fig. 3. The landslide susceptibility map produced by FR.
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Table 2
Pair-wise comparison matrix, factor weights and consistency ratio of the data layers.

Factors 1 2 3 4 5 6 7 8 9 10 11 12 Weights

Lithology
(1) Alv 1 0.057
(2) Pl 2 1 0.097
(3) Ev 5 4 1 0.178
(4) Kru 9 8 6 1 0.486
(5) Jkr 1/2 1/3 1/4 1/9 1 0.037
(6) Jlh 1/2 1/3 1/4 1/9 1 1 0.037
(7) γ2 2 1/2 1/3 1/8 2 2 1 0.070
(8) Kk 1/2 1/3 1/4 1/9 1 1 1/2 1 0.037

Consistency ratio: 0.038
Slope (%)

(1) 0–10 1 0.043
(2) 10–20 2 1 0.068
(3) 20–30 4 2 1 0.123
(4) 30–50 6 5 3 1 0.288
(5) N50 8 7 5 2 1 0.479

Consistency ratio: 0.021
Aspect

(1) Flat 1 0.024
(2) North 4 1 0.064
(3) Northeast 5 2 1 0.112
(4) East 6 3 2 1 0.200
(5) Southeast 5 2 1 1/2 1 0.112
(6) South 4 1 1/2 1/3 1/2 1 0.064
(7) Southwest 5 2 1 1/2 1 2 1 0.112
(8) West 6 3 2 1 2 3 2 1 0.200
(9) Northwest 4 2 1 1/2 1 2 1 1/2 1 0.110

Consistency ratio: 0.008
Land cover

(1) Tea 1 0.039
(2) Hazelnut 5 1 0.207
(3) Deciduous 7 2 1 0.349
(4) Coniferous 1 1/5 1/7 1 0.042
(5) Mix wood 2 1/4 1/7 2 1 0.062
(6) Rocky 1 1/5 1/7 1 1/2 1 0.042
(7) Pasture 3 1/3 1/6 3 2 3 1 0.093
(8) Agriculture 4 1/2 1/3 4 3 4 2 1 0.144
(9) Settlement 1/2 1/7 1/9 1/3 1/3 1/3 1/4 1/6 1 0.022

Consistency ratio: 0.074
Elevation (m)

(1) 0–500 1 0.179
(2) 500–1000 2 1 0.254
(3) 1000–1500 3 2 1 0.360
(4) 1500–2000 1/3 1/4 1/5 1 0.104
(5) 2000–2500 1/4 1/5 1/6 1/2 1 0.079
(6) 2500–3000 1/8 1/9 1/9 1/7 1/6 1 0.023
(7) 3000–3500 1/8 1/9 1/9 1/7 1/6 1 1 0.023

Consistency ratio: 0.065
Distance to stream (m)

(1) 0–25 1 0.323
(2) 25–50 1/4 1 0.080
(3) 50–75 1/2 3 1 0.208
(4) 75–100 1/3 2 1/3 1 0.114
(5) 100–150 1/4 1 1/2 1/2 1 0.084
(6) 150–200 1/3 1 1/2 1 1 1 0.095
(7) 200–250 1/3 1 1/2 1 1 1 1 0.095

Consistency ratio: 0.016
Distance to road (m)

(1) 0–25 1 0.394
(2) 25–50 1/2 1 0.234
(3) 50–75 1/3 1/2 1 0.124
(4) 75–100 1/3 1/2 1 1 0.124
(5) 100–125 1/3 1/2 1 1 1 0.124

Consistency ratio: 0.002
Data layers

(1) Lithology 1 0.386
(2) Slope 1/3 1 0.230
(3) Aspect 1/4 1/3 1 0.129
(4) Elevation 1/4 1/3 1 1 0.098
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Normally, the determination of the values of the parameters
relative to each other is a situation that is dependent on the choices of
the decision-maker. However, in this study, both the comparison of
the parameters relative to each other and the determination of the
decision alternatives, namely the effect values of the sub-criteria of
the parameters (weight), were based on the comparison of landslide
inventory maps which were constructed using field studies, previous
inventory map, and satellite image with the other data layers (Yalcin,
2008). In AHP, an index of consistency, known as the consistency ratio
(CR), is used to indicate the probability that the matrix judgments
were randomly generated (Saaty, 1977).

CR = CI= RI ð2Þ

where RI is the average of the resulting consistency index depending
on the order of the matrix given by Saaty (1977) and CI is the
consistency index and can be expressed as

CI = λmax−nð Þ= n−1ð Þ ð3Þ

whereλmax is the largest orprincipal eigenvalueof thematrix andcanbe
easily calculated from the matrix, and n is the order of the matrix.

For all the models, where the AHP was used, the CR (Consistency
Ratio) was calculated. If the CR values were greater than 0.1, the
models were automatically discarded. Using a weighted linear sum
procedure (Voogd, 1983) the acquired weights were used to calculate
the landslide susceptibility models (Komac, 2006). As a result of the
AHP analyses, the landslide susceptibility map was produced for
Trabzon province (Fig. 4). In the study, lithology, slope, and aspect are
found to be important parameters for the study area, whereas
distance to streams and roads were of lesser importance.

4.3. Bivariate statistics method

In this study, landslide susceptibility analyses were implemented
using statistical bivariate methods, namely, the statistical index (Wi)
method (van Westen, 1997) and the weighting factor (Wf) method
(Cevik and Topal, 2003). For this reason, geology, slope, aspect,
elevation, land cover, distance to streams, and distance to roads layers
were used in the analyses.

TheWimethod is based on statistical correlation (map crossing) of the
landslide inventory map with attributes of a different parameters map.
The map crossing results in a cross-table, which can be used to calculate
the density of landslides per parameter class. A standardization of these

Fig. 4. The landslide susceptibility map produced by AHP.

Table 2 (continued)

Factors 1 2 3 4 5 6 7 8 9 10 11 12 Weights

Consistency ratio: 0.002
Data layers

(5) Land cover 1/5 1/4 1/3 1 1 0.083
(6) Dist. to stream 1/7 1/5 1/4 1/3 1/3 1 0.037
(7) Dist. to road 1/7 1/5 1/4 1/3 1/3 1 1 0.037

Consistency ratio: 0.038
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density values can be obtained by relating them to the overall density in
the entire area (Oztekin and Topal, 2005). In this study, theWi values for
each class of each parameter map were obtained quantitatively using the
following formula suggested by van Westen (1997):

Wi = ln
Densclass
Densmap

= ln
Npix Sið Þ
Npix Nið Þ
SNpix Sið Þ
SNpix Nið Þ

ð4Þ

where

Wi Weight given to a certain parameter class
Densclass Landslide density within the parameter class
Densmap Landslide density within the entire map
Npix(Si) Number of pixels that contain landslide in a certain

parameter class
Npix(Ni) Total number of pixels in certain parameter class.
SNpix(Si) Number of pixels all landslide
SNpix(Ni)Total number of all pixels

Then theWivalue of eachattributewas calculated (Table 3). Finally, all
layers were overlaid and a resulting susceptibility map was obtained
(Fig. 5). The Wi susceptibility map was divided into equal classes
according to the total number of elements. The classes are; very low, low,
moderate, high, and very high susceptibility. However, in the statistical
index method, it is considered that each parameter map has an equal
effect on landslides, which may not be the case in reality (Oztekin and
Topal, 2005). Therefore, a weighting factor (Wf) for each parameter map
was produced. For this purpose, first the Wi value of each pixel was
determined by the statistical index method, then, all pixel values within
the landslide zones belonging to each layer were summed. By using the
maximum and minimum of all layers, the results were stretched (Cevik
and Topal, 2003). Finally, the weighting factor ranging from 1 to 100 for
each layer was determined by the following formula:

Wf =
TWivalueð Þ− MinTWivalueð Þ

MaxTWivalueð Þ− MinTWivalueð Þ
# 100

where

Wf Weighting factor calculated for each layer
TWivalue Total weighting index value of cells within landslide bodies

for each layer
MinTWivalue Minimum total weighting index value within selected

layers
MaxTWivalue Maximum total weighting index value within selected

layers

By executing this formula, the weighting factor (Wf) values of each
layerwere determined (Table 3). For the analyses, theWf value for each
layer was multiplied by the Wi value of each attribute, and finally, all
parameter maps were summed up to yield the final landslide
susceptibility map from the Wf method (Fig. 6). The association
between pixel value and cumulative pixel count mainly yielded five
susceptible zones namely—very low, low,moderate, high, and veryhigh.
According to the results of the Wf method, elevation is found to be the
most important parameter for the landslides in the study area.

4.4. Logistic regression method

Logistic regression permits one to type a multivariate regression
relationship between a dependent variable and several independent
variables. Logistic regression, which is one of the multivariate analysis
models, is helpful for forecasting the presence or absence of a
characteristic or outcome based on the values of a set of predictor
variables. The advantage of logistic regression is that, through the
addition of a suitable link function to the usual linear regression
model, the variables may be either continuous or discrete, or any
combination of both types and they do not necessarily have normal
distributions (Lee, 2005). In the present situation, the dependent
variable is a binary variable representing presence (1) or absence (0)
of a landslide. Where the dependent variable is binary, the logistic link
function is applicable (Atkinson and Massari, 1998).

In the landslide susceptibility studies, logistic regression model is one
the acceptable methods to characterize the association between the
presence or absence of a landslide, the dependent variable, and a set of
independent parameters including geology, slope, and land cover.
(Ayalew and Yamagishi, 2005). Presence (1) and absence (0) coefficients
canbeutilized to calculate approximate ratios for eachof the independent
variables. Logistic regression analysis is generally used in earth sciences,
and explained as a linear equation given below (Lee, 2005).

Y = Logit pð Þ = ln
p

1−p

! "
ð5Þ

Y = C0 + C1:X1 + C2:X2 + ::::: + Cn:Xn ð6Þ

Table 3
Distribution of landslide for various data layers, Wi and Wf values of each attribute.

Parameter Classes Landslide area (%) Wi Wf

Geology Alv 1.54 −0.920 91.16
Pl 2.23 −0.066
Ev 13.17 −1.023
Kru 80.02 0.381
Jkr 0.00 0.000
Jlh 0.00 0.000
γ2 3.04 0.625
Kk 0.00 0.000

Slope (%) 0–10 2.41 −1.741 47.57
10–20 5.71 −0.195
20–30 11.79 0.063
30–50 30.83 0.140
N50 49.26 0.173

Aspect Flat 0.72 −2.687 61.36
North 8.74 −0.349
Northeast 12.65 −0.020
East 17.14 0.369
Southeast 11.17 0.190
South 8.49 −0.022
Southwest 11.46 0.084
West 16.36 0.333
Northwest 13.27 0.091

Elevation (m) 0–500 25.33 0.064 100.00
500–1000 29.67 0.289
1000–1500 34.28 0.546
1500–2000 6.36 −1.022
2000–2500 4.35 −1.165
2500–3000 0.00 0.000
3000–3500 0.00 0.000

Land cover Tea 1.69 0.445 37.41
Hazelnut 23.15 0.408
Deciduous 42.85 0.120
Coniferous 1.65 −0.333
Mix wood 4.77 −0.080
Rocky 1.02 −0.115
Pasture 8.03 −0.840
Agriculture 16.48 −0.039
Settlement 0.35 −1.189

The distance to stream (m) 0–25 28.21 −0.035 1.50
25–50 9.62 −0.104
50–75 20.37 0.033
75–100 11.28 0.002
100–150 9.80 0.067
150–200 10.38 0.063
200–250 10.33 0.010

The distance to road (m) 0–25 21.09 0.059 1.00
25–50 20.20 0.010
50–75 19.52 −0.028
75–100 19.46 −0.029
100–125 19.72 −0.013
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where p is the probability that the dependent variable (Y) is 1, p/(1−p)
is the so-called odd or frequency ratio, C0 is the intercept, and C1, C2,…,
Cn are coefficients, which measure the contribution of the independent
factors (X1, X2,…, Xn) to the variations in Y (Lee, 2005).

The spatial association between landslide inventory and the
landslide factors maps (geology, slope, aspect, land use, elevation,
distance to stream, and distance to road) was assessed using the
logistic regression method. The statistical assessment was carried out

Fig. 5. The landslide susceptibility map developed using Wi method.

Fig. 6. The landslide susceptibility map developed using Wf method.
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using an IDRISI GIS environment. In this assessment, a logistic
regression equation was obtained as shown in Eq. (7) and the LR
map was produced (Fig. 7).

Y = −4:7485 + 0:000929 # Geology−0:052129 # Landuse
+ 0:000503 # Aspect + 0:050838 # Slope−0:006434 # Road
−0:239024 # Elevation−0:098631 # Stream:

ð7Þ

The statistical results of the logistic regression method are abridged
in Table 4. A key starting point could be the model chi-square value of
which provides the usual significance test for logistic regression. It is a
difference between −2ln L (L=likelihood) for the best-fitting model
and−2ln L0 for thenull hypothesis inwhichall the coefficients are set to
0, and measures the improvement in fit that the independent variables
bring to the regression. The high value for the model chi-square
indicates that the occurrence of landslides is far less likely under thenull
hypothesis (without landslide influencing parameters) than the full
regressionmodel (where the parameters are included). The goodness of
fit is an alternative to themodel chi-square for assessing the significance
of LR models. The calculation is based on the difference between the
observed and the predicted values of the dependent variable. The
smaller this statistic, the better fit it indicates (Ayalew and Yamagishi,
2005).

The pseudo R2 equal to 1 indicates a perfect fit, whereas 0 shows no
relationship. When a pseudo R2 is greater than 0.2, it shows a relatively
goodfit (Clark andHosking, 1986). The pseudoR2 in this study is 0.0799.
In addition, a disjunctive approach, which is much easier to interpret, is
to look at howwell the model actually predicts the dependent variable.
In this case, IDRISI uses the so-called Relative Operating Characteristic
(ROC) to compare a Booleanmapof “reality” (thepresenceor absence of
landslides) with the probability map. The ROC value ranges from 0.5 to
1,where 1 indicates a perfectfit and 0.5 represents a randomfit (Ayalew
and Yamagishi, 2005; Akgun and Bulut, 2007). A value of 0.7502 was
obtained in this study, which can be taken as a sign of good correlation
between the independent and dependent variables.

According to Eq. (7), the geology, slope, and aspect coefficients are
positive, the land use, elevation, distance to road, and distance to
stream coefficients are negative. This means that the geology, slope,
and aspect are positively related to the occurrence of a landslide
whereas land use, elevation, distance to road, and distance to stream
indicate a negative relation with the landslide occurrence in the study
area. In particular, the coefficient that belongs to the parameter
“slope” strongly departs from 0 and led to the inference that the
topographical slope has a higher effect on the development of
landslides than any other parameter.

5. Results and comparative analysis

The landslide susceptibility maps were prepared using five
different weighting procedures in a GIS-based approach. The area
and percentage distribution of the susceptibility classes in the study
area were determined as a result of the five different methods. To test
the reliability of the landslide susceptibility maps produced by the
frequency ratio, AHP, Wi and Wf methods, and logistic regression, a
landslide activity map of fifty active zones of recent landslides and the
susceptibility maps were compared. In these comparisons, the area on
the landslide activitymap that showswhere the landslides occurred is
matchedwith the landslide susceptibility maps. Then, the distribution

Fig. 7. The landslide susceptibility map produced by LR.

Table 4
Summary statistics of the logistic regression model.

Statistics Value

Number of sampled observations 471900a

2ln L 18859.687
2ln L0 17353.213
Goodness of fit 285841.938
Pseudo R2 0.0799
ROC 0.7502
a (Using 50 m cell size was used to LR analysis).
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of the actual landslide areas is determined according to the landslide
susceptibility zones. The landslide susceptibility map has a continuous
scale of numerical values and there is a need to separate these values
into susceptibility classes. There are several mathematical methods
for the classification susceptibility degrees (Ayalew et al., 2004; Suzen
and Doyuran, 2004). The standard deviation classifier is proposed
when the histogram of data values exhibits a normal distribution
(Suzen and Doyuran, 2004). As a result, the standard deviation
classifier was used since the data values in the landslide susceptibility
maps obtained using the FRM, AHP, Wi, Wf, and LR show a normal
distribution (Fig. 8).

According to the landslide susceptibility map produced from the
frequency ratio method, 8.00% of the total area is found to be of very
low landslide susceptibility. Low, moderate and high susceptible
zones represent 22.38%, 36.93% and 25.79% of the total area,
respectively. The very high landslide susceptibility area is 6.91% of
the total study area.

The landslide susceptibility map generated with AHP which
included 9.58% of total area is determined to be of very low landslide
susceptibility. Low and moderate susceptible zones make up 14.22%
and 19.46% of the total area, respectively. The high and very high
susceptible zones values are close to each other, 29.00% and 27.74%,
respectively.

The landslide susceptibility map created in accordance with the
statistical index (Wi) contains 9.84% of the total area which is
designated to be of very low landslide susceptibility. The value is near
to the very low category in relation to the FR and AHP methods. Low,
moderate and high susceptibility zones constitute 19.95%, 36.46% and
32.58% of the total area, respectively. At only 1.18%, the percentage of
very high susceptibility area is very small.

The landslide susceptibility map produced through the weighting
factor (Wf) method involves different values from the other methods.
The very low and low susceptibility areas are very small percentages
at 0.13% and 1.16%, respectively but the percentages of moderate,
high, and very high susceptibility areas are 23.10%, 53.24%, and
22.38%, respectively.

The logistic regression method showed different results while
containing high percentages values for the low susceptibility zone
(21.88%) in the LR method, the low susceptibility zones percentage in
the FR, AHP, Wi, and Wf methods show small values such as 5.18%,
13.54%, 3.21%, and 1.76%, respectively. The very low susceptible area is
denoted at a value of 2.66%. The moderate, high, and very high
susceptibility zones show 32.89%, 30.94%, and 11.64% of the whole
areas, respectively (Fig. 8). According to the LR method, it is
determined that the geology, slope, and aspect coefficients are
positive, the land use, elevation, distance to road, and distance to
stream coefficients are negative. This means that the geology, slope,
and aspect are positively related to the occurrence of landslides
whereas land use, elevation, distance to road, and distance to stream
indicate a negative relationshipwith landslide occurrence in the study
area.

For the verification procedure the five susceptibility maps were
first divided into five classes based on standard deviations of the
corresponding histograms (Fig. 9). Next, they were crossed with the
landslide activity map containing fifty active landslide zones. Fig. 9
presents a histogram that summarizes the result of the entire process.
The high and very high susceptibility zones (4 and 5) found by the FR,
AHP, Wi, and Wf, LR methods contain 60.98%, 62.71%, 62.56%, 93.29%,
and 42.58% of the active landslide zones, respectively. Fig. 9 shows
that the extent of the active landslide zones located in the very high
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susceptibility class is higher in themap of theWf than the FR, AHP,Wi,
and LR maps. 40.59% of the active landslide zones fall into the very
high susceptibility class on theWfmap. This value falls to 1.68% in the
case of the susceptibility map produced by the Wi method. Besides,
60.88% of the active landslide zones coincide with the high
susceptibility class on the Wi map. The moderate zones (3) of the
FR, Wi, and LR methods include about 30% of the active landslide
zones. In addition, while covering 20% of the moderate class from the
AHPmethod, theWfmethod includes only 5% approximately. The low
(2) and very low susceptible (1) zones contain less than 7.5% of the
active landslide zones in the FR, Wi, and Wf methods. The values are
17.11% and 24.53%, for AHP and LR, respectively. According to using
analyses methods, the very low susceptible zones include less than 5%
of the active landslide zones all of the methods (see Fig. 9). From the
analysis in Fig. 9, it is easy to conclude that the very high and high
susceptibility classes of the Wf map captured the locations of the
active landslide zones (93.29%) better than the corresponding
counterparts of the FR, AHP, Wi and LR maps, at 60.98%, 62.71%,
62.56%, and 42.58%, respectively. This might be due to the fact that the
Wfmethod presents much more distinct and homogeneous values for
wide study areas such as this application. Furthermore, this might be
derived from the landslide inventory map, because this map was
produced as a result of a very high sensitivity study and field check.

6. Discussion and conclusion

The reasons for landslides are many, complex, convoluted, and
every so often unknown. Although the basic factors related to
landslides can be observed during field studies, aerial photos, and
satellite images interpretations, some factors remain closed. So as to
determine whether there are closed parameters affecting the
occurrence of landslides, several geomorphometrical parameters
were entered into the analyses. Most geomorphometrical factors are
subjective and hard to measure quantitatively in the field. Therefore,
it may be difficult to understand their contributions to the landslide
occurrence mechanism. Since landslides are among the most
dangerous natural disasters, for many years research institutions
worldwide have attempted to assess the landslide hazard, determine
the risk and to show its spatial distribution. In this context, this study
undertook comprehensive research on slope stability assessment and
landslide susceptibility mapping in a part of Trabzon province, in
Turkey. The region is continually at risk of landslides following
precipitation since the topography and lithological materials are of
the very best fit to create landslides. It is known that the role of
precipitation as the triggering mechanisms of landslides is strongly
influenced by the landscape dynamic and geology.

This is primarily because of the problems inherited from landslide
inventory maps and the absence of universal guidelines to select
causal factors. In this study, the landslide inventorymapwas prepared
in such a way that it includes shallow landslides and in consideration
of the fact that geology, slope and aspect of materials are important
parameters for susceptibility mapping various methods. An attempt
was made to differentiate the concepts of landslide susceptibility
mapping. Five of the available approaches, for landslide susceptibility
mapping, used in this study, were FR, AHP, statistical index (Wi),
weighting factor (Wf), and LR with the Wf map gives the best results.
To confirm the practicality of the results, the five susceptibility maps
were compared with 50 active landslide zones. The result was that the
active landslide zones coincided with a high percentage for the high
and very high susceptibility class in the FR, AHP,Wi, andWfmaps, but
the values of LR were not in agreement. 93.29% of these landslide
zones fall into the high and very high susceptibility classes of the Wf
map. The FR, AHP, Wi and LR maps contained 60.98%, 62.71%, 62.56%,
and 42.58% of the landslide zones, respectively. In the FR and Wi
methods, the geology parameter is positively associated with the
occurrence of landslides. According to the AHP method, the geology,

slope, and aspect parameters upwards of land use, elevation, distance
to stream, and distance to road are implicated in the occurrence of
landslide in the study area. The elevation and geology factors are
positively associated with the occurrence of landslide in the Wf
method. In addition, in the LR method, the geology, slope, and aspect
are positively associated with the occurrence of landslide whereas
land use, distance to stream, elevation, distance to road appear to have
a negative relation with landslide occurrence in the study area. Thus it
can be concluded, that when field conditions and characteristics are
accurately determined by professional expertise, theWfmethod gives
better results over larger areas as in this study.
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