
LECTURE 3

(JAVA SCRIPT)

LECTURE 3

(JAVA SCRIPT)

Introduction

JavaScript is a scripting language that was jointly created by
Netscape and Sun.

Some of the properties of JavaScript are the following:

•A Simple, Easy to Learn Object-Based Scripting Language

•Designed for Programming User Events

•Derived from Javabut not Java

•An Interpreted Language

•Limited client-server interaction

•Integrated into HTML

•Platform Independence

Examples on using JavaScript
Every script must be contained inside a SCRIPT container tag.

In order to hide the JavaScript program from those of browsers
that do not scripting the program is put into a comment
container:

<SCRIPT LANGUAGE="JavaScript">

<!-- HIDE THE SCRIPT FROM OTHER BROWSERS
JavaScript program
// STOP HIDING FROM OTHER BROWSERS -->
</SCRIPT>

The Simplest JavaScript Program

<BODY>

<H3>The following text is script generated:</H3>

<SCRIPT LANGUAGE="JavaScript">

<!--

/* Our script only requires one quick statement! */

document.write("Hello World!")

// end hiding-->

</SCRIPT>

</BODY>

<PRE>

<SCRIPT LANGUAGE="JavaScript">

<!-- HIDE FROM OTHER BROWSERS

document.writeln("One,");

document.writeln("Two,");

document.write("Three ");

document.write("...");

// STOP HIDING FROM OTHER BROWSERS -->

</SCRIPT>

</PRE>

JavaScript provides the ability for programmers to generate output in
small dialog boxes. The simplest way to direct output to a dialog box
is to use the alert() method. E.g.

alert("Click OK to continue.");

Interacting with the User

The simplest way to interact with the user is with the prompt()
method. E.g.

prompt("Enter Your favourite colour:","Blue");

Working with dialog boxes

JavaScript uses four data types—numbers, strings, boolean values,
and a null value

Literals

The term literals refers to the way in which each of the four data
types are represented. Literals are fixed values which literally
provide a value in a program. For example, 11 is a li teral number,
"hello" is a string literal and true is a boolean literal.

Integers

Integers are numbers without any portion following the decimal
point; (1,56, -45)

Floating Point Values

Floating point values can include a fractional component. (1.43)

Data Types in JavaScript

Strings

A string li teral contains zero or more characters enclosed in single
or double quotes:

"Hello!", '245', ""

Boolean

A boolean li teral can take two values: either true or false.

The null Value

The null value is a special value in JavaScript representing just
that—nothing.

Although it is possible to declare variables by simply using them,
declaring variables helps to ensure that programs are well
organized and to keep track of the scope of variables.

You can declare a variable using the var command:

var example; (or)

var example = "An Example";

Declaring Variables

There are specific rules you must follow when choosing a variable
name:

•Variable names can include letters of the alphabet, both upper- and
lowercase. They can also include the digits 0-9 and the underscore
(_) character.

•Variable names cannot include spaces or any other punctuation
character.

•The first character of the variable name must be either a letter or
the underscore character.

•Variable names are case-sensitive; totalnum, Totalnum, and
TotalNum are separate variable names.

•There is no off icial limit on the length of variable names, but they
must fit within one line.

Rules for JavaScript Variable Names
<HEAD>

<TITLE>Example 3.1</TITLE>
<SCRIPT LANGUAGE="JavaScript">

<! -- HIDE FROM OTHER BROWSERS
var name=prompt("Enter Your Name:","Name");
// STOP HIDING FROM OTHER BROWSERS -- >

</SCRIPT>
</HEAD>
<BODY>

<SCRIPT LANGUAGE="JavaScript">
<! -- HIDE FROM OTHER BROWSERS
document.write('');
document.write("<H1> Greetin gs, " + name +

". Welcome to JavaScript World !</H1>");
// STOP HIDING FROM OTHER BROWSERS -- >

</SCRIPT>
</BODY>

Incorporating Variables in a Script

Functions offer the abil ity for programmers to group together
program code that performs a specific task—or function— into a
single unit that can be used repeatedly throughout a program.

They are generally defined in the <HEAD> part using this syntax:

Functions

function function_name(value_name) {

...function code...
return (new_value)

}
E.g.
functionprintName(name) {
document.write("<HR>Your Name is <I>");
document.write(name);
document.write("</I><HR>");

}

<HTML>

<HEAD>
<TITLE>JavaScript table test</TITLE>
<SCRIPT language="JAVASCRIPT">
function PrintRow(name, age, birthday) {

document.write("<TR> <TD>", name, "</TD> <TD>", age, "</TD> <TD>", birthday,
"</TD> </TR>\n");

}
</SCRIPT>
</HEAD>
<BODY>
<H1>Table Test Using JavaScript</H1>
<TABLE>
<SCRIPT language="JAVASCRIPT">
PrintRow("Fred", 27, "June 17");
PrintRow("Tom", 24, "March 13");
PrintRow("Rebecca", 25, "November 30");
</SCRIPT>
</TABLE>
End of table.
</HTML>

<HEAD>

<TITL E>Simple Mat h</TI TLE>

<SCRIPT> < ! --

funct i on s i mple_math(n um) {

doc ument . write(" The call pa ssed " ,num," to t he func t ion.
");

new_num = num * 2; / / mul t iple t he va l ue by 2

doc ument . write(num, " * 2 e quals ",new_ num,"
");

ret urn n ew_num; / / ret urn new _num t o the f unct i on c al l

}

// en d hid i ng -- >

</SCRI PT>

</HEAD>

<BODY>

<H3>Let's watch some s imple math: </H3>

<SCRI PT> <! --

x = 5;

document .write ("The starti ng nu mber is ",x, "
") ;

new_x = simple _math (x);

document .write ("The functi on re t urned t he n umber " , new_x,"<B R>");

// e nd hi ding -- >

</SC RIPT>

</BODY>

</HTML>

Variable Conversions

JavaScript is a loosely typed language. You don't need to declare a variable's type
when you define it, and you don't need to do anything special to store a different
type of data in a variable.

There are, however, some cases when you want to convert data to a specific type.

The parseInt Function

The following statement assigns the variable a to the value 39:

a = parseInt("39 steps");

The parseFloat Function

The following statement assigns the value 2.7178 to the variable a:

a = parseFloat("2.7178 is the base of a natural logarithm.“);

The eval Function

a = eval("20 + 1 + 4");
var text = "Fred";
var statement = text + "= 31";
eval(statement);

The standard binary arithmetic operators : addition (+),
subtraction (-), multiplication (*), and division (/).

In addition to these basic operators, there is the modulus (%)
operator which calculates the remainder of dividing its
operands.

8 + 5 � 13
25.5 - 17.3 � 8.2
12 % 5 � 2

Arithmetic Operators if-else construct

Using the if-else construct, combined with expressions, it is
possible to alter the flow of a program—to determine which
sections of program code run based on a condition.

if condition {

several lines of JavaScript code
}
else {

several lines of JavaScript code
}

if (day = = "S at urd ay") {

document. wr i t eln (" It 's Satu r day !") ;

} el se {

document. wr i t eln (" It 's n ot Satu rd ay. ") ;

}

if (day = = "S at urd ay") {

document. wr i t eln (" It 's Satu r day !") ;

} el se {

document. wr i t eln (" It 's n ot Satu rd ay. ") ;

}

Conditional Operator

Conditional expressions can evaluate to one of two different values
based on a condition. The structure of a conditional expression is:

(condition) ? val1 : val2

The way a conditional expression works is that the condition,
which is any expression that can be evaluated to aboolean value, is
evaluated; based on the result, the whole expression either
evaluates to val1 (true condition) or val2 (false condition).

The expression

(day == "Saturday") ? “ It is Saturday!" : “ It isn’ t Saturday."

evaluates to “ It is Saturday!" when day is "Saturday". Otherwise
the expression evaluates to “ It isn’ t Saturday!".

<HTML> <HEAD> <TIT LE>Example 3 . 4</T I TLE>

<SCRIPT LANGUAGE="JavaScript">

<! -- HI DE FROM OTHER BROWSERS

var questio n="What is 10+10?";

var answer= 20;

var co r rect =‘ CONGRATS! ' ;

var in corre ct=‘ YOU HAVE TO STUDY MATHS! ';

var re spons e = pro mpt(q uestion , "0") ;

if (re spons e != an swer) {

// T HE ANSWER WAS WRONG: OFF ER A SECOND CHANCE

if (confi r m("Wro ng! P r ess OK for a secon d cha nce."))

re spons e = pro mpt(q uestion , "0") ;

}

var out put = (resp onse == answ er) ? correc t : i ncorrec t ;

// STO P HIDI NG FROM OTHER BROWSERS - - >

</SCRI PT> </ HEAD>

<BODY>

<SCRIPT LANGUAGE="JavaScript">

<! -- HI DE FROM OTHER BROWSERS

// OUT PUT RESULT

document.wr i te(out put);

// STO P HIDI NG FROM OTHER BROWSERS - - >

</SCRI PT> </ BODY> </HTML>

== Returns true if the operands are equal

!= Returns true if the operands are not equal

> Returns true if the left operand is greater than the right operand

< Returns true if the left operand is less than the right operand

>= Returns true if the left operand is greater than or equal to the right operand

<= Returns true if the left operand is less than or equal to the right operand

Comparison Operators Logical Operators

&& Logical "and"—returns true when both operands are true;
otherwise it returns false.

|| Logical "or"—returns true if either operand is true. It only
returns false when both operands are false.

! Logical "not"—returns true if the operand is false and false if
the operand is true. This is a unary operator and precedes the
operand.

Operator precedence is the set of rules which determine the order
in which these compound expressions are evaluated.

The operators are evaluated in the following order (from lowest
precedence to highest):

1. Assignment operators (= += -= *= /= %=)
2. Conditional (?:)
3. Logical or (||)
4. Logical and (&&)
5. Equality (== !=)
6. Relational (< <= > >=)
7. Addition/subtraction (+ -)
8. Multiply/divide/modulus (* / %)
9. Parentheses (())

Operator Precedence Objects and properties
JavaScript is an object-oriented language. An object is a custom data
type that can combine data with functions to act upon it. The data
items in an object are its properties, and the functions are its
methods.

Properties can be numbers, strings, or even other objects. Each
property has a name associated with it, which you must use to refer
to that property.

For example, any variable that contains a string in JavaScript is
actually a String object. The String object has a single property
called length, which can be referred as

len = address.length;

or

len = address["length"];

Methods are simply functions that have been linked to an object
and work on the properties of that object.

As an example, the built-in string object includes some methods to
work with strings. One of them, toLowerCase(), converts the string
to all lowercase.

To call a method, you use a period to divide the string name and
the method name, as with properties. However, because a method
is a function, you must include parentheses for the parameters. The
following JavaScript code demonstrates the use of this method:

var text = "THIS IS UPPERCASE";

var ltext = text.toLowerCase();

The toLowerCase() method does not modify the string itself;
instead, it returns a lowercase version.

Methods Built in Objects

Built-in objects include string objects, the Date object, and the Math
object. They are referred to as built-in because they really do not
have anything to do with Web pages, HTML, URLs, the current
browser environment, or anything visual.

String Objects

Any variable whose value is a string is actually a string object.
Literal strings such as "HelloWorld" are also string objects.

The following JavaScript commands output the text "Hello!" in
large, blinking, bold letters
var sample = "Hello!";

var sampleBig = sample.big();

var sampleBlink = sampleBig.blink();

var sampleBold = sampleBlink.bold();

document.write(sampleBold);

The following text displays the same word but as a hypertext link to
the file http://some.domain/some/file.html.
var sample = "Hello!";

sample = sample.link("http://some.domain/file.html");

document.write(sample);

Because these methods return strings, you can also string together a
series of methods and rewrite the first example as
var sample = "Hello!";

document.write(sample.big().blink().bold());

substring and Case methods
var sample = "tEsT";

var newSample = sample.substring(0,1).toUpperCase() +

sample.substring(1,sample.length).toLowerCase();

Where the string object enables you to work with text literals, the
Math object provides methods and properties to move beyond the
simple arithmetic manipulations offered by the arithmetic operators.
document.write(Math.E,"
");

document.write(Math.PI,"
");

document.write(Math.abs(-5.23),"
");

document.write(Math.asin(0.3),"
");

document.write(Math.sin(Math.PI/6),"
");

document.write(Math.floor(2.6),"
");

document.write(Math.round(2.6),"
");

document.write(Math.exp(1),"
");

document.write(Math.log(10),"
");

document.write(Math.max(2,-4),"
");

document.write(Math.pow(2,8),"
");

document.write(Math.sqrt(4),"
");

document.write(Math.random(),"
");

The Math Object

The Date Object

You can create a Date object any time you need to store a date, and
use the Date object's methods to work with the date.

Strangely, the Date object has no properties. To set or obtain values
from a Date object, you must use the methods described below.

Creating a Date Object

You can create a Date object using the new keyword.
birthday = new Date();

birthday = new Date("June 20, 1996 08:00:00");

birthday = new Date(6, 20, 96);

birthday = new Date(6, 20, 96, 8, 0, 0);

Setting Date Values

Methods to set components of a Date object to values:
•setDate() sets the day of the month.
•setMonth() JavaScript numbers the months from 0 to 11.
•setYear() sets the year.
•setTime() the number of mil liseconds since January 1st, 1970.
•setHours(), setMinutes(), andsetSeconds() set the time.

Getting Date Values

You can use the get methods to get values from a Date object.
•getDate() gets the day of the month.
•getMonth() gets the month.
•getYear() gets the year.
•getTime() the number of mil liseconds since January 1st, 1970.
•getHours(), getMinutes(), andgetSeconds() get the time.

The window Object

The window object is at the top of the object hierarchy. A window
object exists for each open browser window. The properties of this
object describe the document in the window and provide information
about the window. Three of the window object's properties are child
objects:

•The location object stores the location (URL) that is displayed in the
window.

•The document object holds the Web page itself.

•The history object contains a list of sites visited before and after the
current site.

You can, for example, write text to status line using the status property
of the window object.

window.status="This is status line text!";

The window.open() method enables you to open a new browser
window. A typical statement to open a new window looks like this:
WindowName=wi ndow. open(" URL", " WindowName" , "F eat ur e Li st ") ;

SmallWin = window.open("","small","width=100,height=120,toolbar=0,status=0");

window.close() method closes a window. E.g. SmallWin.close();

Using Timeouts

These are handy for periodically updating a Web page or for delaying a
message or function. You begin a timeout with the setTimeout()
method.
id ent =wi ndow. set Ti meout (" al er t ('T im e i s up!'); " , 10000);

Before a timeout has elapsed, you can stop it with the clearTimeout()
method, specifying the identifier of the timeout to stop:

wi ndow. cl earT i meout (id ent);

The location Object

The location object is a property of the window object. It contains
information about the current URL being displayed by the window.

Youcan read the location of the current window by using the
properties listed previously. In addition, youcan send the user to a
new URL by changing the location object's properties. For
example,

window.location.href=“http://www.domain.com/path”

location.reload() reloads the current document; this is the sameas
the reload buttononNetscape's toolbar.

The document Object

This object represents the contents of the current HTML Web page.
This object includes a wide variety of attributes.

bgColor is the background color.

fgColor is the foreground (text) color.

linkColor is the color used for nonvisited links.

vlinkColor is the color for visited links.

document.write() method prints text as part of the HTML page in a
document window.

The history Object

This object holds information about the URLs that have been visited
before and after the current one, and it includes methods to go to
previous or next locations.

*** The saying "You can't change history" also applies to JavaScript.

The history object has one property: length.

history.go() goes to a specified location in the history list. You can
specify a positive number to go forward, a negative number to go
back, or a string to be searched for in the history list. There is also
history.back() and history.forward().

*You can’t see the URLs in the history list!!!

The form Object
Each form in your HTML page is represented in JavaScript by a form
object. The form object has the same name as the NAME attribute in
the <FORM> tag you used to define it.

The most important property of the form object is the elements array,
which contains an object for each of the form elements.

For example, these expressions both refer to the first element in the
order form, the name1 text field:

document.order.elements[0]
document.order.name1

length is the number of elements in the form.

Properties and methods of fields in a form

name is the name given to the field.

defaultValue is the default value; (This is a read-only property.)

value is the current value.

checked is checked status for a checkbox or a radio button.

length is the number of radio buttons in the group.

selectedIndex returns the index value of the currently selected item.

Methods:
focus() sets the focus to the field. This positions the cursor in the field and makes it
the "current" field.

blur() is the opposite; it removes the focus from the field.

select() selects the text in the field, just as a user can do with the mouse.

click() acts as if the user clicked on the field.

Events provide the basis of interacting with the browser window and
the currently loaded document.
Events are triggered in the browser primarily by user actions,
including finishing loading a page, entering data in a form, and
clicking on form buttons.

You can use JavaScript to respond to these events. For example, you
can have custom messages displayed in the status line (or
somewhere else on the page) as the user moves the mouse over
links. You can also update fields in a form whenever another field
changes.

Events in JavaScript

Event Description

blur
Occurs when input focus is removed from a form element
(when the user clicks outside a field)

click Occurs when the user clicks on a link or form element

change
Occurs when the value of a form field is changed by the
user

focus Occurs when input focus is given to a form element

load Occurs when a page is loaded into Navigator

mouseover
Occurs when the user moves thepointer over a hypertext
link

select Occurs when the user selects a form element's field

submit
Occurs when a form is submitted (i.e. when the user clicks
on a submit button)

unload Occurs when the user leaves a page

In order to take advantage of events in JavaScript, it is necessary to
use event handlers.

Event handlers are scripts, in the form of attributes of specific
HTML tags.

The event handlers you write are executed when the specified events
occur. The basic format of an event handler is:
<HTML_TAG OTHER_ATTRIBUTES eventHandler=" JavaScript
Program">

E.g.
<INPUT TYPE=" text" onChange="checkField(this)">

<BODYonLoad="alert('Welcome to my page!');"
onUnload="alert('Goodbye! Sorry to see you go!');">

Event Handlers

Object Event Handlers Available

Selection List onBlur, onChange, onFocus

Text Element onBlur, onChange, onFocus, onSelect

Textarea Element onBlur, onChange, onFocus, onSelect

Button Element onClick

Checkbox onClick

Radio Button onClick

Hypertext Link onClick, onMouseOver

Reset Button onClick

Submit Button onClick

Document onLoad, onUnload

Window onLoad, onUnload

Form onSubmit

In addition to event handlers, it is possible to emulate events.
This can prove particularly useful to submit a form without
requiring the user to click on a submit button or to force the input
focus into a particular form field based on user actions.

The following list outlines the event methods available in
JavaScript.

•blur()

•click()

•focus()

•select()

•submit()

Emulating Events

INFINITE RECURSION WARNING!!!INFINITE RECURSION WARNING!!!

<HEAD>

<TITLE>Temperature Converter</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function c2f(form) {

celsius = form.celsius.value;

form.fahrenheit.value = (celsius*1.8)+32;

}

function f2c(form) {

fahrenheit = form.fahrenheit.value;

form.celsius.value = (fahrenheit-32)/1.8;

}

</SCRIPT>

</HEAD>

<BODY>

<FORM>

Celsius value

<INPUT TYPE="text" NAME="celsius" SIZE=15> is

<INPUT TYPE="text" NAME="fahrenheit" SIZE=15> degrees Fahrenheit.

<INPUT TYPE="button" VALUE="Calculate" ONCLICK="c2f(this.form)">

</FORM>

<FORM>

Fahrenheit value

<INPUT TYPE="text" NAME="fahrenheit" SIZE=15> is

<INPUT TYPE="text" NAME="celsius" SIZE=15> degrees Celsius.

<INPUT TYPE="button" VALUE="Calculate" ONCLICK="f2c(this.form)">

</FORM>

</BODY>

<HTML> <HEAD>
<SCRIPT LANGUAGE="JavaScript">

<!-- HIDE FROM OTHER BROWSERS
function calculate(form) {

form.results.value = eval(form.entry.value);
}
function getExp(form) {

form.entry.blur();
form.entry.value = prompt("Please enter a JavaScript mathematical expression","");
calculate(form);

}
// STOP HIDING FROM OTHER BROWSERS --> </SCRIPT>
</HEAD>
<BODY>
<FORM METHOD=POST> Enter a JavaScript mathematical expression:
<INPUT TYPE=text NAME="entry" VALUE="" onFocus="getExp(this.form);">

The result of this expression is:
<INPUT TYPE=text NAME="results" VALUE="" onFocus="this.blur();">
</FORM> </BODY> </HTML>

<HTML> <HEAD> <TITLE>A Nationalist JavaScript Page</TITLE>

<SCRIPT LANGUAGE="JavaScript"> <!--

var UserWarned=false;

function warnthem(lnk) {

var theirhost = lnk.hostname; //get hostname of link

var domain = "", lastdot = 0, len = 0;

len = theirhost.length; // string length of hostname

lastdot = theirhost.lastIndexOf("."); //find last dot

domain = theirhost.substring(lastdot+1, len);

if (domain == "zz" && !UserWarned) {

alert("Country zz only has 1200 baud modems");

UserWarned=true;

}

} -->

</SCRIPT> </HEAD>

<BODY>

<HR> Check out the new links to

Zzland

and its neighbor

XYville

<HR>

</BODY> </HTML>

Validating Forms

• One of the most important uses of JavaScript is in validating
forms.

• JavaScript can be used to validate forms on the client site.

• This reduces the workload of the server and also speeds up the
process of submitting forms.

• Form validation is generally implemented with theonSubmit
event handler.

<HTML> <HEAD> <TITLE>A Simple Form Validation Example</TITLE>

<SCRIPT LANGUAGE="JavaScript"> <!--

function checkit() { // submit validation function

var strval = document.myform.mytext.value;

var intval = parseInt(strval); //convert to integer

if (0 < intval && intval < 10) { // input ok?

return(true); // allow submit

} else { // input bad - tell user

alert("Input value " + strval + " is out of range");

return(false); // forbid submit

}

}

--> </SCRIPT> </HEAD>

<BODY>

<HR>

<FORM NAME="myform" METHOD="post"

ACTION="mailto:me@myhost.com"

onSubmit="checkit()">

<P>Enter a number between 1 and 9:

<INPUT TYPE="text" NAME="mytext" VALUE="1" SIZE="10"></P>

<INPUT TYPE="submit">

</FORM>

<HR>

</BODY> </HTML>

Most programming relies on the capabili ty to repeat a number of lines
of program code based on a condition or a counter. This is achieved
by using loops.

The for keyword is the first tool to look at for creating loops.

for (var = 1; var < 10; var++) {
JavaScript Statements to be repeated

}
There are three parameters to the for loop, separated by semicolons:

•The first parameter (var = 1 in the example) specifies a variable and assigns an
initial value to it. This is called the initial expression, because it sets up the initial
state for the loop.

•The second parameter (var < 10 in the example) is a condition that must remain
true to keep the loop running. This is called the condition of the loop.

•The third parameter (var++ in the example) is a statement that executes with each
iteration of the loop. This is called the increment expression, because it is usually
used to increment the counter.

Loops
for (i=1; i<10; i++) {

document.write("This is line ",i,"\n"); }

The while loop

The other keyword for loops in JavaScript is while. Unlike for
loops, while loops don't necessarily use a variable to count. Instead,
they execute as long as (while) a condition is true.

For example,

while (total < 10) { n++; total += values[n]; }

is equivalent to

for (n=0;total < 10; n++) { total += values[n]; }

The break command does what the name implies—it breaks out
of the loop completely, even if the loop isn't complete. For
instance, if you want to give students three chances to get a test
question correct, you could use the break statement:

var answer = "";
var correct = "100";
var question = "What is 10 * 10?";
for (k = 1; k <= 3; k++) {
answer = prompt(question,"0");
if (answer == correct) { alert ("Correct!");

break; }
}

The continue statement skips the rest of the loop, but unlike
break, it continues with the next iteration of the loop:

break and continue statements: Arrays

Many languages support arrays-numbered sets of variables. For
example, scores for 20 different students might be stored in a scores
array. You could then refer to scores[1] for the first student's score,
scores[5] for the fifth student, and so on.

You can create an array by using the Array object. For example,

scores = new Array(20);

you can then assign values for the first and tenth scores with these
statements:

scores[0] = 50;

scores[9] = 85;

<html> <head> <script>

function showhouse(somehouse) { // display properties

for(var iter = 0; iter < 4; iter++) { // four properties

document.write("
Property "+ iter +

" is "+ somehouse[iter]);

}

document.write("
");

}

</script> </head>

<body> <script>

var myhouse= new Array(4);

myhouse[0] = 5; // rooms

myhouse[1] = "Modern"; // style

myhouse[2] = 1989; // year_built

myhouse[3] = true; // has_garage

showhouse(myhouse);

</script> </body> </html>

Note that unlike many programming languages the elements of an
array does not have to be of the same type in JavaScript.
Note that unlike many programming languages the elements of an
array does not have to be of the same type in JavaScript.

Defining Objects

Before creating a new object, it is necessary to define that object by
outlining its properties. This is done by using a function that defines
the name and properties of the function. This type of function is
known as a constructor function. For example,

fu nct io n ho us e (r ms, st l , yr , garp) {

t his . r ooms = rms; / / ro oms

t his . sty le = st l ; / / ar chit ec t ur e st yl e

t his . yearb ui l t = yr ; / / ye ar const r uc t ed

t his . hasgar ge = gar p; / / do es i t have a ga ra ge?

}

myhouse = new h ous e(5, “ Moder n", 1989, t r ue) ;

document . wr it e(myh ouse . st y l e) ;

There's a third type of loop available in JavaScript. The for...in loop
is not as flexible as ordinary for or while loops; instead, it is
specifically designed to perform an operation on each property of an
object.

Like an ordinary for loop, this type of loop uses an index variable. (i
in the example). For each iteration of the loop, the variable is set to
the next property of the object. This makes it easy when you need to
check or modify each of an object's properties.

for … in loop fu nct io n ho us e (r ms, st l , yr , garp) {

t his . r ooms = rms; / / ro oms

t his . sty le = st l ; / / ar chit ec t ur e st yl e

t his . yearb ui l t = yr ; / / ye ar const r uc t ed

t his . hasgar ge = gar p; / / do es i t have a ga ra ge?

}

fu nct io n showany(anyobj) { / / di sp l ay pr opert i es

f or (var it er in anyobj) { / / i te r at e over al l pr oper ti es

document . wri t e("
Pro pert y " + i t er +

" i s " + anyo bj [it er]) ;

}

document. wr i t e("
") ;

}

-- - - - -- - - -- -- - - - -- - - -- -- - - - -- - - -- -- - - - -- - - -- -- - - - -- - - --

myhouse = new h ous e(5, “ Moder n", 1989, t r ue)

yo ur house = new ho use(8, “ Cl assi c" , 1 922, f al se);

sh owany (myhouse)

sh owany (yourh ouse)

Adding Methods to Objects

In addition to adding properties to object definitions, you can also add
a method to an object definition. Because methods are essentially
functions associated with an object, first you need to create a function
that defines the method you want to add to your object definition.

Then you can add the method to the object as if you are adding a
property to the object.

<HTML> <HEAD> <SCRI PT>

//DEFI NE METHOD

functi on di splayIn f o() {

docu ment. write(" <H1>Employee Prof i le: " + thi s .name +

" </H1> <HR><PRE>");

docu ment. writeln ("Empl oyee N umber : " + t his.n umber);

docu ment. writeln ("Soc i al Sec urity Number : " + this. socsec) ;

docu ment. writeln ("Ann ual Sal ary: " + thi s .sal ary);

docu ment. write(" </PRE>");

}

//DEFI NE OBJECT

functi on em ployee() {

this . name=prompt ("Ent er Empl oyee' s Name", "Name");

this . number=prom pt("E nter Em ploye e Number for " +

t his.na me,"0 00- 000") ;

this . socs ec=prom pt("E nter So cial Securit y Number for " +

this.n ame," 000- 00- 0000") ;

this . sala r y=prom pt("E nter An nual Salary f or " +

this.n ame," $00,000 ");

this . disp l ayInfo =disp l ayInfo ;

}

</SCRI PT> </HEAD>

<BODY>

<SCRIPT LANGUAGE="JavaScript">

newEmployee=new employee();

newEmployee.displayInfo();

</SCRIPT>

</BODY>

</HTML>

Cookies

You can use cookies to store a preference for the user, or to
remember the user when they come back to your page.

Cookies are stored for the current document, and they are accessed
with the document.cookie property. This property is a text value
which can contain the following components:

name=value: A name and value, separated by the equal sign. This is the actual data
stored in the cookie.

expires=date: An expiration date. If this date is not included, the cookie is erased
when the user exits the browser. (For the format of the date, see the example later.)

domain=machine: The domain name for which the cookie is valid. By default, this
is the domain of the current page.

path=path: The URL path for which the cookie is valid. By default, this is the
current URL.

<HTML> <HEAD>

<TITLE>The page that remembers your name</TITLE>

<SCRIPT>

if (document.cookie.substring(0,2) != "n=") {

nam = window.prompt("Enter your name");

document.cookie = "n=" + nam + ";";

document.cookie +=

"expires=Tuesday, 31-Dec-2010 23:59:00 GMT"

}

</SCRIPT> </HEAD>

<BODY>

<H1>Here is Your name</H1> <HR>

<SCRIPT>

indx = document.cookie.indexOf(";");

nam = document.cookie.substring(2,indx+1);

document.write("Hello there, ", nam);

</SCRIPT>

</BODY>

</HTML>

