
1

Introduction to Scientific
and Engineering

Computation
(BIL 102E)

LECTURE 9
Pointers and Arrays

2

So far we have been using variables to access the main
memory. This is a pretty static way of reaching memory as
we have to define variables when writing the program and
cannot change these in run (execution) time.

Also with the types of variables it is not possible to handle
large amounts of data.

Sometimes it is required to pass large amounts of data
between functions, or allocate memory locations
dynamically. In such situations, more flexible ways of
handling the memory is necessary.

Pointers are used for this purpose.

Pointers

3

Address-of Operator (&)
It is possible to find the actual address of a variable using
the & operator. For example,

#include <stdio.h>

main() {

int k=5;

float x=3.14;

printf("Value of k is %d\n",k);

printf("Address of k is %p\n",&k);

printf("Value of x is %f\n",x);

printf("Address of x is %p\n",&x);

}

Value of k is 5

Address of k is 0065FDF4

Value of x is 3.140000

Address of x is 0065FDF0

This finds the address of
the variable k.

Note that we have used %p to
format the memory address.

The presentation of the address format
can change from compiler to compiler.

4

A pointer is actually a memory address. (We can say that the
pointer points to an address in memory).

We can define variables that are pointers. These variables
allow us to reach the main memory directly.

Pointer Variables

A pointer variable can be defined by using an asterisks in front
of the variable name. The syntax is

data_type *pointer_name;

For example,

int *pk;

Defines a pointer variable pk which can point integer types of
data in memory.

5

The value of the memory location where a pointer points can be reached
again by using an asterisks in front of the variable name. This is called
dereferencing.

Dereferencing

Value of k is 5

Address of k is 0065FDF4

Value of pk is 0065FDF4

Address of pk is 0065FDF0

Value referenced by pk is 5

#include <stdio.h>

main() {

int k=5;

int *pk;

pk = &k;

printf("Value of k is %d\n",k);

printf("Address of k is %p\n",&k);

printf("Value of pk is %p\n",pk);

printf("Address of pk is %p\n",&pk);

printf("Value referenced by pk is %d\n",*pk);

}

Assign the address of k
to pk.

*pk means the value of
the memory location

pointed by pk.

5

pk

&k

k
*pk

6

#include <stdio.h>

main() {

int j=5;

int *pk = &j;

*pk = 10;

printf("Value of j is %d\n",j);

printf("Address of j is %p\n",&j);

printf("Value of pk is %p\n",pk);

printf("Address of pk is %p\n",&pk);

printf("Value referenced by pk is %d\n",*pk);

}

Value of j is 10

Address of j is 0065FDF4

Value of pk is 0065FDF4

Address of pk is 0065FDF0

Value referenced by pk is 10

It is possible to change the value of the memory location
pointed by a pointer by the dereference operator (*).

Declare and initialize pk.
The same as writing:
int *pk;
pk=&j;

Change the value of the memory
location pointed by pk.

7

Null Pointers

A pointer is said to be a null pointer when it points to
address 0. A null pointer is assumed to be not pointing to
a valid data address.

Null pointers can be used to test whether a pointer is
assigned to a value.

For example,
int * p;

p = 0 ; / * Mak e p a n ul l poi nt er * /

if (p == 0) / * c heck whet her p is a n ull p oi nt er */

printf(“p i s a nul l poi nt er ”) ;

We will see more examples on null pointers later in the course.
8

Arrays
Arrays are collection of similar data items. Arrays allow us
to reach a set of memory locations of same type with the
same name (by the help of an index).

Each item in an array is called an element.

The syntax for declaring an array is as follows:

data_type array_name[size];

This defines an array with name array_name. This array
holds size number of elements of type data_type. Obviously
size should be a constant integer expression.

For example,

int arr_x[3];

Declares an array named arr_x which holds 3 integer values.

9

Reaching elements of an array
It is possible to access each element of an array by using indices
in square brackets.

The important point to remember is that all arrays in C are
indexed starting at 0. That is, in the previous example arr_x[0] is
the first element of the array and arr_x[2] is the last element of
the array.

c[0]= 1.5 c[1]= 4.0 c[2]= 5.5

#include <stdio.h>

main() {

float c[3];

c[0] = 1.5;

c[1] = c[0] + 2.5;

c[2] = c[0] + c[1];

printf("c[0]=%4.1f c[1]=%4.1f c[2]=%4.1f\n",

c[0],c[1],c[2]);

}

Declare an array of type
float and of size 3.

Set the first element of the
array to 1.5.

Note that we use c[0],
c[1], c[2] as if they are
variables of type float.

10

Example
Write a program that asks the number of students and then
mark of each student in a class. The program should calculate
and print out the arithmetic mean and the standard deviation of
marks. Note that

1

)~(

~

1

2

1

�

�

�

�

�

�

�

�

n

am
s

n

m
a

n

i
i

n

i
i

where n indicates the number of students, mi is the mark of
student i, ãand s are arithmetic mean and standard deviation,
respectively. Your program should assume that there could
be at least 2 and at most 100 students in a class.

A possible output of the program:

Number of students : 3

Mark of student 1 : 10

Mark of student 2 : 20

Mark of student 3 : 30

Average : 20.0

Standard Deviation : 10.0

11

#include <stdio.h>

#include <math.h>
#define MAX_STUDS 100
main() {

float marks[MAX_STUDS], sum=0, avg, std_dev;
int i,num_of_studs;
printf("Number of students : ");
scanf("%d", &num_of_studs);
if((num_of_studs<2) || (num_of_studs>MAX_STUDS)) {

printf("Invalid number!\n");
return 1;

}
for(i=0;i<num_of_studs;i++) {

printf("Mark of student %d : ",i+1);
scanf("%f",&marks[i]);
sum += marks[i];

}
avg = sum/num_of_studs; /* Calculate the average mark */
printf("Average : %4.1f\n",avg);
sum=0;
for(i=0;i<num_of_studs;i++)

sum += pow(marks[i]-avg,2);
std_dev=sqrt(sum/(num_of_studs-1));
printf("Standard Deviation : %4.1f\n",std_dev);
return 0;

}

This is a compiler directive that defines a macro. The compiler
will replace MAX_STUDS with 100 in the program.

Check whether the number of students
are in the acceptable range.

Read mark of each student into an array and
accumulate the sum of marks in the variable sum.

Accumulate the sums of the squares of difference
of marks from the average in the variable sum.

12

Initializing Arrays
It is possible to initialize arrays by using a list of values
enclosed in braces ({ and }). For example,

int ak[3] = { 1, 5, 9 };

Declares an array named ak with 3 elements and the elements
are initialized to 1, 5 and 9. This is same as writing the
following code:
int ak[3];

ak[0] = 1;
ak[1] = 5;
ak[2] = 9;

If an array is initialized we do not have to give the size of the
array. For example, we could have written:

int ak[] = { 1, 5, 9 };

13

Size of an Array

The number of bytes reserved in memory by an array can be
found by using the sizeof() function.

For example,

int ak[] = { 1, 5, 9 } ;

printf(“ Memor y r equi re d by ak i s %d byte s\ n” ,

sizeof(ak)) ;

printf(" Hence ak has %d el ement s\ n" ,

sizeof(ak)/ sizeof(in t)) ;

Memor y r equir ed by ak is 1 2 byt es

Hence ak has 3 e le ment s

14

Arrays and Pointers
Array variables can be considered as pointers that point to the beginning of the array.
Therefore, it is possible to assign an array variable to a pointer directly. For example,

The fi r st e l ement of th e array arr _k is 2

#include <st dio .h>

main() {

int arr _k [3]={ 2, 3, 7};

int * ptr _k;

ptr _k=arr _k;

printf("T he firs t ele ment of the array ar r _k i s %d \ n" ,* pt r _k);

}

Some compilers allow pointers to be used like arrays when referencing the elements:

#inclu de < st dio .h>

main() {

int i , ar r _k[3]= { 2,3, 7};

int * ptr _k=arr _k ;

for(i =0;i <3;i++)

printf(“ arr _k[%d] = %d\ n", i , pt r _k[i]) ;

}

arr _k[0] = 2

arr _k[1] = 3

arr _k[2] = 7

Note that we do not use the address of (&)
operator to get the address of the array.

The pointer points to the
first element of the array.

15

Pointer Arithmetic
By adding or subtracting integers from pointers it is possible to have the
pointers point to other elements in an array. For example, if *ptr_k points to
the first element of an array *(ptr_k+1) points to the second element. The
following programs produce exactly the same result as the previous
example.

#inclu de < st dio .h>

main() {

int i , ar r _k[3]= { 2,3, 7};

int * ptr _k=arr _k ;

for(i =0;i <3;i++)

printf(“ arr _k[%d] = %d\ n", i , *(ptr _k +i));

}

#include <st dio .h>

main() {

int i , ar r _k[3]= { 2,3, 7};

int * ptr _k=arr _k ;

for(i =0;i <3;i++, ptr _k ++)

printf(" arr _k[%d] = %d\ n", i ,* pt r _k);

}

arr _k[0] = 2

arr _k[1] = 3

arr _k[2] = 7

arr _k[0] = 2

arr _k[1] = 3

arr _k[2] = 7

Note that ptr_k+1 does not
necessarily point to next byte
in the memory. It points to
next element.

ptr_k++ makes ptr_k to point
the next element in the array.

This is different than *ptr_k+i, which
would produce 2, 3, 4 for this example.

16

Considerations
When using pointers and arrays extreme

precautions must be taken.

It is possible to reach memory locations that
are not reserved for our program and change

them by the help of pointers.

This may result in unexpected outputs and
even halt the computer.

17

Possible Errors:

Use of uninitialized pointers:

int *ptr_k;

int k=5;

*ptr_k = k;

/* Problem: I have used the pointer before having it
point to a meaningful address */

Indices that are out of range:

int j=5,arr_x[3];

int *ptr_k=arr_x;

arr_x[-1]=1; /* Index is out of range */

arr_x[j]=7; /* Index is out of range */

*(ptr_k+j) = 8;/*Pointer points to undesired location */

18

Pointers as arguments to functions
Like other types of data pointers can be used as arguments of functions. This
could be useful if the function is required to change some variables in the
calling function or large amounts of data is to be transferred to the function.

We have been already passing the addresses of variables to the scanf
function, which reads data from the keyboard and changes the variables
accordingly. The following is a simple example:

#include <stdio.h>

int Times23(int k, int *k3) {

*k3 = k * 3;

return k * 2;

}

main() {

int x=5,x2,x3;

x2=Times23(x, &x3);

printf("x = %d\nx2 = %d\nx3 = %d\n",x,x2,x3);

}
x = 5

x2 = 10
x3 = 15

The argument k3 is a
pointer to integers.

We have to send an
address here.

?

k3

&x3

x3
*k3

When the function is called:

19

sum(x,1) = 1

sum(x,2) = 4

sum(x,3) = 7

sum(x,4) = 14

sum(x,5) = 22

#include <stdio.h>

int sum(int *arr, int n) {

int i,sm=0;

for (i=0; i<n; i++)

sm+=arr[i];

return sm;

}

main() {

int i,x[]={1,3,3,7,8};

for(i=1;i<6;i++)

printf("sum(x,%d) = %d\n",i,sum(x,i));

}

It is possible to use pointer arguments to pass large amounts of
data to and from functions (by means of arrays). In the
following, a function that calculates the sum of the first n
elements of an array is given.

Note that this function assumes n is less
than or equal to the size of the array.

20

void fsort2_asc(float *num1, float *num2){

if(*num1 > *num2)

fswap(num1,num2);

}

Write a function called fswap that swaps the values of two
floating point arguments:

void fswap(float *num1, float *num2){

float temp;

temp=*num1;

*num1=*num2;

*num2=temp;

}

Write a function called fsort2_asc that sorts the values of two
floating point arguments in an ascending order:

21

Example
Write a program that asks the marks of students in a class until
an invalid mark is entered and then sorts the marks in an
ascending order.

Analysis:

1. In an infinite loop the marks can be read and put into an
integer array mark. The number of students can be hold
in a variable named num_studs.

2. In order to sort the array a for loop where an integer i is
used to count from 1 to num_studs-1 can be used. In
each loop ith smallest element of the array is found and
put into its final place (i.e. the ith. element).

3. So as to find the ith smallest element a second (inner)
for loop can be used. In this do loop, the counter (j)
starts from i+1 and always ensures that the smallest
element encountered that far is replaced in ith element. 22

#include <stdio.h>

#define MAX_STUDS 100

main()

{

int i,j, num_studs=0;

float mark[MAX_STUDS];

for(;;) {

printf("What is the mark of Student %d?\n",num_studs+1);

scanf("%f",&mark[num_studs]);

if(mark[num_studs]<0.0 || mark[num_studs]>100.0)

break;

num_studs++;

}

for(i=0;i<num_studs-1;i++)

for(j=i+1; j<num_studs; j++)

fsort2_asc(&mark[i], &mark[j]);

/* Print out the result */

for(i=0;i<num_studs;i++)

printf("%4.1f\n",mark[i]);

}

23

What is the mark of Student 1?

56

What is the mark of Student 2?

89

What is the mark of Student 3?

76

What is the mark of Student 4?

34

What is the mark of Student 5?

45

What is the mark of Student 6?

67

What is the mark of Student 7?

-1

34.0

45.0

56.0

67.0

76.0

89.0

A Possible Output of the Program

24

Pointers to Pointers
It is possible to define a pointer that points to another pointer. For example,

Value of k is 5

Address of k is 6684124

Value of p_k is 0065FDDC

Address of p_k is 0065FDD8

Value referenced by p_k is 5

Value of pp_k is 0065FDD8

Value referenced by pp_k is 0065FDDC

Value referenced by value referenced by pp_k is 5

int k=5;

int *p_k = &k;

int **pp_k = &p_k; /*This defines a pointer to another pointer*/

printf("Value of k is %d\n",k);

printf("Address of k is %d\n",&k);

printf("Value of p_k is %p\n",p_k);

printf("Address of p_k is %p\n",&p_k);

printf("Value referenced by p_k is %d\n",*p_k);

printf("Value of pp_k is %p\n",pp_k);

printf("Value referenced by pp_k is %p\n",*pp_k);

printf("Value referenced by value referenced by pp_k is %d\n",

**pp_k);

5

p_k

&k

k*p_kpp_k

&p_k
*pp_k

**pp_k

25

Arrays of Pointers
It is possible to define an array of pointers using the following syntax:

data_type *arr_ptr[n];

For example,

#include <stdio.h>

main() {

int i;

float x1 = 1.5;

float x2 = 2.7;

float x3 = 3.9;

float *ptr_ax[3]={&x1,&x2,&x3};

for(i=0;i<3;i++)

printf("*ptr_ax[%d] = %4.1f\n",i,*ptr_ax[i]);

}

*ptr_ax[0] = 1.5

*ptr_ax[1] = 2.7

*ptr_ax[2] = 3.9

26

Pointing to Functions
Remember that both data and instructions are hold in the main
memory. As it is possible to have pointers that point to data
elements it is also possible to have pointers that point to
instructions (functions).

In order to define a pointer to a function, we have to define what
kind of function the pointer points to.

Functions are categorized according to their interface (That is,
the type of output they produce and the number and the types of
arguments they accept).

For example,
double (*ptrf)(int x, char ch);

Declares a pointer named ptrf that can point to functions that
produce results in type double and have two arguments the first
of which is an integer and the second of which is char.

27

long int Factorial(int k) {

long int fact=1,i;
for (i=2; i<=k; i++)
fact *= i;

return fact;
}
long int Fibonacci(int n) {

long int Fi=1, F1=1, F2=0,i;
if(n<0)

Fi=-1;
else if(n==0)

Fi=0;
else

for(i=2; i<=n; i++){
Fi=F1+F2;
F2=F1;
F1=Fi;

}
return Fi;

}
void Printfx(long int (*f)(int t), int x) {
printf("f(%d)=%ld\n",x,f(x));

} main() {

printf("Calling Factorial :\n");
Printfx(Factorial,4);
printf("Calling Fibonacci :\n");
Printfx(Fibonacci,4);

}

Calling Factorial :

f(4)=24
Calling Fibonacci :
f(4)=3

Fibonacci numbers are defined as follows:

f0=0

f1=1

fk= fk-1+ fk-2 (for k>1)

28

Example
Derivative of a real valued function f(x) at a given point x on
the real axis can be defined as

�

�

�

)()(
Lim

)(
0

xfxf

x

xf ��
�

�

�

�

�

Hence, an approximation is given by

�

�)()()(xfxf

x

xf ��
�

�

�

where � is a small number.

Write a function called D(f, x0) that finds the derivative of a
function f(x) at x.

29

#include <stdio.h>

#include <math.h>

#define EPS 1.0e-5

#define PI 3.1415926

double D(double (*f)(double x), double point) {

double diff;

diff = ((*f)(point) - (*f)(point-EPS)) / EPS;

return diff;

}

main() {

double x,radx;

for(x=0.0;x<=90;x+=15.0){

radx = x * PI/180.0;

printf("D[sin(%2.0f)] = %5.3f cos(%2.0f) = %5.3f\n",

x,D(sin,radx),x,cos(radx));

}

}

D[sin(0)] = 1.000 cos(0) = 1.000

D[sin(15)] = 0.966 cos(15) = 0.966
D[sin(30)] = 0.866 cos(30) = 0.866
D[sin(45)] = 0.707 cos(45) = 0.707
D[sin(60)] = 0.500 cos(60) = 0.500
D[sin(75)] = 0.259 cos(75) = 0.259
D[sin(90)] = 0.000 cos(90) = 0.000

We confirm that
derivative of sinus

is cosine.

This function takes derivative of any
function which has a double argument and

produces a double result.

30

Multidimensional Arrays

It is possible to define multi-dimensional arrays (arrays of
arrays) by using the following syntax:

data_type array_name[size1][size2]...[sizeN];

For example,

int ak[2][3];

Declares an array of type int, which has 2 elements, each of
which can be seen as another array of type int with 3
elements. We might consider this as a 2 by 3 table:

ak[1][2]ak[1][1]ak[1][0]

ak[0][2]ak[0][1]ak[0][0]

31

Note that multi-dimensional arrays are stored in the memory
in a rows first manner. In the above example,

ak[1][2]

ak[1][1]

ak[1][0]

ak[0][2]

ak[0][1]

ak[0][0]

Memory cells pointed by ak.

int ak[2][3]={{1,2,3},{4,5,6}};

int *pk;

6

5

4

3

2

1 *pk.

*(pk+3).

Note how a multi-dimensional
array is initialized!

32

#include <stdio.h>

main(){

int ak[][3]={{1,2,3},{4,5,6}};

int i,j;

for(i=0;i<2;i++)

{

for(j=0;j<3;j++)

printf("%d \t",ak[i][j]);

printf("\n");

}

}

1 2 3

4 5 6

#include <stdio.h>

main(){

int ak[][3]={{1,2,3},{4,5,6}};

int i,j,*pk;

pk=ak;

for(i=0;i<2;i++)

{

for(j=0;j<3;j++,pk++)

printf("%d \t",*pk);

printf("\n");

}

}

1 2 3

4 5 6

\t is the tab character.

The same example where a pointer is
used to reach the elements of the array.

Note that only one dimension size can be
omitted when initializing the array.

33

Multi-dimensional arrays as
arguments to functions

It is possible to use multi-dimensional arrays as arguments
to functions. For example,

#include <stdio.h>

void PrintArray(int arr[][2], int n){

int i,j;

for(i=0; i<n; i++) {

for(j=0; j<2; j++)

printf("%d\t",arr[i][j]);

printf("\n");

}

}

main(){

int Mat1[3][2]={{1,2},{3,4},{5,6}};

PrintArray(Mat1,3);

}

1 2

3 4
5 6

Note that we have to give the number of
rows for the indexing to work.

This prints out any 2 column array
with n rows in a nice tabular format.

34

We can use pointers for the same purpose.

#include <stdio.h>

void PrintMatrix(int *mat, int n, int m) {

int i,j;

for(i=0; i<n; i++) {

for(j=0; j<m; j++)

printf("%d\t",*(mat+i*m+j));

printf("\n");

}

}

main(){

int Mat1[3][2]={{1,2},{3,4},{5,6}};

PrintMatrix(Mat1,3,2);

}

1 2

3 4
5 6

Note that this is more flexible, as
this will print out any n by m matrix.

Pointer arithmetic is
used to find the i,j th
element of the
matrix.

35

void MatrixAdd(int *result, int *M1, int *M2, int n, int m) {

int i,j;

for(i=0; i<n; i++)

for(j=0; j<m; j++)

*(result+i*m+j) = *(M1+i*m+j) + *(M2+i*m+j);

}

The following function adds 2 n by m matrices:

main(){

int Mat1[3][2]={{1,2},{3,4},{5,6}};

int Mat2[3][2]={{3,3},{4,4},{5,5}};

int Mat3[3][2];

MatrixAdd(Mat3,Mat1,Mat2,3,2);

PrintMatrix((int *) Mat3,3,2);

}

For example,

4 5

7 8
10 11

36

void MatrixAdd2(int *result, int *Mat1, int *Mat2, int nm) {

int i;

int *r=result, *M1=Mat1, *M2=Mat2;

for(i=0; i<nm; i++, r++, M1++, M2++)

*r = *M1 + *M2;

}

This does the same thing: This time we get the size of the
matrix instead of dimensions;

main(){

int Mat1[3][2]={{1,2},{3,4},{5,6}};

int Mat2[3][2]={{3,3},{4,4},{5,5}};

int Mat3[3][2];

MatrixAdd(Mat3,Mat1,Mat2,3*2);

PrintMatrix((int *) Mat3,3,2);

}

For example,

4 5

7 8
10 11

