| ntroduction to Scientific
and Engineering
Computation
(BIL 102E)

LECTURE 9
Pointersand Arrays

Pointers

So far we have been using variables to access the main
memory. Thisis a pretty static way of reaching memory as
we have to define variables when writing the program and
cannot change these in run (execution) time.

Also with the types of variablesit is not possible to handle
large amounts of data.

Sometimesiit is required to pass large amounts of data
between functions, or allocate memory locations
dynamically. In such situations, more flexible ways of
handling the memory is necessary.

Pointers are used for this purpose.

Address-of Operator (&)

It is possible to find the actual address of avariable using
the & operator. For example,

This finds the address of
#i ncl ude <stdio. h> the variable k.

mai n() {
int k=5;
float x=3.14;
printf("Value of k is %\ n",K);
printf("Address of k is %)\n", &);
printf("Value of x is %\n",x);
printf("Address of x is %\n", &);

}

Val ue of k is 5
Address of k is 0065FDF4

N(;e that we have used %p to
format the memory address.

Val ue of x is 3.140000
Address of x is 0065FDFO

The presentation of the address format
can change from compiler to compiler.

3

Pointer Variables

A pointer is actually a memory address. (We can say that the
pointer points to an address in memory).

We can define variables that are pointers. These variables
allow us to reach the main memory directly.

A pointer variable can be defined by using an asterisksin front
of the variable name. The syntax is

data_type *pointer _name;
For example,
int *pk;

Defines a pointer variable pk which can point integer types of
datain memory.

Dereferencing

The value of the memory location where a pointer points can be reached Itis possible to change the value of the memory |ocation

again by using an asterisksin front of the variable name. Thisis called pointed by a pointer by the dereference operator (*).

dereferenci ng. Declare and initialize pk.

#i ncl ude <stdio. h> #i ncl ude <stdio. h> The same as writing:

mai n() { mai n() { int *pk;
i =5; i 1 =05 k=&j;
:2: f;i AR pk k :gi J*;i & /'P Jh he value of th

; s to pk. * =& Change the value of the memory

ok = &k —— Pk *pk = 10; — "] location pointed by pk.
printf("Value of k is %\ n",k); printf("Value of j is %\n",j);
printf("Address of k is %\n", &); printf("Address of j is %\n", &);
printf("Value of pk is %\n", pk); printf("Value of pk is 9%\n", pk);
printf("Address of pk is %\n", &k); printf("Address of pk is %\n", &k);
printf("Value referenced by pk is %\ n", *pk); printf("Value referenced by pk is %\ n", *pk);

} / }

Val ueﬂof kis 5 *pk means the value of Value of j is 10

Address of k is 0065FDF4 the memory location Address of j is 0065FDF4

Val ue of pk i s 0065FDF4 pointed by pk. Val ue of pk i s 0065FDF4

Address of pk is 0065FDFO Address of pk is 0065FDFO

Val ue referenced by pk is 5 . Val ue referenced by pk is 10

Arrays

Arrays are collection of similar dataitems. Arrays allow us
to reach a set of memory locations of same type with the

A pointer is said to be anull pointer when it points to same name (by the help of an index).

address 0. A null pointer is assumed to be not pointing to
avalid data address.

Null Pointers

Each itemin an array is called an element.

. . . The syntax for declaring an array is as follows:
Null pointers can be used to test whether a pointer is ¥ g &

assigned to avalue. data_type array name[sizel;
For example, This defines an array with name array_name. This array
int *p; holds size number of elements of type data_type. Obviously
p=0; /* Mkep anull pointer */ size should be a constant integer expression.
if (p==0) /*c heck whether pis anullp ointer?*
printf(“p isa null pointer”); For example,
int arr_x[3];

We will see more examples on null pointers later in the course. Declares an array named arr_x which holds 3 integer values

Reaching elements of an array

It is possible to access each element of an array by using indices
in square brackets.

The important point to remember is that al arrays in C are
indexed starting at 0. That is, in the previous example arr_x[0Q] is
the first element of the array and arr_x[2] is the last element of
the array.

#i ncl ude <stdi o. h>
. | Declare an array of type
mai n() { —Tfloatand of size 3.

float c[3]; Set the firgt el t of th
_ N e first element of the
c[0] 1.5; array to 1.5.

c[1] =c[0] + 2.5;

c[2] =c[0] + c[1];

printf("c[0]=%t. 1f c[1]=%.1f c[2]=%. 1f\n",
c[0],c[1],c[2]);

} Note that we use c[0],
c[1], c[2] asif they are
[c[01= 1.5 c[1]=4.0¢c[2]=55 | varizbles of type float.

Example

Write a program that asks the number of students and then
mark of each student in a class. The program should calculate
and print out the arithmetic mean and the standard deviation of
marks. Note that

n
Zm A possi bl e out put of the program

a=1t Nunber of students : 3
Mark of student 1 : 10
Mark of student 2 : 20
Mark of student 3 : 30
Average : 20.0

St andard Deviation : 10.0

where n indicatesthe number of students, m, is the mark of
student i, aand s ae aithmetic mean and standard deviation,
regectively. Your program shoud assime that there could
be at least 2 and at most 100 studentsin aclass

10

#? nclude <stdio. h> Thisis acompiler directive that defines amacro. The compiler
#include <math. h> Aill replace MAX_STUDS with 100 in the program.

#define MAX_STUDS 100
main() {
float marks[MAX_STUDS], sun¥0, avg, std_dev;

int i,numof_studs;
printf("Nunber of students : Check whether the number of students

) .
scanf ("%l", &num of _studs); / arein the acceptable range.
tud

i f((numof_studs<2) || (num_of_- s>MAX_STUDS)) {
printf("lnvalid number!\n");
return 1;
}
for(i=0;i<numof_studs;i++) {
printf("Mark of student %l : ",i+1);
Zﬁamni(z Z:tr kic[nla]r I_(S[') ’#Re@d mark of each student int_oanarray_ and
} ' accumulate the sum of marksin the variable sum.

avg = sum numof _studs; /* Calculate the average mark */
printf("Average : %. 1f\n", avg);

n¥0;
su ; Accumulate the sums of the squares of difference

for (i=0;i<num of _studs;i++) ; _
- = —¥
sum += pow(narks[i]-avg, 2); of marks from the average in the variable sum.

std_dev=sqgrt (sum (numof _studs-1));
printf("Standard Deviation : %j. 1f\n", std_dev);
return O;

Initializing Arrays

It ispossibleto initialize arrays by using alist of values
enclosed in braces ({ and }). For example,

int ak[3] ={ 1, 5 9};

Declares an array named ak with 3 elements and the elements

areinitialized to 1, 5 and 9. Thisis same as writing the
following code:

int ak[3];
ak[0] = 1;
ak[1] = 5;
ak[2] = 9;

If an array isinitialized we do not have to give the size of the
array. For example, we could have written:

int ak[] ={ 1, 5, 9 };
12

Size of an Array

The number of bytes reserved in memory by an array can be
found by using the sizeof() function.

For example,

int ak[] ={ 1,5,9 }s

printf(“Menoryr equired by ak is %dbyte s\n”,
si zeof (ak)) ;

printf("Hence ak has %l el ements\n",
si zeof (ak)/ si zeof (int));

Mearory requir edby ak isl 2 bytes
Hence ak has 3e le ments

Arrays and Pointers

Array variables can be considered as pointers that point to the beginning of the array.
Therefore, it is possible to assign an array variable to a pointer directly. For example,

#include <stdio .h> Note that we do not use the address of (&)
main() { operator to get the address of the array.

int arr _k[3]={ 2,3, 7}
int *ptr _k;
ptr _k=arr _k;

printf("T hefirs t ele mentof the array arr_k is%d\n" ,*}tr_k);

The pointer pointsto the
first element o‘f the array.

: .

Thefi rste |ement ofth e array arr _k is 2 ‘

Some compilers allow pointersto be used like arrays when referencing the el ements:

#inclu de < stdio .h>

main() {
int i, arr_Kk[3]= {23, 7}
int *ptr _k=arr _k;

arr _k[1]= 3

for(i=0;i <3;i++)
printf(“arr k[%= %dn", i, ptr_K[i]) ; %arr _k[o]= 2

) - arr _k[2]= 7
13 14
Pointer Arithmetic Considerations
By adding or subtracting integers from pointers it is possible to have the
pointers point to other elements in an array. For example, if *ptr_k points to When usi ng p0| nters and arrays extreme
the first element of an array *(ptr_k+1) points to the second element. The .
following programs produce exactly the same result as the previous precautions must be taken.
example.
#inclu de < st dio .h> NotethaF ptr_I_<+1 does not
. necessarily point to next byte
main;(t) {i B in the memory. It points to ar K O]= 2 . .)
int tptr keam ki LDedelement., ar K 1]= 3 It is possible to reach memory locations that
for(i=0;i <3;i++) arr _k[2]= 7
e = S 1 e e are not reserved for our program and change
. Thisis different than *ptr_k+i, which thern by the hel p Of pOI nters'
would produce 2, 3, 4 for this example.
#i ncl ude <stdio .h>
main() {
int i, arr _KB3F {23, 7} | ptr_k++ makesptr_k to point _ . .
Nt tpu _kear ki henex dementinthearsy. | | o i 1= g This may result in unexpected outputs and
for(i=0;i <3Bji++, ptr _k++)~ - 3
printf("ar K %= %dn" i*ptr k) ar 2= 7 even halt the computer.
}
16

15

Possible Errors:

Use of uninitialized pointers:

int *ptr_k;

int k=5;

*ptr_k = k;

/* Problem | have used the pointer before having it
point to a neaningful address */

Indicesthat are out of range:

Pointers as arguments to functions

Like other types of data pointers can be used as arguments of functions. This
could be useful if the function is required to change some variables in the
calling function or large amounts of datais to be transferred to the function.

We have been aready passing the addresses of variables to the scanf
function, which reads data from the keyboard and changes the variables
accordingly. Thefollowing isasimple example:

#i ncl ude <stdi o. h> ‘

int Times23(int k, int *k3) { The argument k3 isa
K3 = k * 3 J\" pointer to integers.

return k * 2; I

int j=5,arr_x[3]; } ‘ When the function is called: ‘
. N K= . mai n() { We have to send an ~
Int *ptr_k=arr_x; ' ¢ _ _x_ addresshere. k3 K x3
arr_x[-1]=1; /* Index is out of range */ int x=5,x2, x3; _ PR
arr_x[j]1=7; /* Index is out of range */ XZ_:T'I;'Efzg(_X;ydf‘xs)z'_ el s = ol .
*(ptr_k+j) = 8;/*Pointer points to undesired |ocation */ } printf (*x = nxe = nxs = n", X, x2,x3); a
X =5
x2 = 10
x3 = 15
17 18
It is possible to use pointer arguments to pass large amounts of _ _
data to and from functions (by means of arrays). In the Write afunction calledfswap that swapsthevalu&of two
following, a function that calculates the sum of the first n floating point arguments:
elements of an array is given. void fswap(float *numl, float *nung){
fl oat tenp;
#i ncl ude <stdio. h> t emp=*nunt;
int sum(int *arr, int n) { *nunl=* nung;
int i,sme0; Note that this function assumes nisless *nunR=t enp;
for (i=0; i<n; i++) than or equal to the size of the array. }
smr=arr[i];
return sm
} sum(x,1) =1 . .
min() { ~ysun(x,2) =4 Write afunction called fsort2_asc that sorts the values of two
1 Vo= S5 S, s B sun(x, 3) =7 floating point arguments in an ascending order:
for(i=1;i<6;i++) sum(x, 4) = 14
printf("sun(x, %) = %\n",i,sum(x,i)); sum(x.5) = 22
} void fsort2_asc(float *nunml, float *nunR){
i f(*numl > *nunR)
f swap(nuni, nun) ;
}
19 20

Example

Write a program that asks the marks of students in a class until

an invalid mark is entered and then sorts the marks in an
ascending order.

Anaysis:

1. Inaninfinite loop the marks can be read and put into an

integer array mark. The number of students can be hold
in avariable named num_studs.

In order to sort the array afor loop where an integer i is
used to count from 1 to num_studs-1 can be used. In
each loop ith smallest element of the array is found and
put into its final place (i.e. theith. element).

So asto find the ith smallest element a second (inner)

for loop can be used. In this do loop, the counter (j)

starts from i+ 1 and always ensures that the smallest

element encountered that far is replaced in ith element. 21

#i ncl ude <stdio. h>

#defi ne MAX_STUDS 100

mai n()

{
int i,j, numstuds=0;
fl oat mar k[MAX_STUDS] ;

for(;;) {
printf("Wat is the mark of Student %?\n", num studs+1);
scanf ("% ", &var k[num st uds]) ;
i f (mar k[num studs] <0.0 || mark[num studs]>100. 0)
br eak;
num st uds++;
}
for(i=0;i<num studs-1;i++)
for(j=i+1; j<numstuds; j++)
fsort2_asc(&mark[i], &mark[j]);

/* Print out the result */
for(i=0;i<numstuds;i++)
printf("%. 1f\n", mark[i]);

22

A Possible Output of the Program

What is the mark of Student 1?

56

What is the mark of Student 27

89

What is the mark of Student 3?

76

What is the mark of Student 47

34

What is the mark of Student 57

45

What is the mark of Student 67

67

What is the mark of Student 77

-1

34.
45.
56.
67.
76.
89.

O OO o oo

23

Pointers to Pointers

It is possible to define a pointer that points to another pointer. For example,

int k=5;

int *p_k = &k;

int **pp_k = & _k; /*This defines a pointer to another pointer*/
printf("Value of k is %l\n",K);

printf("Address of k is %l\n", &);

printf("Value of p_k is %\n", p_k);

printf("Address of p_k is %\n", &_K);

printf("Value referenced by p_k is %\ n", *p_k);

printf("Value of pp_k is 9%\n", pp_k);

printf("Value referenced by pp_k is %\n", *pp_Kk);
printf("Value referenced by val ue referenced by pp_k is %\ n",
**pp_k);

Value of kis 5
Address of k is 6684124

Val ue of p_k is 0065FDDC ko PK spk K
Address of p_k is 0065FDD8 [epk >+ ek — 5 |
Val ue referenced by p_k is 5 D

Val ue of pp_k is 0065FDD8 **pp_k

Val ue referenced by pp_k is 0065FDDC
Val ue referenced by val ue referenced by pp_k is 5

24

Arrays of Pointers

It is possible to define an array of pointers using the following syntax:
data type*arr_ptr[n];

For example,

#1 ncl ude <stdio. h>
mai n() {
int i;
float x1 1.
float x2 2.
float x3 = 3.9;
float *ptr_ax[3]={&«1, &2, &3} ;
for(i=0;i<3;i++)
printf("*ptr_ax[%l] = %. 1f\n",i,*ptr_ax[i]);

5;
7;

}

*ptr_ax[0]
*ptr_ax[1]
*ptr_ax[2]

© N ok

n o u
W N P

25

Pointing to Functions

Remember that both data and instructions are hold in the main
memory. As it is possible to have pointers that point to data
elements it is adso possible to have pointers that point to
instructions (functions).

In order to define a pointer to a function, we have to define what
kind of function the pointer points to.

Functions are categorized according to their interface (That is,
the type of output they produce and the number and the types of
arguments they accept).

For example,

double (*ptrf)(int x, char ch);

Declares a pointer named ptrf that can point to functions that
produce results in type double and have two arguments the first
of which is an integer and the second of whichischar.

26

long int Factorial (int k) {

long int fact=1,i;
for (i=2; i<=k; i++)
k= -
fact *=1i; f=0
return fact;
} f=1
long int Fibonacci(int n) { fo=f +f . (f
= or k>1
long int Fi=1, F1=1, F2=0,i; = fiert fiea €)

Fibonacci numbers are defined as follows:

i f (n<0)
Fi=-1;
el se if(n==0)
Fi =0;
el se
for(i=2; i<=n; i++){
Fi =F1+F2;
F2=F1;
) [P £ Calling Factorial :
return Fi; f(4).:24 . .
} Cal I'i ng Fi bonacci :
void Printfx(long int (*f)(int t), int x) { f(4)=3
printf("f(%)=%d\n",x,f(x));]
} mai n() {
printf("Calling Factorial :\n");

Printfx(Factorial,4);
printf("Calling Fibonacci :\n");
Printfx(Fi bonacci, 4);

27

Example

Derivative of areal valued function f(x) at a given point x on
thereal axis can be defined as

of (X) Lim f(x+&)—f(x)
OX £—0" &
Hence, an approximation is given by

of (x) f(x+e&)—-f(X)
ox g

where e isasmall number.

Write afunction called D(f, x0) that finds the derivative of a
function f(x) at x.

28

#i ncl ude <stdio. h>
#i ncl ude <mat h. h>
#define EPS 1.0e-5
#define Pl 3.1415926
doubl e D(doubl e (*f)(double x), double point) {
doubl e diff;
diff = ((*f)(point) -
return diff;

This function takes derivative of any
function which has a double argument and
produces adouble result.

(*f) (point-EPS)) / EPS;

Multidimensional Arrays

It is possible to define multi-dimensional arrays (arrays of
arrays) by using the following syntax:

} data_type array_name[sizel][size?]...[sizeN];
mai n() {
doubl e x, r adx; For example,
for (x=0. 0; x<=90; x+=15. 0) {
radx = x * PI/180.0; int ak[2][3],
printf("D[sin(%.0f)] = 9%. 3f cos(9R.0f) = 9%.3f\n",
x, D(si n, radx) , x, cos(radx)); Declares an array of type int, which has 2 e ements, each of
. } which can be seen as another array of type int with 3
Disin()] = L.000 cos(0) = L1000 elements. We might consider thisasa 2 by 3 table:
D[sin(15)] = 0.966 cos(15) = 0.966 ;
D{sin(30)] = 0.866 cos(30) = 0.866 \We confirm that ak[0][0] |ak[0][1] |ak[o][2]
D{sin(45)] = 0.707 cos(45) = 0.707 derivative of sinus
D[sin(60)] = 0.500 cos(60) = 0.500 IS cosine. ak[1][0] |ak[1][1] |ak[1][2]
D{sin(75)] = 0.259 cos(75) = 0.259
D[sin(90)] = 0.000 cos(90) = 0.000
29 30
#incl ude <stdio. h> Note that only one dimension size can be
L i A mai n() { ’//“omittedwheninitializing the array.
Note that multi-dimensional arrays are stored in the memory int ak[J[3]=({L, 2, 3},{4,5,6}}:
in arowsfirst manner. In the above example, int i,j; _%1 2 3
for(i=0;i<2;i++) 174 5 6
‘ Memory cells pointed by ak. ‘ { ‘\tisthetab e —— ‘
ak[o][0] [« for(j=0;j <3f;J' +/:j) \ }
7 — . rintf("9 t",ak[il[il);
ak[0][1] int ak[2][3]={{1,2,3},{4,5, 6}}; pripmf("gn"); (P10 1)
aqol[2) | |int *pk; N)
Note how a multi-dimensional }
ak[1][q] array isinitialized!
ak[1][1] 141 *pk. #i ncl ude <stdio. h> The same example where a pointer is
ak[1][2] > mai n() { used to reach the elements of the array.
— int ak[][3]={{1,2,3},{4,5, 6}};
3 int i,j,*pk;
{3, | pk=ak;
5 for(i=0;i<2;i++) 1 2 3
d { gl 5 6
6] for(j=0;j<3;j++, pk++)
printf("%l \t", *pk);
printf("\n");
}
}
31 32

Multi-dimensional arrays as

arguments to functions

It is possible to use multi-dimensional arrays as arguments

to functions. For example,

This prints out any 2 column array

We can use pointers for the same purpose.

#i ncl ude <stdio. h>

Note that this is more flexible, as
thiswill print out any n by m matrix.

void PrintMatrix(int *mat, int n, int m {
int i,j;
for(i=0; i<n; i++) {
for(j=0; j<m j++)

o 2

i el L <t o @, IS —>| with n rows in a nice tabular format. pr;rr;tr:‘t(f"("‘/ld\\r;[""),.*(rmt oA)) g g
void PrintArray(int arr[][2], int n){ } ’ \
int i,j; . } ;S
for(i=0; i<n; i++) { Note that we have to give the number of mai n() { Pointer arithmetic is
for(j=0; j<2; j++) rows for the indexing to work. int Mat1[3][2]={{1,2},{3,4},{5 6}}; used to find thei j th
printf(o\t arr[i][j]); PrintMatrix(Matl,3,2); iz*r‘;mo”he
printf("\n"); 1 2 } .
} > 3 4
} 5 6
i n() {
int Mat1[3][2]={{1,2},{3,4},{5,6}};
PrintArray(Mat1l, 3);
}
33 34
The following function adds 2 n by m matrices: This does the same thing: This time we get the size of the
void MatrixAdd(int *result, int *M, int *M2, int n, int m { maIrIXInStead Of dlmensons,
;”t(?'{)? _ - void MatrixAdd2(int *result, int *Matl, int *Mat2, int nm {
or(i=0; i<n; i++ . o
TEn (=R) < j,++)_ :2: L’r=result, *ML=Mat 1, *M2=Mat 2;
*(resul t+i*mj) = *(M+ *mrj) + *(M2+ *mij); for(i=0; i<nm i++, r++, M++, M++)
} *ro= *ML + *MR;
}
For example, For example,
mai n() { mai n() {
int Mat1[3][21={{1,2},{3, 4}, {5, 6}}; int Mat1[3][2]={{1,2},{3,4}, {5, 6}};
int Mat2[3][2]=({3,3},{4, 4},{5,5}}; - ‘7‘ : int Mat2[3][2]={{3,3},{4,4},{5,5}}; R ‘7‘ 2
int Mat3[3][2]; > int Mat3[3][2]; >
Mat ri xAdd(Mat 3, Mat 1, Mat 2, 3, 2) ; 10 — Mat ri xAdd(Mat 3, Mat 1, Mat 2, 3*2) : 10 LL
PrintMatrix((int *) Mt3,3,2); PrintMatrix((int *) Mat3,3,2);
} }
35 36

