
1

Introduction to Scientific
and Engineering

Computation
(BIL 102E)

LECTURE 8

2

FUNCTIONS

Functions allow

1. generic/parametric solutions to problems

2. division of big problems into smaller ones

3. reuse of program segments in different problems

Before getting in to details let us first examine the data types:

Instead of repeating the same code again and again we can use
functions.

3

More About Data Types
The two main data types (integer and floating point numbers)
in C have variations. Depending on the required precision and
range the programmer might want to use one of these
variations.

The short modifier states that the programmer requires the data
type to occupy less space in memory (which results in less
accuracy or smaller range of values that can be represented by
the type). For example,

short int i, j, k;

The long modifier states that the programmer requires the data
type to occupy more space in memory (which results in higher
accuracy or larger range of values that can be represented by
the type). For example,

long int bigvalue;
4

Long and short modifiers are not allowed to be used with
float. To have more accurate floating point numbers we use
the type double. For example,

double x;

Defines a high accuracy floating point number with name x.

Using long double it might be possible to obtain even higher
accuracies. The number of bytes used for representing
variables in different types depends on the machine, the
operating system and the compiler used. For a PC working
with a Intel Pentium processor, MS Visual C++ 6.0 compiler
uses

2 bytes for short int, 4 bytes for float
4 bytes for int, 8 bytes for double
4 bytes for long int 8 bytes for long double

5

The number of bytes used for a specific type or for a given
variable can be learned by using the sizeof() function. For
example,
long int k;

printf(“The size of memory occ upied by k : %d\ n” , sizeof(k)) ;

printf(“The size of memory occ upied by cha r typ e : %d \ n”,

sizeof(ch ar));

Formatting long and short variables:

To format an expression in a printf or scanf function call, h
and l modifiers are used in front of the usual specifiers, to
specify shorter or longer formatting, respectively.

For example,
short int sx=1;
long int lx =1000000;
printf(“ sx = %hd, lx = %l d \ n”, sx, lx) ;

6

When working with derivations of integer type, it is possible to
state whether the variables represent only positive values or
both positive and negative values, by using unsigned and signed
modifiers respectively.

For example for a system where 16 bits are used for integers,
char ch; /* x can hold values between –128 (27) and 127 (27 –1) * /

unsigned char uch; /* uch can hold values between 0 and 255 (28 –1) * /

int x; /* x can hold values between -32768 (215) and 32767 (215 –1) * /

signed int y; /* the same as int y * /

unsigned int z; /* z can hold values between 0 and 65535 (216 –1) * /

long int lx; /* lx can hold values between (231) and (231 –1) * /

signed long int ly; /* the same as longint ly * /

unsigned long int lz; /* lz can hold values between 0 and (232 –1) * /

7

Functions
We frequently use functions in mathematics.

Examples include

• Trigonometric functions (sin(x), cos(x)),

• Exponential functions (ex, 10x)

• Rational functions such as

1

52
),(

2

�

��
�

y

xxyx
yxf

However, a function in C is not restricted with math
functions and any piece of code that can be called again and
again can be defined as a function. Every function has a set
of arguments (as input parameters) such as x and y in the
above examples and an output (that is the result of the
function).

8

In order for us not to reinvent the wheel, there are many
functions ready for use in C.

Some of these functions, such as the sizeof() function, come
with the core of the language.

However, a great deal of functions are provided by the
standard libraries.

For example, we have already seen that printf(), getc(),
getchar(), putc(), putchar() and scanf() functions are
defined in stdio library. So, in order to be able to use these
functions we have to include the header file stdio.h that holds
the declarations in our C program.

There are other standard libraries such as stdlib,and math,
which we will be talking about.

9

Math Functions
Some of the mathematical functions and constants are defined
in math library.

• sin(x), cos(x), tan(x) � Trigonometric functions

• asin(x), acos(x), atan(x) � Trigonometric functions

• pow(x,y), sqrt(x) � xy, Square Root (the same as pow(x, 0.5))

• exp(x), log(x), log10(x) � Exponential, natural log, log in base 10

• ceil(x), round(x), floor(x) � Converting to integer

In these functions, x can be a real (double) valued expression
and the output of the function is a real (double) number.

So these are used anywhere in the program where a real
expression can be used. For example,

2*sin(0.5)/log(x+4.0) �

asin(cos(2*x)) �

)4ln(

)5.0Sin(2

�x

))2ASin(Cos(x
10

#include <stdio.h>

#include <math.h>

main()

{

double x;

const double PI = 3.14159265358979323846;

for(x=0.0; x<=90.0; x+=15.0)

printf("Sin(%2.0lf) = %5.3lf\n",x ,sin(x * PI/180.0));

}

#include <stdio.h>

#include <math.h>

main()

{

double x;

const double PI = 3.14159265358979323846;

for(x=0.0; x<=90.0; x+=15.0)

printf("Sin(%2.0lf) = %5.3lf\n",x ,sin(x * PI/180.0));

}

Example

Sin(0) = 0.000

Sin(15) = 0.259

Sin(30) = 0.500

Sin(45) = 0.707

Sin(60) = 0.866

Sin(75) = 0.966

Sin(90) = 1.000

Sin(0) = 0.000

Sin(15) = 0.259

Sin(30) = 0.500

Sin(45) = 0.707

Sin(60) = 0.866

Sin(75) = 0.966

Sin(90) = 1.000

Trigonometric functions use
radians. So we have to
convert to radians first.

sin() function call is replaced
by the result of the function
(that is a double value).

math.h library is used so
that we can make use of
sin() function.

11

When you call a function
When running if a program comes to a function the execution
continues from the function. This is named as calling the
function. Before this, however, all argument expressions of a
function is evaluated and the results of these evaluations are
passed to the function. The statements in the function are then
executed and the result of the function is returned to the main
program. The main program then acts as if the function
statement is replaced by the result of the function. For instance,
x=30.0;

y = 1.5 + sin(x * PI/180.0);

First, x*PI/180.0 (�0.523...) is evaluated. Then, sin() function
is called. The function call statement (ie sin(x * PI/180.0)) is
replaced by the result of the function (0.5). Last, the statement
y=1.5+0.5; is evaluated. Hence, at the end of the second
statement the variable y is 2. 12

Start

End

Function
Call

Function
Call

Function
Return

Function
Return

Function
Execution
Function

Execution

Picturizing a function call.

13

Defining your own functions
Functions defined in standard libraries are generally not
enough for writing large programs. In order to solve larger
programming problems, you often need to define your own
functions and call them from your program. The syntax for
defining a function is as follows:

Type_of_result function_name(type1 arg1, type2 arg2, ...)

{
[Block of C statements]

}

Here, arg1, arg2, ... are called as the arguments of the
function. The parameters of a function are sent via the
arguments. We shall see that arguments can also be used to
provide additional outputs to the function.

14

#include <stdio.h>

/* Definition of the Times2() function */

double Times2(double x)

{
double y;

y=2*x;
return y;

}

/* Main function */

/* This is where the program starts execution */

main()

{

/* Call Times2 function */
printf("2 times 5 is %4.0lf\n", Times2(5));

}

#include <stdio.h>

/* Definition of the Times2() function */

double Times2(double x)

{
double y;

y=2*x;
return y;

}

/* Main function */

/* This is where the program starts execution */

main()

{

/* Call Times2 function */
printf("2 times 5 is %4.0lf\n", Times2(5));

}

Example

2 times 5 is 10

Note that you cannot make changes on
(make assignments to) arguments.

For example, x = 2*x; is not allowed here.

15

How does it work?
1. As every C program the program starts from the main() statement.

2. The main() function consists of only one statement (printf) so this is
executed.

3. For printf to be executed first Times2() function is called.

4. The actual argument 5 is converted to a double value (5.0) before calling
the function. The execution of the function is as follows:

1. A space for a real (double) argument is reserved in memory with
label x and initialized to the actual argument value, 5.0.

2. A space for a double variable is reserved in memory with label y.

3. y=2*x; is executed. So, y becomes 10.0.

4. Function returns the value of y. (ie 10.0)

5. The return value of function is used instead of the function so we see 10
in the output.

16

#include <stdio.h>

/* Defining Factorial and Sinus functions */
double Factorial(double n)
{

double i,fact=1.0;
for(i=2.0;i<=n;i++)
{

fact *= i;
}
return fact;

}

double Sinus(double x)
{

const int n=5;
int i;
double x_to_2k1=x, sign=1.0, sin_x=0.0;
for(i=1;i<=n;i++)
{

sin_x += sign * x_to_2k1 / Factorial((double) 2*i-1);
sign= -sign;
x_to_2k1 *= x*x;

}
return sin_x;

}

#include <stdio.h>

/* Defining Factorial and Sinus functions */
double Factorial(double n)
{

double i,fact=1.0;
for(i=2.0;i<=n;i++)
{

fact *= i;
}
return fact;

}

double Sinus(double x)
{

const int n=5;
int i;
double x_to_2k1=x, sign=1.0, sin_x=0.0;
for(i=1;i<=n;i++)
{

sin_x += sign * x_to_2k1 / Factorial((double) 2*i-1);
sign= -sign;
x_to_2k1 *= x*x;

}
return sin_x;

}

Note that the variable i here is different from the
variable i in Sinus function. Variables defined in
functions are called local variables. They can be used
only inside the function. When function terminates all
local variables are removed from memory.

The same rule applies for the arguments. Hence the
variable x here is different (as a memory location) from
the variable x in main() function.

This is called casting. The
expression on the right is
converted to a double. For
this particular example has
no effect on the program.

17

main()

{
double x;
const double PI = 3.14159265358979323846;
for(x=0.0; x<=90.0; x+=15.0)

printf("Sin(%2.0lf) = %5.3lf\n",x,Sinus(x * PI/180.0));
}

Sin(0) = 0.000

Sin(15) = 0.259

Sin(30) = 0.500

Sin(45) = 0.707

Sin(60) = 0.866

Sin(75) = 0.966

Sin(90) = 1.000

18

Declaring Functions
A function declaration is the interface part (the part without the
main body) of the function. Functions must be declared before
they are used. However, definition of a function
(implementation details) can be given later.

For example,

#include <stdio.h>

double Times2(double x); /* Declaration of Times2 */

main(){
printf("2 times 5 is %4.0lf\n", Times2(5));

}

/* Definition of the Times2() function */

double Times2(double x){
double y;

y=2*x;
return y;

}

#include <stdio.h>

double Times2(double x); /* Declaration of Times2 */

main(){
printf("2 times 5 is %4.0lf\n", Times2(5));

}

/* Definition of the Times2() function */

double Times2(double x){
double y;

y=2*x;
return y;

}

The function is defined after
the main function.

The function has to be declared before it is used.

19

Functions that do not return a value

Some functions do not need to return a value. These functions
are declared as of type void. Similarly some functions do not
need any arguments. void can also be used to state that the
function has no arguments. For example,

void pr i ntWar ni ng(void)

{

printf(“ You h av e be en w arn ed! \ n") ;

}

mai n()

{

printWarning() ;

printWarning() ;

}

You ha ve be en warn ed!

You ha ve be en warn ed!
20

Functions with more than one
arguments

Some functions require more than one arguments. For
example,

double MyPow(double x, double y)
{
return exp(y*log(x));

}

If the number of arguments are not known, an ellipsis (...)
can be used. For example, the declaration of the printf
function looks like

int printf(const char *format_str, ...);

21

�
�
�

��
�

�

��

�	�

�

otherwise

)0101(if
x

1
)01(if

)(
2

2

2

x

. x .-

.xx

xf

Write a function that realize the following function:

double f(double x)
{

double r;
if (x <= -1.0)

r = -x*x;
else if ((-1.0 < x) && (x < 1.0))

r = 1/(x*x);
else

r = x*x;
return r;

}

22

Example

double Sine(double x) {
double sin_x=0.0;
int k;
double term_k;

for(k=1;k<=16;k++) {
term_k = pow(-1, k+1) * pow(x,2*k-1) / Factorial(2*k-1);
sin_x = sin_x + term_k;
if (fabs(term_k) < 1.0e-6)
break;

}
return sin_x;

}

double Sine(double x) {
double sin_x=0.0;
int k;
double term_k;

for(k=1;k<=16;k++) {
term_k = pow(-1, k+1) * pow(x,2*k-1) / Factorial(2*k-1);
sin_x = sin_x + term_k;
if (fabs(term_k) < 1.0e-6)
break;

}
return sin_x;

}

Write down a function named Sine(x) to calculate Sin(x) approximately. Use
the following equation

�

��

�

�
�

n

k

kk

k

x
xSin

1

121

)!12(

)1(
)(

The function should not take into account any terms with absolute value less
than 10-6 and should take at most 16 terms of the series. You may assume that
math library is being used and a function called Factorial has been defined to
find the factorials of numbers.

fabs() function finds the
absolute value of floating
point numbers.

