| ntroduction to Scientific
and Engineering

Computation
(BIL 102E)

LECTURE 8

FUNCTIONS

Instead of repeating the same code again and again we can use
functions.

Functions allow

1. generic/parametric solutions to problems

2. division of big problemsinto smaller ones

3. reuse of program segments in different problems

Before getting in to details let us first examine the data types:

More About Data Types

The two main data types (integer and floating point numbers)
in C have variations. Depending on the required precision and
range the programmer might want to use one of these
variations.

The short modifier states that the programmer requires the data
type to occupy less space in memory (which results in less
accuracy or smaller range of values that can be represented by
the type). For example,

shortinti,j, k;

The long modifier states that the programmer requires the data
type to occupy more space in memory (which results in higher
accuracy or larger range of values that can be represented by
the type). For example,

long int bigvalue;

Long and short modifiers are not allowed to be used with
float. To have more accurate floating point numbers we use
the type double. For example,

doublex;
Defines a high accuracy floating point number with name x.

Using long double it might be possible to obtain even higher
accuracies. The number of bytes used for representing
variables in different types depends on the machine, the
operating system and the compiler used. For a PC working
with aIntel Pentium processor, MS Visua C++ 6.0 compiler
uses

2 bytesfor short int, 4 bytesfor float
4 bytesfor int, 8 bytesfor double
4 bytesfor long int 8 bytes for long double

The number of bytes used for a specific type or for agiven
variable can be learned by using the sizeof() function. For
example,
long int k;
printf (“The size of menory occ upiedby k: %dn”,sizeof (k) ;
printf (“The size of menory occ upiedby char typ e :%d\n",

si zeof (ch ar));

Formatting long and short variables:

To format an expression in a printf or scanf function call, h
and | modifiers are used in front of the usual specifiers, to
specify shorter or longer formatting, respectively.

For example,

short int sx=1;

| ong int Ix =1000000;

printf(“sx = %d, Ix =%ld \n", sxIx);

When working with derivations of integer type, it is possible to
state whether the variables represent only positive values or
both positive and negative values, by using unsigned and signed
modifiers respectively.

For example for a system where 16 bits are used for integers,

char ch; /* xcan hdd values between —128(27) and 127(27 1) */
unsi gned char uch; /* uchcan hdd values between 0 and 25528 —1) */

i nt x; /*xcan hdd values between -32768(2% and 32767215-1) */
signed int y; /*thesameasinty*/
unsi gned int z; /*zcan hdd valuesbetween 0and 6535 (216-1) */

long int Ix; /*Ixcan hdd values between (231) and (231 -1) */
signed long int ly; /*thesameaslongintly*/
unsigned long int |z; /*lzcan hdd valuesbetween 0 and(232-1) */

Functions

We frequently usefunctionsin mathematics
Examplesinclude

* Trigonametric functions (sin(x), cos(x)),

* Exporentia functions (%, 10

» Rational functions such as
X* + 2Xy + 5

f(xy)= v+l

However, a function in C is not restricted with math
functions and any piece of code that can be called again and
again can be defined as a function. Every function has a set
of arguments (as input parameters) such as x and y in the
above examples and an output (that is the result of the

function).
.

In order for us not to reinvent the wheel, there are many
functions ready for usein C.

Some of these functions, such as the sizeof() function, come
with the core of the language.

However, a great deal of functions are provided by the
standard libraries.

For example, we have aready seen that printf(), getc(),
getchar(), putc(), putchar() and scanf() functions are
defined in stdio library. So, in order to be able to use these
functions we have to include the header file stdio.h that holds
the declarations in our C program.

There are other standard libraries such as stdlib,and math,
which we will be talking about.

Math Functions

Some of the mathematical functions and constants ae defined
in math library.

* sin(x), cos(x), tan(x) = Trigonametric functions

* asin(x), acos(x), atan(x) = Trigonametric functions

* pow(X,y), srt(x) = xy, Square Roct (the same & pow(x, 0.5))

* exp(x), log(x), 10g10(X) = Exporential, natural log, log in bese 10

* ceil(x), round(x), floor (x) = Convertingto integer

In thesefunctions, x can be ared (doule) valued expresson
and the output of the functionis areal (double) number.

So these @ usal anywhere in the program where ared

expression can be used. For example,
) 2Sin(0.5)
2*sin(0.5)/log(x+4.0) > nixia)

asin(cos(2*x)) > ASin(Cosgx))

EX I math.h library is used so
am p e that we can make use of
sin() function.

>

#i ncl ude <stdio. h>
#i ncl ude <mat h. h>
mai n()
{

doubl e x;

const double Pl = 3.14159265358979323846;

for(x=0.0; x<=90.0; x+=15.0)

printf("Sin(%.0lf) = 9.3lf\n",x ,sin(x * PI/180.0));

} ; \

Sin(0) = 0.000 sin() function call is‘r{eplaced Trigonometric functions use
Sin(15) = 0.259 by the result of the function radians. So we have to
Sin(30) = 0.500 (that isadouble vaue). convert to radians first.
Sin(45) = 0.707

Sin(60) = 0.866

Sin(75) = 0.966

Sin(90) = 1.000

10

When you call a function

When running if a program comes to a function the execution
continues from the function. This is named as calling the
function. Before this, however, all argument expressions of a
function is evaluated and the results of these evaluations are
passed to the function. The statements in the function are then
executed and the result of the function is returned to the main
program. The main program then acts as if the function
statement is replaced by the result of the function. For instance,

x=30. 0;

y = 1.5 + sin(x * PI/180.0);

First, x*PI1/180.0 (=0.523...) is evauated. Then, sin() function
is called. The function call statement (ie sin(x * PI/180.0)) iS
replaced by the result of the function (0.5). Last, the statement
y=15+0.5; is evaluated. Hence, at the end of the second
statement the variabley is 2.

11

Picturizing afunction call.

Function
Call

Function
Execution

Function
Return

12

Defining your own functions

Functions defined in standard libraries are generally not
enough for writing large programs. In order to solve larger
programming problems, you often need to define your own
functions and call them from your program. The syntax for
defining afunction is as follows:

Type_of result function_name(typel argl, type2 arg?, ...)
{

[Block of C statements]
}

Here, argl, arg2, ... are cdled as the arguments of the
function. The parameters of a function are sent via the
arguments. We shall see that arguments can aso be used to
provide additional outputs to the function.

13

Example

#i ncl ude <stdio. h>

[* Definition of the Tines2() function */
doubl e Ti mes2(doubl e x)

{
doubl e y; Note that you cannot make changes on
y=2*X: |, (make assignments to) arguments.
return vy, For example, X = 2*x; is not allowed here.
}

/[* Main function */
/* This is where the program starts execution */
mai n()
{
/[* Call Tinmes2 function */
printf("2 times 5is %.0lf\n", Tinmes2(5));

}

]2tinres 5is 10

14

How does it work?

1. Asevery C program the program starts from the main() statement.

2. The main() function consists of only one statement (printf) so this is
executed.

For printf to be executed first Times2() function is called.

4. Theactua argument 5 is converted to a double value (5.0) before calling
the function. The execution of the function is as follows:

1. A gspace for areal (double) argument is reserved in memory with
label x and initialized to the actual argument vaue, 5.0.

2. A spacefor adouble variableisreserved in memory with label y.
3. y=2*x; isexecuted. So, y becomes 10.0.
4. Function returnsthe value of y. (ie 10.0)
5. Thereturn value of function is used instead of the function so we see 10
in the output.

15

#i ncl ude <stdio. h>

/* Defining Factorial and Sinus functions */
doubl e Factori al (doubl e n)

{

il © 1 e e @ Note that the variable i here is different from the

. » o variable i in Sinus function. Variables defined in
for(i=2.0;i <:V functions are called local variables. They can be used
{ . only inside the function. When function ter minates all
fact *=1i; local variables are removed from memory.

} I

return fact; The same rule applies for the arguments. Hence the

} variable x here is different (as a memory location) from
_ / the variable x in main() function.

doubl e Si nus(doubl e x I

{ Thisiscalled casting. The

expression on theright is

converted to adouble. For

this particular example has

const int n=5;

int i;

doubl e x_to_2kl=x, sign=1.0, sin_x=0.0;
for(i=1;i<=n;i++)

(no effect on the program.
Pal
sin_x += sign * x_to_2kl / Factorial ((double) 2*i-1);
sign= -sign;
X_to_2kl *= x*x;
}
return sin_x;
i 16

mai n()
{
doubl e x;
const double Pl = 3.14159265358979323846;
for(x=0.0; x<=90.0; x+=15.0)
printf("Sin(%.0l1f) = 9%.3lf\n", x, Sinus(x * PI/180.0));
}

v
Sin(0) = 0.000
Sin(15) = 0.259
Sin(30) = 0.500
Sin(45) = 0.707
Sin(60) = 0.866
Sin(75) = 0.966
Sin(90) = 1.000

17

Declaring Functions

A function declaration is the interface part (the part without the
main body) of the function. Functions must be declared before
they are wused. However, definition of a function
(implementation details) can be given later.

For exarnpl & ’ The function has to be declared before it is used. ‘

f

#i ncl ude <stdio. h>
doubl e Ti mes2(doubl e’x); /* Declaration of Tines2 */
mai n(){

printf("2 times 5is %.0lf\n", Tines2(5));
}
/* Definition of the Tines2() function */
doubl e Ti mes2(doubl e x){

doubl e y; —

=%k y - The function is defined after
y=er X, the main function.
return vy,

18

Functions that do not return avalue

Some functions do not need to return avalue. These functions
are declared as of type void. Similarly some functions do not
need any arguments. void can a so be used to state that the
function has no arguments. For example,

voi d printWar ni ng(voi d)

{
printf(* Youh avebe enwarned!\n");
}
ma n()
{

print Warni ng();
pri nt Vr ni ng() ;

}

You ha ve be enwarn ed!
You ha ve be en warn ed!

Functions with more than one
arguments

Some functions require more than one arguments. For
example,
double MyPow(double x, doubley)

{
return exp(y*log(x));

}

If the number of arguments are not known, an €llipsis (...)
can be used. For example, the declaration of the printf
function looks like

int printf(const char *format_str, ...);

20

Write afunction that realize the following function:

- if (x<-10)
F()=1 = if (40 < x < 10

X

X otherwise

double f(double x)

doubler;

if (x<=-1.0)
r=-x*x;

elseif ((-1.0<x) && (x < 1.0))
r = U(x*x);

else
r=x*x;

returnr;

}

21

Example

Write down a function named Sing(x) to calculate Sin(x) approximately. Use
the following equation
(-1 kil y2k-1

Sn(x) = ;7(2(_1)!

The function should not take into account any terms with absolute value less
than 106 and should take at most 16 terms of the series. Y ou may assume that
math library is being used and a function called Factoria has been defined to
find the factorials of numbers.

double Sing(double x) {
doublesin_x=0.0;
int k;
double term_k;

for (k=1;k<=16;k++) {
term_k = pow(-1, k+1) * pow(x,2*k-1) / Factorial(2*k-1);
sin_x =sin_x +term_k;

T ez g = 112 6) fabs() function findsthe
break; absolute value of floating
} . point numbers.
return sin_x;

}

22

