
1

Introduction to Scientific
and Engineering

Computation
(BIL 102E)

LECTURE 7

2

LOOPS

One strong side of computers is that they can do repetitive
jobs very quickly, and without getting bored.

Doing repetitive blocks of code are called loops in computer
terminology.

In C, loops are implemented by means of while, do .. while,
or for statements.

3

The while Loop

The purpose of the while loop is to repeatedly execute a
statement over and over while a given condition is true.

The syntax is as follows:
while (expression)
statement;

For example,

While the expression is nonzero the
statement is executed.

i=1;

while (i <5) {
printf(“ 2 x %d = %2d\ n” , i , 2* i) ;
i ++;

}

i= 1;

while (i <5) {
printf(“ 2 x %d = %2d\ n” , i , 2* i) ;
i ++;

}

2 x 1 = 2

2 x 2 = 4

2 x 3 = 6

2 x 4 = 8

Note that in a while loop, first the expression in while statement (the termination
condition) is calculated. If the expression is zero than the statement(s) in the loop are
not executed.

4

#include <std i o. h>

mai n()
{
int c;
c=' ' ;
printf("E nt er a char ac t er : \ n(ente r x t o ex it) \ n") ;
while (c! =' x ') {

c = getchar() ;
putchar(c);

}
printf("Out o f t he whi l e lo op. Bye! \ n") ;

}

#include <std i o. h>

mai n()
{
int c;
c=' ' ;
printf("E nt er a char ac t er : \ n(ente r x t o ex it) \ n") ;
while (c! =' x ') {

c = getchar() ;
putchar(c);

}
printf("Out o f t he whi l e lo op. Bye! \ n") ;

}

Enter a cha r acter:

(enter x to exit)
A
A
k
k
x
x
Out of the while l oop. Bye!

5

The do .. while Loop
Sometimes the statement(s) inside the loop is required to be
executed at least once before checking for the termination
condition. In such cases, the do .. while loop can be used.

Syntax:

do
statement;

while (expression);

The statement is executed first and then
executed repetitively while the expression is

nonzero.

#include <st dio .h>

main() {
int c;
printf("E nter a chara cter: \ n(ente r x to exit) \ n");
do {

c = getchar();
putchar(c) ;

} while (c !='x') ;
printf("O ut of t he wh i le loo p. By e! \ n");

}

#include <st dio .h>

main() {
int c;
printf("E nter a chara cter: \ n(ente r x to exit) \ n");
do {

c = getchar();
putchar(c) ;

} while (c !='x') ;
printf("O ut of t he wh i le loo p. By e! \ n");

}

The same
program with
do .. while.

Note that we
do not need to

initialize c
here.

6

Doing things for a number of times:
Many loops require a certain task to be repeated for a number of times. There
is a special statement called for statement for this purpose. The synatx is as
follows:

Here, first expression1 is executed. This generally involves an initialization
of (giving first value to) a variable (usually referred as the counter or loop
variable).

Then expression2, which is usually a conditional expression, is evaluated.
While this expression evaluates to a nonzero value the for loop is repetitively
executed.

At the end of each loop expression3, which is usually an increment or
decrement statement is executed.

for (expression1; expression2; expression3)
statement;

for (expression1; expression2; expression3)
statement;

expression1;

while(expression2) {
statement;
expression3;

}

7

for(i =1; i <5;i ++)

printf(“ 2 x %d = %2d\ n” , i , 2* i) ;
for(i =1; i <5;i ++)

printf(“ 2 x %d = %2d\ n” , i , 2* i) ;

This piece of code
produces the same result

as that of the example
given for the while loop.

#include <stdio .h>

main()
{
int count ;
for(count =0; count <5; count +=2)

printf(“ count =%d \ n", count);
printf("After for loop: count =%d \ n", count);

}

#include <stdio .h>

main()
{
int count ;
for(count =0; count <5; count +=2)

printf(“ count =%d \ n", count);
printf("After for loop: count =%d \ n", count);

}

count=0

count=2
count=4
After for loop: count=6

Examples

8

Analysis
count

?int count;

for (count=0; count<5; count+=2)

count

0count=0

Is (count < 5) � true � continue

printf ...

count+=2

count

2

Is (count < 5) � true � continue

printf ...

count+=2

count

4

Is (count < 5) � true � continue

printf ...

count+=2

count

6

Is (count < 5) � false � exit the for loop

}

Loop 1

Loop 2

Loop 3

9

Remarks

for (i = 1;i<17;i+=2) {
printf (“%d\n” , i);
if (i>5)
i = i + 2; /* This is possible * /

}

1
3
5
7
11
15

Thoughnot recommended, C allows direct assignments
to for variable (counter) inside the loop. For example,

Note that there is no semicolon after the for statement. If
you accidentally put a semicolon it won’t produce a syntax
error since semicolon is a null (do nothing) statement in C.
However, your program will not work as you wish it to
work.

for (i = 1;i<17;i++);
This means count from 1 to 17 do

nothing else.

10

More Examples
for statement � counter values

for (i=1;i<=3;i++) � 1,2,3

for (j=1;j<12;j+=3) � 1,4,7,10

for (k=78;k>40;k-=10) � 78,68,58,48

for (p=-15;p<=15;p+=5) � -15,-10,-5,0,5,10,15

for (r=12;r>10;r-=3) � 12

for (i=1;i>5,i++) � (for loop is skipped)

for (i=7;i<3;i--) � (for loop is skipped)

11

Write a program that asks the number of students in a class,
asks the mark of each student and calculates the average mark.

ANALYSIS:

1. First the number of students has to be read from the
keyboard. (num_of_studs)

2. Then, in a for loop with initial value 1 and final value
num_of_studs the mark of each student (mark) should be
read and the sum of marks, which is kept in a separate
variable (mark_sum), should be updated. In order for this
idea to work, mark_sum has to be initialised to 0.0 before
the for loop.

3. Finally, the average is found as mark_sum / num_studs and
printed out.

12

#include <stdio.h>

main()
{
int i, num_of_studs;
float mark, mark_sum=0.0;

/* Get the number of students */
printf("How many students in the class?\n");
scanf("%d",&num_of_studs);

/* Read the mark of each student and update mark_sum */
for(i = 1;i<=num_of_studs;i++) {
printf("What is the mark of Student %d?\n",i);
scanf("%f",&mark);
mark_sum = mark_sum + mark;
}

/* Print out the result */
printf("Average of marks : %4.1f\n",

mark_sum/num_of_studs);
}

13

Bonus Question 4
Write a program that asks the marks of

students in a class until a negative number is
entered. Then the average of positive numbers

entered should be calculated and printed on
screen.

Write a program that asks the marks of
students in a class until a negative number is

entered. Then the average of positive numbers
entered should be calculated and printed on

screen.

14

#include <stdio.h>

main()
{
int i=0;
float mark=0, mark_sum=0.0;

/* Read the mark of each student and update mark_sum */
while (mark>=0){

mark_sum = mark_sum + mark;
i++;
printf("What is the mark of student %d?\n",i);
scanf("%f",&mark);

}

/* Print out the result */
printf("Average of marks : %4.1f\n",

mark_sum/(i-1));
}

15

Note that you can use if statements in loops, loops in if
statements, and nest these in any order you want if necessary.

The following program finds the sum of positive odd numbers
between 1 and n where n is a number entered by the user.

#include <std i o. h>

main()
{

int i , n, sum=0;
printf(“n =?\ n”);
scanf(“ %d”, &n) ;
if (n >0)
for(i =1;i <=n;i ++)

if((i%2) == 1)
su m+=i;

printf(“ sum = %d\ n”, su m) ;
}

n=?

10

sum = 25

Note that we could have used i+=2
here and not use the if statement inside

the loop.

Examples

16

Write down a program that finds the factorial of a given number.

#include <stdio.h>
main()
{

long int i, n, fact=1;
printf("Enter the number n=");
scanf("%d",&n);
for(i=1; i<=n; i++)
{

fact *= i;
}
printf(“n! = %ld \n",fact);

}

Enter the number n=10

n! = 3628800

We have used long int to ensure that large
integer numbers can be represented.

ld format specifier is used to format the number
as a long decimal number.

17

Write down a program that asks for an angle and finds the
sinus of that angle approximately. Use the following equation

�
�

��

�

�
�

n

k

kk

k

x
xSin

1

121

)!12(

)1(
)(

Analysis:
• First the angle should be read into a variable (angle).
• Then the angle should be converted to radians (x).
• The sinus of the angle should be kept in a variable (sin_x).
• The sinus can be updated in a for loop. In each loop the kth term of the sum

should be calculated and added to sin_x.
• In order to calculate the kth term 3 temporary variables can be used (sign,

x_to_2k1, fact). At the beginning of each loop these should give (-1)k+1, x2k-1,
and (2k-1)! respectively. At the end of each loop the temporary variables
should be updated for the next loop.

• The variables sin_x, sign, x_to_2k1 and sin_x should have proper values
before starting the for loop.

18

#include <stdio.h>
main()
{

const int n=7;
const double pi=3.14159;
long int k, fact=1;
double angle, x, x_to_2k1, sign=1, sin_x=0.0;
printf("Enter an angle in degrees:");
scanf("%lf",&angle);
x_to_2k1=x=angle*pi/180.0; /* First convert to radians */
for(k=1; k<=n; k++)
{

sin_x = sin_x + sign * x_to_2k1 / fact;
/* Update temporary variables */
sign= -sign;
x_to_2k1 *= x*x;
fact *= 2*k*2*(k+1);

}
printf("Sinus %lf is %4.2lf. \n",angle,sin_x);

}

double is used for high
precision (instead of float).

const is used to define constants (These
cannot be change in execution time).

1)1(�
�

k 12 �kx)!12(�k

lf format specifier is used to format the number
as a double precision number.

19

Nested Loops
It is possible to use loops inside other loops. For example,

for (i = 1; i<= 3; i++)

for (j = i; j<=i+4; j+=2)
printf (“ (%d,%d)\n” ,i, j);

would print (1,1), (1,3), (1,5), (2,2), (2,4), (2,6), (3,3),
(3,5), (3,7) on the screen on separate lines.

Write a program that calculates the following double sum:

� �
� �

n

k

k

i

xi

k) (odd
1 1

Here x is a real number and n is a positive integer to be
entered by the user.

20

#include <stdio.h>

main(){

float x, dsum=0.0;

int i, k, n;

printf("x=");

scanf("%f",&x);

printf("n=");

scanf("%d",&n);

for(k=1; k<=n; k+=2)

for(i=1; i<=k; i++)

dsum += x * i;

printf("The result is %5.2f\n", dsum);

}

x=1.5

n=5

The result is 33

21

Multiple expressions in a for
statement

It is possible to give more than one statements in expression1
and expression3 parts of a for statement. In such a case, the
expressions should be separated by commas. For example,

for (i=0, j=10; i!=j; i++, j--)

printf(“ (%d,%d)\n” , i, j);

prints out (0,10), (1,9), (2,8), (3,7), (4,6) on the screen in
separate lines.

22

Breaking Loops
Sometimes it is required to exit a loop. This usually happens
when an error is detected, or a certain condition related to the
nature of the loop is encountered.

break statement can be used for such purposes.

In execution time, when an break statement is encountered
the execution continues from the line that follows the loop.

23

Jumping to the End of Loops

Sometimes it is required to jump to the end of a loop without
exiting the loop.

It is possible to use the continue statement for such purposes.

In execution time, when a continue statement is encountered
the execution continues from the brace that closes the loop.

This means expresion3 in a for loop will be executed and the
loop will continue to do its work.

24

Infinite Loops
Sometimes it is required to exit a loop when a certain
condition is met and unless this condition is met the loop is
required to continue infinitely. Such loops are called infinite
loops. In C language, it is possible to use loops with the
following syntax in order to implement infinite loops:

for (;;) {

[Block of C Statements]

}

for (;;) {

[Block of C Statements]

}

Obviously so as to avoid the loop go infinitely there has to be
a break statement in the loop (most probably inside an if
construct). It is programmers responsibility to make sure that
such a break statement is reached in execution time.

while {

[Block of C Statements]

}

while {

[Block of C Statements]

}

25

Example
Write a program that asks the marks of students in a class and
calculates the average mark. The process of entering the marks
should be terminated when –1.0 is entered as a mark of a
student. Furthermore, the program should make sure that all the
marks entered are valid marks (i.e. they are between 0 and 100).

26

#include <stdio.h>

main() {
int num_of_studs=0;
float mark_sum=0.0, mark;
/* Read the mark of each student and update mark_sum */
for(;;) {
printf("What is the mark of Student %d?\n",num_of_studs+1);
scanf("%f",&mark);
if (mark == -1.0)
break;

else if((mark <0.0) || (mark >100.0))
{

printf("Invalid mark!\n");
continue;

}
num_of_studs++;
mark_sum += mark;

}
/* Print out the result */
printf("Number of students :%d\n", num_of_studs);
printf("Average of marks : %4.1f\n", mark_sum / num_of_studs);

}

Infinite loop!

This means continue from here!

This means continue from here!

27

A sample output of the program
What is the mark of Student 1?

10

What is the mark of Student 2?

30

What is the mark of Student 3?

-34

Invalid mark!

What is the mark of Student 3?

40

What is the mark of Student 4?

-1

Number of students :3

Average of marks : 30.0

28

The goto statement

In order for program to continue execution from a certain
point in the program the goto statement can be used.

The syntax is:

labelname:
statement1;
statement2;
...

goto labelname;

This kind of programming is very poor and is not
recommended. So avoid using goto statements in your
programs.

