
1

Introduction to Scientific
and Engineering

Computation
(BIL 102E)

LECTURE 6

2

Decision Making

The programs we have been writing so far were somewhat
dull as they were always following the same sequence of
instructions.

One of the main reasons why computers are such powerful
tools is the fact that they can decide which instructions to
follow depending on simple comparisons.

In C language, the if statement helps us to write segments of
code that will be executed only under certain conditions.

3

The syntax for the simplest if statement is as follows:

if (expression) {
[Block of C Statements]

}

Here expression can be relational expressions, integer values
or variables or sets of smaller logical expressions that are
connected by logical operators. In execution time, if
expression is true (nonzero) then the block of C statements in
the if construct are executed otherwise (expression evaluates
to zero) they are skipped. For example,
if (x < 3) {
printf(”x is less than 3! \n”);

}

prints the message “x is less than 3!” on the screen only when
x <3.

4

Relational Expressions

Relational expressions have the following syntax:

expression1 relation_operator expression2

Here, expression1 and expression2 are both arithmetic
expressions and relation_operator is one of the
following:

!=

==

>=

>

<=

<

Relation Operator

Not equal to

Equal to

Greater than or equal to

Greater than

Less than or equal to

Less than

Meaning

5

The result of a relational operation is an integer. If the relation
is true then the result is (generally) 1, otherwise 0.

For example,

3 < 2*5-4 � 1, true

2.1 +3.0 == 5.0 � 0, false

6

� Note that a relation operation basically compares the
results of two expressions.

� All arithmetic operators have higher priorities than the
relational operators, hence arithmetic operations are done
first.

� You can have more than one relation operator in the same
expression. For example, the expression (0 < x <5) is
valid in C. However, this may introduce confusion and
should be avoided when possible.

For example,

3 < 2 < 1 � (3 < 2) < 1
� 0 < 1
� 1 (true)

7

Logical Operations
� It is possible to connect logical expressions using logical operations,

which usually take the following syntax:

� L1 <logic_operator> L2

� Here L1 and L2 are logic expressions and the logic operator can be &&
(and), or || (or).

� The result of a && (and) operation is 1 (true) only if both logical
expressions (L1 and L2) are nonzero (true).

� The result of a || (or) operation is 1 (true) if one of the logical expressions
(L1 or L2) is nozero (true).

0 && 0 � 0

0 && 1 � 0
1 && 0 � 0
1 && 1 � 1

0 || 0 � 0

0 || 1 � 1
1 || 0 � 1
1 || 1 � 1

Truth tables for && and || operations:

8

Examples:
(3 < 5) && (2.5 != 7.2)
�1 && 1
�1

(2 * 3 – 5 >= 0) || (2 – 7 / 4 > 1)
� ((2*3) – 5 >= 0) || (2 – 7 / 4 > 1)
� ((6-5) >= 0) || (2 – 7 / 4 > 1)
� (1 >= 0) || (2 – 7 / 4 > 1)
� 1 || (2 – (7 / 4) > 1)
� 1 || ((2 – 1) > 1)
� 1 || (1 > 1)
� 1 || 0
� 1

9

There is also a unary logic operator ! (not) which has the
following syntax:

!L1

Here L1 is a logic expression and the result of ! (not)
operation is the reverse of L1. That is, if L1 is nonzero (true)
the result is 0 (false) and if otherwise the result is 1 (true).

For example:

!((2<3) && (3 < 1))
� !(1 .and. 0)
� !0
� 1

10

Priorities

Arithmetic operators and relational operators have higher
priorities than logical operators. The order of priorities among
logical operators is as follows:

Lower&& ||

Higher!

PriorityOperator

It is possible to overwrite priorities by use of parentheses.

11

Write a program that asks the age of the user and if the user is
between 13 and 19 it prints out “You are a teenager.”

#include <stdio.h>

main()

{

int age;

printf("Your age: ");

scanf("%d",&age);

printf("Age : %d\n", age);

if((age>=13) && (age<=19)) {

printf("You are a teenager!\n");

}

}

Your age: 15

Age : 15
You are a teenager!

12

The use of else statement
Sometimes we want our program to do something under a
certain condition and if that condition is not met we want
our program to carry out some other tasks. The else
statement can be used for this purpose. The syntax of the if
statement in this case is as follows:

if (expression) {
[First block of C statements]

}
else {

[Second block of C statements]
}

Here, if the expression is nonzero (true) the first block
otherwise the second block of C statements will be
executed.

13

Example
The following program prints out “You are a teenager.” , if the
user is between 13 and 19, and if otherwise it prints out “You
are NOT a teenager.” .
#include <stdio.h>

main()

{

int age;

printf("Your age: ");

scanf("%d",&age);

printf("Age : %d\n", age);

if((age>=13) && (age<=19))

printf("You are a teenager!\n");

else

printf("You are NOT a teenager!\n");

}

Note that since there
are only one
statements in
statement blocks we
did not have to use
the braces.

14

#include <stdio.h>

main()

{

int age;

printf("Your age: ");

scanf("%d",&age);

printf("Age : %d\n", age);

if(age<13)

printf("You are a kid!\n");

else

if((age>=13) && (age<=19))

printf("You are a teenager!\n");

else

printf("You are NOT a teenager!\n");

}

Nesting if Statements
It is possible to use if statements inside other if statements.
For example,

15

#include <stdio.h>

main()

{

int age;

printf("Your age: ");

scanf("%d",&age);

if(age<13)

printf("You are a kid!\n");

else if(age<20)

printf("You are a teenager!\n");

else if(age<35)

printf("You are young!\n");

else printf("You are not young!\n");

}

The following program prints out
You are a kid, if the user is younger than 13
You are a teenager, if the user is between 13 and 19
You are young, if the user is between 20 and 34
You are not young, if the user is older than 34

Note that in each run of the
program only one block in the

if statement is executed!

16

switch Statement
The logical expressions in nested if statements can become very
messy when there are many decisions to make. The switch
statement can be used to make decisions where to jump in the
program depending on the value of an expression. The syntax is
as follows:

switch (expression) {
case case_expression_1:

[First Block of C Statements]
case case_expression_2:

[Second Block of C Statements]
�

default:
[Default Block of C Statements]

}

switch (expression) {
case case_expression_1:

[First Block of C Statements]
case case_expression_2:

[Second Block of C Statements]
�

default:
[Default Block of C Statements]

}

Here the execution of the program
continues from the case expression

corresponding to the value
expression.

Case expressions are constant
expressions evaluating to often an

integer or character value.

Normally after jumping the proper
block of C statements the

execution continues for all the
remaining program blocks. Using

break statements at the end of each
block it is possible to prevent this.If there are no matching case expressions than the

execution jumps to the default block.

17

#include <stdio.h>

main()
{

int category;
printf("Enter category (1-3): ");
scanf("%d",&category);
switch(category) {

case 1:
printf("Category 1\n");
break;

case 2:
printf("Category 2\n");
break;

case 3:
printf("Category 3\n");
break;

default:
printf("Wrong category number!\n");

}
}

Enter category (1-3): 2

Category 2

Without break statements the output would be:
Category 2
Category 3
Wrong category number!

Enter category (1-3): 5

Wrong category number!

18

Using ++ or -- operators in if statements
Although not recommended, it is possible to use ++ or --
operators in if statements.

#include <stdio.h>

main() {

int i=1;

if(i++ == 1)

printf("%d \n", i);

printf("%d \n", i);

}

2

2

First comparison then increment is done.

So, if block is executed.

#include <stdio.h>

main() {

int i=1;

if(++i == 1)

printf("%d \n", i);

printf("%d \n", i);

}
2

First increment then comparison is done.

If block is not executed.

