
1

Introduction to Scientific 
and Engineering 

Computation
(BIL 102E)

LECTURE 5

2

HANDLING STANDARD I/O

There are 3 pre-opened fi le streams in C:

1. stdin – the standard input for reading (keyboard)

2. stdout – the standard output for writing (screen)

3. stderr – the standard output for writing error messages 
(screen)

For example, printf normally uses standard output stream.

In some operating systems it is possible to change the standard 
input and standard output file streams.

A file is a set of related characters and numbers.

It could be seen as a series of bytes. A series of bytes is also
called as a stream.

3

Getting Input from the User
In order to read a character from a file stream the getc() 
function can be used. The syntax is getc(FILE *stream).

For example,
#include <stdio.h>

main()

{

int ch;

printf("Type in a character:\n");

ch=getc(stdin);

printf("You entered %c\n",ch);

}

#include <stdio.h>

main()

{

int ch;

printf("Type in a character:\n");

ch=getc(stdin);

printf("You entered %c\n",ch);

}

Reads the first 
character entered.

Type in a character:

T

You entered T

Type in a character:

T

You entered T

Output of the program.

To read from stdin 
getchar can be used 

instead of getc(stdin).

We could have used

ch=getchar();
here.

getc and getchar are defined in stdio.h

4

Printing Output on the Screen
Similar to getc() and getchar() there are putc() and putchar() 
functions to print characters in a file stream.

#include <stdio.h>

main()

{

int ch;

ch=65;

putc(ch,stdout);

putchar(66);

putchar(10);

}

#include <stdio.h>

main()

{

int ch;

ch=65;

putc(ch,stdout);

putchar(66);

putchar(10);

}

Prints A on the screen.

Prints B on the screen.

Moves to the next line.

ABAB
Output of the program.

putc and putchar are defined in stdio.h



5

printf() Function
printf() function is used to print formatted output.

The syntax is as follows:

#include <stdio.h>

int printf(const char * format-string, …);

Here format-string is a character string that may contain format 
specifiers. For example,

printf(“%d + %d is %d\n” , 3, 5, 3+5);

3+5 is 8

Output:

6

Format specifiers

Octal format%o

Hexadecimal format%x

Outputs a percent sign (%)%%

Null terminated character string.%s

%f or %E (whichever is shorter)%G

%f or %e (whichever is shorter)%g

Scientific notation (upper-case E is used)%E

Scientific notation (lower-case e is used)%e

Floating-point%f

Integer (same as %d)%i

Integer %d

Character%c

7

Aligning Output

It is possible to determine the minimum field width in a 
format specifier by using an integer just after the percent 
sign. For example,

printf(“%d \ n”,12);

printf(“%4d \ n”,12);

Prints 12 on the screen.

Prints 2 spaces and 12 on the screen.

12

12

By using negative integers it is possible to left align output.

printf(“%5d % - 5d”,1,1);

printf(“%5d % - 5d”,12,12);

printf(“%5d % - 5d”,123,123);

printf(“%5d % - 5d”,1234,1234);

1 1

12 12

123 123

1234 1234

8

The precision specifier
It is possible to determine the precision of the floating point 
numbers to be shown on the screen. This is done by using 
%n1.n2f format specifier. Here n1 is an integer that 
determines the length of the output and n2 is the number of 
decimal digits to be used after the dot(.).

For example,

printf("%6.3f\n",1.2);

printf("%6.3f\n",12.34);

printf("%6.3f\n",12.3456);

printf("%6.3f\n",123.456);

printf("%6.3f\n",123.4567);

printf("%6.3d\n",11);

1.200

12.340

12.346

123.456

123.457

011

Note the round up!

Minimum length is 
exceeded!

Note that when an integer is formatted with a precision specifier the 
second number means the minimum field length.



9

scanf() function

scanf() function is used to read formatted input.

The syntax is as follows:

#include <stdio.h>

int scanf(const char * format-string, …);

#include <stdio.h>

main()

{

int age;

printf("Your age: ");

scanf("%d",&age);

printf("Age : %d\n", age);

}

Your age: 17

Age : 17


