
1

Introduction to Scientific

and Engineering

Computation
(BIL 102E)

LECTURE 4

2

HANDLING DATA

integer numbers vs. real numbers

Arithmetic operations

Priority of operations

Operations on mixed data types

Handling character strings

3

Integers
Integers are whole numbers without any decimal part. For

example, 1, 0, 34, -12 are all integers.

There is a limited space allocated for representing numbers.

Integers are contained in memory as groups of 2 or 4 bytes.

(that is as 16 bits or 32 bits)

The binary representation Decimal Integer

0000 0000 0000 0000 0 0

0000 0000 0000 0001 1 1

0000 0000 0000 0010 2 2

1111 1111 1111 1111 65535 -1

1111 1111 1111 1110 65534 -2
4

Real (Floating Point) Numbers

These are numbers with a fractional part.

For example, 2.3, -14.356, 54.0 are real numbers.

Exponential form can be used to represent real numbers. For

example, 1e4 � 10000, 2.5e-2 � 0.025

These numbers are contained in memory in two parts:

mantissa and exponent. For example,

2.3 fi 23 x 10-1 fi 0000 0000 0001 0111 (mantissa)

1111 1111 (exponent)

The number of bits used for the mantissa part and exponent

part can change from computer to computer.

5

Comparison of integer numbers

and real numbers

•An integer cannot have a fraction, whereas a real number can.

•On a 32 bit computer an integer can have values between about –2 x

109 (231) to +2 x 109 (231-1), whereas a real number can be between –

1038 to +1038 with 7 or 8 significant digits.

•So why use integers?

•Integers take less space in memory compared to real numbers.

•Arithmetic operations on integers are much faster than those on real

numbers.

Don’t forget that real numbers are approximations. For example, the

number π can be represented upto 8 significant digits as a real number.

6

Variables
We use variables to store data.

In C programming language, we need to define the names

and types of variables before starting using them.

For example:

#include <stdio .h>

main()

{

int i;

i=2+5;

printf("%d \ n", i);

}

#include <stdio .h>

main()

{

int i;

i=2+5;

printf("%d \ n", i);

}

Defining an integer variable

named i.

Initialization of the

variable.

This is replaced by the

value of i.

Prints 7 on the screen.

7

Declaring real (floating point)

and integer Variables

In C language the syntax for declaring a variable is

type name;

or

type name1,name2, ... ;

So in order to declare an integer variable called k we type

int k;

And to declare three real numbered variables with labels x,y,z

float x,y,z;

8

Reserved Words
There are a number of names called reserved words

(keywords), which may not be used for any purpose other

than they are intended to.

There are 32 keywords in ANSI C:

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

9

Identifiers

There are several syntax rules an identifier has to obey:

1. It consists of characters containing the letters (A-Z and a-z), the

digits (0-9) and the underscore character (_)

2. It cannot start with a digit.

3. It is case sensitive.

4. If the identifier consists more than 31 characters, all characters

beyond the 31st character may be ignored by any given compiler.

5. Reserved words cannot be used as identifiers.

An identifier should be chosen to indicate the meaning of its use.

Other names chosen by the programmer are called identifiers. The names

of variables, functions etc are all identifiers (they identify an entity in

memory).

10

Statements and Statement Blocks
In language C, statement is a complete instruction, ending with a

semicolon.

For example,

i = 2+3;

return 0;

printf(“Hi”);

are all statements.

Although not recommended, it is possible to have more than one

statement on a line.

A group of statements can form a statement block that starts with an

openning brace ({) and ends with a closing brace (}).

A statement block is treated as a single statement by the C compiler.

For example, the main() function is formed by a statement block.

11

Assignments

The assignment statement in C has the following syntax

name = expression;

Here name is the name of a variable and expression is an

arithmetic, or other, expression. If necessary expression is

first calculated to determine the value to be assigned to the

variable. For example,

x = y+2;

Do not confuse the equation sign here with mathematical

equations. This assignment could be read in plain English as

“Let x be y plus 2” or similarly “Assign y plus 2 to x”.

12

3

3

5

1

�

�

� �

Before assignment

After assignment

x = y + 2;

13

In an assignment statement the same variable can appear

in both sides of the statement. For example,

x = x+1;

is a meaningful assignment and would cause the value

of x to be incremented by 1. Similarly

x = y * x;

Would cause the value of x to be multiplied by the

value of y.

14

Arithmetic Operations

There are 5 arithmetic operations

Remainder%

Division/

Multiplication*

Subtraction-

Addition+ Note that division of integers

result in an integer.

5/3 � 1

7/8 � 0

(integer truncation)

Also called as modulus

5 % 3 � 2

14 % 7 � 0

15

Priority of Operations

There can be more than one arithmetic operations in an

arithmetic expression.

Operations in an arithmetic expression are done from left to

right unless the operation on the right has a priority over the

operation over left.

Low+ and -

High*, / and %

PriorityOperator

16

Examples

2+3*4

� 2 + (3 * 4)

� 2 + 12

� 14

17

9/5*10%2+2

�(9/5)*10%2+2

�(1*10)%2+2

�(10%2)+2

�0+2

�2

18

Priorities can be overwritten by the use of parentheses ().

For example,

(2.1+2.1)/0.7 � 6.0

Use parentheses when you are not sure to be on the safe

side, and to increase the readability of your code. You can

also add spaces between variables and operators so as to

increase the readability.

19

When there are variables in the expression first the

values of variables are replaced in the expression and

then the calculation takes place.

For example

float x,y;

x=2.1;

y=4.2;

x=x+y/x;

assigns 4.1 to x.

20

Operations on Mixed Data

1. When an operation takes place on a real number and an

integer, the integer is first converted to a real number so

the result is real.

2. When an integer is assigned to a real number, it is

simply converted to a real number.

3. When a real number is assigned to an integer, it is

truncated to an integer.

21

BONUS QUESTION!

What is the output of the following program?

#include <stdi o. h>

main()

{

float x;

int i, j;

i=2;

j=4;

x=1. 0e- 1;

i=(j +i) / j * (i+x);

printf("%d \ n" ,i);

}
22

STORING CHARACTERS

Characters are stored as 8 bits of binary data.

For example,

A � 0100 0001 (decimal 65)

B � 0100 0010 (decimal 66)

C � 0100 0011 (decimal 67)

D � 0100 0100 (decimal 68)

…

a � 0110 0001 (decimal 97)

b � 0110 0010 (decimal 98)

c � 0110 0011 (decimal 99)

The numbers corresponding to the characters are usually

called the ASCII codes.

23

Declaration of character

Variables
A variable that can represent different variables is called a

character variable.

Character variables can be declared using the following syntax:

char name1, name2, … ;

For example,

char ch1,ch2;

Defines two character variables ch1 and ch2.

It is then possible, for example

ch1=‘A’;

ch2=‘a’;

Character constants are enclosed in

single quotes (‘)
24

Giving values to character variables
• It is possible to assign character constants such as ‘A’, ‘B’,

‘C’, ‘D’ to character variables.

• It is also possible to assign the ASCII codes of the characters

to character variables. The C programming language actually

treats character variables as numeric variables: For example,

the following program prints D on the screen.

#i ncl ude <std i o. h>

mai n() {

char ch;

ch='A ' +3;

pr i nt f ("%c \ n" , ch) ;

}

#i ncl ude <std i o. h>

mai n() {

char ch;

ch='A ' +3;

pr i nt f ("%c \ n" , ch) ;

}

Note that by using the escape character (\) it is possible to

denote special characters such as the new line character (\n) and

the carriage return character (\r).

To print character

variables we use %c.
To print character

variables we use %c.
This is equivalent to

ch=68;

This is equivalent to

ch=68;

25

Giving Initial Values to Variables

It is possible to initialize variables while declaring them. The

syntax is as follows:

type var_name = initial_value;

type var1=init1, var2=init2, var3, var4, ...

For example, instead of

int i;
i = 5;

it is possible to use
int i=5;

The following statements are allowed in C:

int i=5, j=2, k, m=3;
char ch1=‘A’, ch2=‘B’, ch3=68, c;
float a, b, f=2.5, g=9.8;

26

Combining Arithmetic Operators with =

The following abbreviations are possible:

x += y; is equivalent to x = x + y;

x - = y; is equivalent to x = x - y;
x *= y; is equivalent to x = x * y;

x /= y; is equivalent to x = x / y;

x %= y; is equivalent to x = x % y;
z *= x + y; � z = z*x + y;

A number can be negated using the unary minus operator (-).

For example,

z = x - - y; � z = x – (- y); � z = x + y;

Incrementing by one is abbreviated by unary ++ operator and

decrementing by one is abbreviated by unary -- operator.

x++; � ++x; � x = x + 1;

x-- ; � -- x; � x = x – 1;

27

Comments
In a C program anything put in between /* and */ are

comments. These are not considered by the compiler and has no

effect on the execution of the program. These, however, help

the future programmers to understand what that particular part

of the program is doing. Therefore, they increase the

readability and portability of the programs.

• Effective comments are as important as effective programs.

• Use comments as much and as sensible as possible.

#include <stdio.h>

main()

{

float x,v; /* x shows the distance and v is the velocity */

v = 5.0;

x = v*3.0; /* Calculate the distance covered for 3 seconds */

printf("%d \n",x);

}

#include <stdio.h>

main()

{

float x,v; /* x shows the distance and v is the velocity */

v = 5.0;

x = v*3.0; /* Calculate the distance covered for 3 seconds */

printf("%d \n",x);

}
28

Common Syntax Errors

• float r

• int printf

• k = 1,234;

• z = x y;

• z = x++y;

• z = 2/(x*(5+2);

• z = 2/5+1*x

• ch = ‘g

• ch = ‘hello’;

