
1

Introduction to Scientific
and Engineering

Computation
(BIL 102E)

LECTURE 13
Files

2

Handling Files
� In our programs so far, we have only used the standard

input, which is normally the keyboard, for receiving data
from the outer world, and the standard output, which is
normally the screen, for sending data to the outer world.

� When we exit the program all the information contained in
the program (values of variables) is lost.

� This means that every time we start our computer we have to
re-enter any necessary input data, re-calculate any necessary
calculations, and print out the results.

� However, one of the most important characteristics of
computers is their ability to store data for later use.

� The data, in general, is stored in files on hard-disks, floppy-
disks, magnetic-tapes, zip-drives, CD-ROMS etc.

3

• Files can also contain program source codes (called
source code files) and machine language instructions
(called executable files).

• Files that contain data to be processed by programs are
called data files.

• Data fi les consist of units of data called records.

• There are two kinds of data files:

1. Sequential Files

2. Direct (Random) Access Files

• Files can also contain program source codes (called
source code files) and machine language instructions
(called executable files).

• Files that contain data to be processed by programs are
called data files.

• Data fi les consist of units of data called records.

• There are two kinds of data files:

1. Sequential Files

2. Direct (Random) Access Files

4

The FILE structure is defined in stdio.h and is used to access
files. In order to reach files we first define a pointer to FILE.
For example, FILE *fptr;

The FILE structure

Opening a file:
To be processed, each file should be opened first. fopen()
function is used for this purpose. The syntax is

file_ptr = fopen(file_name, mode);

Here file_ptr is a pointer to FILE structure, file_name is a string
consisting of the path and name of the file to be opened, and
mode is another string that determines the opening mode of the
file. After the file is opened it can be reached via file_ptr. If
fopen is not success for any reason (for example file does not
exist or the disk is full etc) it returns NULL value.

5

The mode parameter is made by a combination of the characters
r (read), w (write), b (binary), a (append), and + (update).

For example,
“ r” � opens existing text fi le for reading
“w” � creates a text fi le for writing
“a” � opens an existing text fi le for appending
“r+” � opens an existing text fi le for reading or writing
“w+” � creates a text fi le for reading and writing
“a+” � opens or creates a text file for appending
“rb” � opens an existing binary fi le for reading
“wb” � creates a binary file for writing
“ab” � opens an existing binary fi le for appending
“r+b” � opens an existing binary fil e for reading or writing
“w+b” � creates a binary file for reading and writing
“a+b” � opens or creates a binary fil e for appending

6

Closing a file

It is a good programming practice to close any files opened
before the termination of the program. It is also a
requirement that a file has to be closed before it can be
opened again (perhaps in another mode).

This is done by using the fclose() function.

The syntax is as follows:

fclose(file_ptr);

Here, file_ptr is a pointer to a FILE that has been opened.

7

Reading and Writing Text Files

fgetc(file_ptr) and fputc(ch, file_ptr) functions can be used to
read and write characters to text files. Here, ch is the character
to written to the file and file_ptr is a pointer to an opened
FILE. fgetc() returns the character read from the file.

fgets(str, n, file_ptr) and fputs(str, file_ptr) functions can be
used to read and write strings to text files. Here, str is a pointer
to a string (or a character array), file_ptr is a pointer to an
opened FILE and n is an integer that shows the maximum
number of characters to be read from the file.

It is also possible to use fprintf() and fscanf() for formatted
input/output. These are very similar to printf() and scanf()
functions, except that they require a FILE pointer as the first
argument.

8

#include <stdio.h>

main(){
FILE *fptr;
fptr = fopen("try.txt","w");
if(fptr == NULL){
printf("Problem in opening the file!");

return -1;
}

fprintf(fptr,"This text is written in a file");
fclose(fptr);
return 0;

}

#include <stdio.h>

main(){
FILE *fptr;
fptr = fopen("try.txt","w");
if(fptr == NULL){
printf("Problem in opening the file!");

return -1;
}

fprintf(fptr,"This text is written in a file");
fclose(fptr);
return 0;

}

Example
This program creates a fi le named try.txt and writes
“This text is written in a file” in it.

Check if any problem has occured
while openning the file.

Open the file in write-only mode.

9

#include <stdio.h>

main(){
FILE *fptr;
char buffer[255];
fptr = fopen("try.txt","r");
if(fptr == NULL){
printf("Problem in opening the file!");

return -1;
}

fgets(buffer,250,fptr);
printf("%s\n",buffer);
fclose(fptr);
return 0;

}

#include <stdio.h>

main(){
FILE *fptr;
char buffer[255];
fptr = fopen("try.txt","r");
if(fptr == NULL){
printf("Problem in opening the file!");

return -1;
}

fgets(buffer,250,fptr);
printf("%s\n",buffer);
fclose(fptr);
return 0;

}

Open the file in read-only mode.

This text is written in a fileThis text is written in a file

This file reads the data previously written in try.txt.

Read at most 250 characters from
the file.

10

End of file

When reading data from files, it is necessary to test
whether the end of the file has been reached or not.

If fgetc() or fscanf() functions are used they return an EOF
character when the end of the file has been reached.

If fgets() is used it returns a NULL pointer.

It is also possible to use the feof() (end of file) function to
test whether the end of the file has been reached or not.

11

Example

#include <stdio.h>

main(){
FILE *fIntegers;
int i,k;
fIntegers=fopen("Integers.txt","w");
if(fIntegers==NULL){

printf("Problem in openning the file!");
return -1;

}
for(i=0;i<5;i++) {

printf("Enter a number:\n");
scanf("%d",&k);
fprintf(fIntegers,"%6d\n",k);

}
fclose(fIntegers);
return 0;

}

#include <stdio.h>

main(){
FILE *fIntegers;
int i,k;
fIntegers=fopen("Integers.txt","w");
if(fIntegers==NULL){

printf("Problem in openning the file!");
return -1;

}
for(i=0;i<5;i++) {

printf("Enter a number:\n");
scanf("%d",&k);
fprintf(fIntegers,"%6d\n",k);

}
fclose(fIntegers);
return 0;

}

Write a program that reads 5 integers from the keyboard and stores them in
separate lines in a file called Integers.txt. If an error occurs in opening the file
an appropriate message should be displayed.

Enter a number:

5

Enter a number:

15

Enter a number:

344

Enter a number:

12

Enter a number:

2443

Enter a number:

5

Enter a number:

15

Enter a number:

344

Enter a number:

12

Enter a number:

2443

12

If the numbers

5, 15, 344, 12, 2443

are entered from the keyboard then the file Integers.txt will
consist of the following 5 lines:

5

15
344
12

2443

If the numbers

5, 15, 344, 12, 2443

are entered from the keyboard then the file Integers.txt will
consist of the following 5 lines:

5

15
344
12

2443

13

Example

#include <stdio.h>

main(){
FILE *fIntegers;
int i,k;
fIntegers=fopen("Integers.txt","r");
if(fIntegers==NULL){

printf("Problem in openning the file!\n");
return -1;

}
for(i=0;i<5;i++) {

fscanf(fIntegers,"%d",&k);
printf("%6d\n",k);

}
fclose(fIntegers);
return 0;

}

#include <stdio.h>

main(){
FILE *fIntegers;
int i,k;
fIntegers=fopen("Integers.txt","r");
if(fIntegers==NULL){

printf("Problem in openning the file!\n");
return -1;

}
for(i=0;i<5;i++) {

fscanf(fIntegers,"%d",&k);
printf("%6d\n",k);

}
fclose(fIntegers);
return 0;

}

Write a program that reads 5 Integers from the first five records of a file called
Integers.txt, and then prints them on screen. The numbers should be assumed to
be in the same format as in the the previous example. If an error occurs in
opening the file an appropriate message should be displayed.

If the file is corrupted or it contains less than 5 records this program fails. A
better programming example would be checking for such conditions. 14

Example (A program that saves student
�����������)
#include <stdio.h>

/* ... We have defined some of the functions
used by ���� program in the previous lectures */

void SaveStudent(FILE *f, student *stud){
fprintf(f,"%-15s",stud->individual.name);
fprintf(f,"%-15s",stud->individual.surname);
fprintf(f,"%-15s\n",stud->department);

}
main()
{

int i,j, num_studs=0;
student *studs;
FILE *fstuds;
printf("Enter the number of students : ");
scanf("%d",&num_studs);
studs=malloc(num_studs * sizeof(student));
if(studs == 0) {

printf("Memory Allocation Error!\n");
return 1;

} /* Continues from next page */

#include <stdio.h>

/* ... We have defined some of the functions
used by ���� program in the previous lectures */

void SaveStudent(FILE *f, student *stud){
fprintf(f,"%-15s",stud->individual.name);
fprintf(f,"%-15s",stud->individual.surname);
fprintf(f,"%-15s\n",stud->department);

}
main()
{

int i,j, num_studs=0;
student *studs;
FILE *fstuds;
printf("Enter the number of students : ");
scanf("%d",&num_studs);
studs=malloc(num_studs * sizeof(student));
if(studs == 0) {

printf("Memory Allocation Error!\n");
return 1;

} /* Continues from next page */

15

for(i=0;i<num_studs;i++) {

printf("Information on Student %d:\n",i+1);
ReadStudent(studs+i);

}
for(i=0;i<num_studs-1;i++)

for(j=i+1; j<num_studs; j++)
studsort2_surname(studs+i, studs+j);

/* Save the result */
fstuds=fopen("Students.txt","w");
if(fstuds==NULL){

printf("Problem in openning the file!");
return -1;

}
fprintf(fstuds,"%-15s%-15s%-15s\n","Name",

"Surname","Department");
for(i=0;i<num_studs;i++)

SaveStudent(fstuds,studs+i);

return 0;
}

for(i=0;i<num_studs;i++) {

printf("Information on Student %d:\n",i+1);
ReadStudent(studs+i);

}
for(i=0;i<num_studs-1;i++)

for(j=i+1; j<num_studs; j++)
studsort2_surname(studs+i, studs+j);

/* Save the result */
fstuds=fopen("Students.txt","w");
if(fstuds==NULL){

printf("Problem in openning the file!");
return -1;

}
fprintf(fstuds,"%-15s%-15s%-15s\n","Name",

"Surname","Department");
for(i=0;i<num_studs;i++)

SaveStudent(fstuds,studs+i);

return 0;
}

16

Enter the number of students : 3

Information on Student 1:

Name : Ahmet

Surname : Zaimoglu

Department : Computer

Information on Student 2:

Name : Mehmet

Surname : Halacoglu

Department : Textile

Information on Student 3:

Name : Ahmet

Surname : Aksin

Department : Mining

Enter the number of students : 3

Information on Student 1:

Name : Ahmet

Surname : Zaimoglu

Department : Computer

Information on Student 2:

Name : Mehmet

Surname : Halacoglu

Department : Textile

Information on Student 3:

Name : Ahmet

Surname : Aksin

Department : Mining

Name Surname Department

Ahmet Aksin Mining

Mehmet Halacoglu Textile

Ahmet Zaimoglu Computer

Name Surname Department

Ahmet Aksin Mining

Mehmet Halacoglu Textile

Ahmet Zaimoglu Computer

A sample execution of the program

Students.�	�
����
�����
��
�	�������

17

Example
In an experiment, values of the temperature in a container is
observed at several times during a day and the results of
observations are entered from the keyboard to be saved in a file,
whose name is entered by the user.

Write a program called TemperatureReader that first reads the
name of the output fi le and then asks the user the time and the
corresponding temperature repetitively until the temperature
entered is –99. The time should be read as a four character string
in the hhmm format. The program should allow integer
temperatures between –99 and 250. As the information is being
entered from the keyboard, it should be written to the output file
in a suitable tabular format. In order to increase the readabil ity
of the output fi le, the columns in the output file should be
preceded by suitable labels such as Time and Temp.

18

#include <stdio.h>
main(){

FILE *ftemp;
char filename[250];
char tm[5];
int temp;

printf("Enter the name of the file:\n");
scanf("%250s",filename);
ftemp=fopen(filename,"w");
if(ftemp==NULL){

printf("Problem in openning the file!");
return -1;

}
fprintf(ftemp,"Time \t Temp \n ---- \t ----\n");

(continues in the next slide)

19

do {
printf("Please enter time:\n");
scanf("%4s",tm);

do {
printf(“Please enter temperature:\n");
scanf("%d",&temp);

} while(temp<-99 || temp>250);
if (temp!= -99)

fprintf(ftemp,"%4s \t %4d\n",tm,temp);
} while(temp!= -99);

fclose(ftemp);
return 0;

}

do {
printf("Please enter time:\n");
scanf("%4s",tm);

do {
printf(“Please enter temperature:\n");
scanf("%d",&temp);

} while(temp<-99 || temp>250);
if (temp!= -99)

fprintf(ftemp,"%4s \t %4d\n",tm,temp);
} while(temp!= -99);

fclose(ftemp);
return 0;

}

20

A sample run of the program:
Please enter the name of output file:

Experiment.txt
Please enter time:
0910
Please enter temperature:
45
Please enter time:
0930
Please enter temperature:
55
Please enter time:
0950
Please enter temperature:
640
Please enter temperature:
64
Please enter time:
1020
Please enter temperature:
-99

Please enter the name of output file:

Experiment.txt
Please enter time:
0910
Please enter temperature:
45
Please enter time:
0930
Please enter temperature:
55
Please enter time:
0950
Please enter temperature:
640
Please enter temperature:
64
Please enter time:
1020
Please enter temperature:
-99

21

Time Temp

---- ----
0910 45
0930 55
0950 64

Time Temp

---- ----
0910 45
0930 55
0950 64

Experiment.txt file after the execution:

22

#include <stdio.h>
main(){

FILE *ftemp;
char filename[250],buffer[80];
int flag=0;

printf("Enter the name of the file:\n");
scanf("%250s",filename);
ftemp=fopen(filename,"r");
if(ftemp==NULL){

printf("Problem in openning the file!");
return -1;

}
while(!feof(ftemp)) {

flag=fgets(buffer,80,ftemp);
if(flag != NULL)

printf("%s",buffer);
}
fclose(ftemp);

}

A program that prints the
contents of a text file.

