
1

Introduction to Scientific
and Engineering

Computation
(BIL 102E)

LECTURE 12
Dynamic Memory Allocation

2

In many cases, the exact sizes of arrays to be used by the
program cannot be determined before the compilation of the
program. This brings inflexibility to the program if a static
array is used.

An alternative is allocating the memory required for a
variable (or for an array) dynamically.

The following functions, which are defined in stdlib library
can be used for this purpose:

1) malloc()

2) free()

3) calloc()

4) realloc()

3

malloc()
malloc() function allocates a specified size of memory
space and returns the beginning address of the newly
allocated memory space. For example,
int * pk ;

pk = malloc(1 0 * sizeof(int)) ;

reserves space in memory that could hold 10 integers.
Then, it is possible to use this space by using the pointer
pk. For example,

* pk = 5; /* Let th e fi rs t e le ment be 5 * /

*(pk+1) = 10; / * Let t he s eco nd ele ment be 10 * /

*(pk+9) = - 65; / * Let th e n in t h ele ment be - 65 * /

printf(“ %d” ,* (pk+1)) ; /* p r in t s 10 on th e sc re en */

4

free()

Every reserved memory space must be relased when it is no
more necessary. The function free() can be used for this
purpose. For example,
free(pk); /* frees the memory spaces pointed by pk */

calloc()

This works like malloc() but two arguments are used the of
which determines the number of elements in the memory
area and the second of which determines the number of bytes
required by each element. All elements are initialized to 0 in
the beginning. For example,

pk = calloc(10,sizeof(int));

5

void studswap(student *std1, student *std2){

student temp;
temp=*std1;
*std1=*std2;
*std2=temp;

}

void studsort2_surname(student *std1, student *std2){
if(strcmp(std1->individual.surname,std2->individual.surname)>0)

studswap(std1,std2);
}
void ReadStudent(student *stud){

printf("Name : ");
scanf("%15s",&(stud->individual.name));
printf("Surname : ");
scanf("%15s",&(stud->individual.surname));
printf("Department : ");
scanf("%15s",&(stud->department));

}

void PrintStudent(student *stud){
printf("%s\t\t",stud->individual.name);
printf("%s\t\t",stud->individual.surname);
printf("%s\n",stud->department);

}
6

main()

{
int i,j, num_studs=0;
student *studs;
printf("Enter the number of students : ");
scanf("%d",&num_studs);
studs=malloc(num_studs * sizeof(student));
if(studs == 0) {

printf("Memory Allocation Error!\n");
return 1;

}
for(i=0;i<num_studs;i++) {

printf("Information on Student %d:\n",i+1);
ReadStudent(studs+i);

}

for(i=0;i<num_studs-1;i++)
for(j=i+1; j<num_studs; j++)

studsort2_surname(studs+i, studs+j);
/* Print out the result */
printf("Name\t\tSurname\t\tDepartment\n");
for(i=0;i<num_studs;i++)

PrintStudent(studs+i);
return 0;

}

7

Enter the number of students : 4

Information on Student 1:
Name : Ali
Surname : Pala
Department : Meteo
Information on Student 2:
Name : Ayse
Surname : Akpinar
Department : Electrical
Information on Student 3:
Name : Canan
Surname : Aksin
Department : Computer
Information on Student 4:
Name : Ahmet
Surname : Celesun
Department : Mining
Name Surname Department
Ayse Akpinar Electrical
Canan Aksin Computer
Ahmet Celesun Mining
Ali Pala Meteo

Enter the number of students : 4

Information on Student 1:
Name : Ali
Surname : Pala
Department : Meteo
Information on Student 2:
Name : Ayse
Surname : Akpinar
Department : Electrical
Information on Student 3:
Name : Canan
Surname : Aksin
Department : Computer
Information on Student 4:
Name : Ahmet
Surname : Celesun
Department : Mining
Name Surname Department
Ayse Akpinar Electrical
Canan Aksin Computer
Ahmet Celesun Mining
Ali Pala Meteo

A possible output:

8

Scope of Variables

All variables defined in functions are called local variables.
Normally, memory corresponding to these variables are
reserved dynamically when the function is called and and is
marked as empty when the function terminates. Other
functions cannot reach these variables by just using their
names.

It is possible to define variables outside functions. Such
variables are called global variables. The memory
corresponding to these variables are reserved when the
program starts and marked as empty when the program
terminates. All functions defined after the definition of these
variables can reach and change them.

9

#include <st dio .h>

#include <st dlib .h >
#include <st ring.h >

char * name; /* Thi s is a globa l var i able * /

void pr intN ame() {
prin t f ("% s",name) ;

}

main() {
char buff er[51];
printf("W hat is your name?\ n");
scanf("%5 0s",buf f er);
name=malloc(strlen(bu f fer)+1) ;
strcpy(na me,buff er);
prin t f (" Your name is “);
prin t Name();
free(name) ;

}

#include <st dio .h>

#include <st dlib .h >
#include <st ring.h >

char * name; /* Thi s is a globa l var i able * /

void pr intN ame() {
prin t f ("% s",name) ;

}

main() {
char buff er[51];
printf("W hat is your name?\ n");
scanf("%5 0s",buf f er);
name=malloc(strlen(bu f fer)+1) ;
strcpy(na me,buff er);
prin t f (" Your name is “);
prin t Name();
free(name) ;

}

The global variable can be used anywhere
after its declaration.

What i s you r name?

Mustaf a
Your name i s Musta f a

What i s you r name?

Mustaf a
Your name i s Musta f a

10

The static specifier
Normally local variables are erased when the function returns
to the calling function. If a local variable is defined with the
static specifier, however, its value is saved.
#include <stdio.h>

void counter(void){
static int k=1;
int x=1;
printf("The variable k in counter is %d\n",k);
printf("The variable x in counter is %d\n",x);
k++; x++;

}

main() {
int k=5;
printf("The variable k in the main program is %d\n",k);
counter();
printf("The variable k in the main program is %d\n",k);
counter();
printf("The variable k in the main program is %d\n",k);
counter();

}

#include <stdio.h>

void counter(void){
static int k=1;
int x=1;
printf("The variable k in counter is %d\n",k);
printf("The variable x in counter is %d\n",x);
k++; x++;

}

main() {
int k=5;
printf("The variable k in the main program is %d\n",k);
counter();
printf("The variable k in the main program is %d\n",k);
counter();
printf("The variable k in the main program is %d\n",k);
counter();

}

The value of k is saved after termination of the
function. Whereas, the value of x is not saved and
initialized to 1 each time the function starts.

Note that the variable k in the main function and the
local variable k in the counter function are different.

11

The variable k in the main program is 5

The variable k in counter is 1
The variable x in counter is 1
The variable k in the main program is 5
The variable k in counter is 2
The variable x in counter is 1
The variable k in the main program is 5
The variable k in counter is 3
The variable x in counter is 1

The variable k in the main program is 5

The variable k in counter is 1
The variable x in counter is 1
The variable k in the main program is 5
The variable k in counter is 2
The variable x in counter is 1
The variable k in the main program is 5
The variable k in counter is 3
The variable x in counter is 1

The output of the program:

12

Recursive Functions

If a function calls itself either directly or through a chain of
function calls the function is called a recursive function.

It is programmers responsibility to make sure that the
recursion (calling itself) does not continue infinitely and
there exists a segment of the function where it is possible to
exit from the function without recursion.

When planned carefully recursive functions are easy to
implement. However, they might slow down the program and
can use excessive amount of memory unnecessarily.
Therefore, should be avoided when possible.

13

#include <stdio.h>

long int Factorial(int n) {
if(n<2)

return 1;
else

return n*Factorial(n-1);
}

main(){
int k;
for(k=0;k<7;k++)

printf("%d! = %ld\n", k, Factorial(k));
}

#include <stdio.h>

long int Factorial(int n) {
if(n<2)

return 1;
else

return n*Factorial(n-1);
}

main(){
int k;
for(k=0;k<7;k++)

printf("%d! = %ld\n", k, Factorial(k));
}

0! = 1

1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720

0! = 1

1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720

Make a recursive call. Note that n! = n (n-1)!

Make sure that the recursion does not
continue infinitely.

14

#include <stdio.h>

long int Fibonacci(int n) {
if(n<0)

return -1;
else if (n==0)

return 0;
else if (n==1)

return 1;
else

return Fibonacci(n-1)+Fibonacci(n-2);
}

main(){
int k;
for(k=0;k<10;k++)

printf("F%d = %2ld\n",k,Fibonacci(k));
}

#include <stdio.h>

long int Fibonacci(int n) {
if(n<0)

return -1;
else if (n==0)

return 0;
else if (n==1)

return 1;
else

return Fibonacci(n-1)+Fibonacci(n-2);
}

main(){
int k;
for(k=0;k<10;k++)

printf("F%d = %2ld\n",k,Fibonacci(k));
}

F0 = 0

F1 = 1
F2 = 1
F3 = 2
F4 = 3
F5 = 5
F6 = 8
F7 = 13
F8 = 21
F9 = 34

F0 = 0

F1 = 1
F2 = 1
F3 = 2
F4 = 3
F5 = 5
F6 = 8
F7 = 13
F8 = 21
F9 = 34

A recursive Fibonacci function.

