
1

Introduction to Scientific
and Engineering

Computation
(BIL 102E)

LECTURE 11
Special Data Types

2

The enum Data type
The enumerated (enum) data type can be use to declare
named integer constants. It makes the C program more
readable and easier to maintain. Syntax:

enum tag_name{ item1, item2, …} var1, var2, ...;

Here tag_name is the name of the enumeration, item1, item2,
... are the names to represent integer constants, and var1, var2
... are the variables of this newly defined type. For example,

enum gender{ male, female} gen_student;

Declares an enumarated type called gender, which can have
values male (0) or female (1), and a variable named
gen_student. Then we can do the following:

gen_student=male; /* The same as gen_student=0; * /

printf(“%d\n” ,gen_student); /* Prints 0 on the screen * /

3

#include <stdio.h>

enum gender{male,female};

void PrintGender(enum gender g) {

if(g == male)

printf("male");

else if(g == female)

printf("female");

else printf("unknown");

}

main() {

enum gender guser;

printf("Are you male or female?\n");

printf("0 for male, 1 for female\n");

scanf("%d",&guser);

printf("Your gender : ");

PrintGender(guser);

printf("\n");

}

Are you male or female?

0 for male, 1 for female
0
Your gender : male

We can define the new type in
beginning of the file and refer to

it later in the program.

Getting an enumerated argument of type
gender. The name of the argument is g.

It is possible to use male and
female instead of 0 and 1,

respectively.

Define a variable called guser to
represent the gender of the user. We
can use guser wherever we can use

an integer.

4

Type definitions

It is possible to define an alias for a given data type using
the typedef statement.

For example,
typedef int INTEGER;

defines an alias for the data type int called INTEGER.

Later in the program, INTEGER can be used wherever int is
used. For example,
INTEGER k, *pk;

declares two variables one of which is an integer and the
other is a pointer to integers.

5

There are two usages of typedef:

1. It can provide a shorthand alias for data types that are long
and difficult to comprehend.

2. It brings flexibility to the program in the sense that the
types of all variables in a certain data type can be changed
easily. For example, if we want all variables of type
INTEGER to become long integers in the program all we
have to do is to change the typedef line in the program.

6

Example:
#include <stdio.h>

#define MAX_ELEMENTS 2

typedef char *string;

typedef string string_array[MAX_ELEMENTS];

main() {

string str="Hello World!";

string_array str_arr={"Hello","World"};

printf("%s\n",str);

printf("%s\n",str_arr[0]);

printf("%s\n",str_arr[1]);

}

Hello World!

Hello
World

This defines a new type
called string, which.is
equivalent to a pointer
tp characters.

This defines a new type
called string_array,
which.is equivalent to
an array of pointers to
characters.

7

Structures
The data types we have seen so far were simple in the sense that they
represent only a single data unit such as an integer or real number.
Sometimes the data is of a more complex type. For example, the data to hold
the information about a person may consist of the name, surname, gender
and date of birth of that person. In order to give reference to such data by
using a single variable, it is possible to define new data types called
structures.

A structure can be defined using the following syntax:
struct struct_tag {

[component_definition_1]
[component_definition_ 2]
…

} ;

Here, definitions for components are in the same form with the definitions for
variables:

data_type comp1, comp2, …;

8

Example
struct Complex{

double Re, Im;
}

shows a data type that consists of two components with names
Re and Im both of which are of type double.

Stucture variablescan be defined by using the following
syntax:
struct struct_tag var1, var2, …;

For example,
struct Complex c;
defines a variable named c of Complex type.

c ??

Re Im

9

It is possible to give reference to components of a structure
variable by using the dot (.) operator.

For example,
c. Re = 5. 0;

causes the Re component of the variable c to become 5.0.

Components referenced in this way can be used as if they were
variables. (In printf and scanf statements, as arguments to
functions etc.)

For example,

printf(“ %d” ,c . Re);

Prints 5.0 on the screen.

c ?5.0

Re Im

10

Initializing Structures

A structure can be initialized by a list of data called
initializers. The types of corresponding items in component
list and initializers should match.

For example,
struct Complex c={3.0, 5.0};

declares a complex variable c and assigns 3.0 and 5.0 to Re
and Im components, respectively.

c 5.03.0

Re Im

11

Remarks

� It is possible to have arrays and other structures as
components of structures.

� It is also possible to have array variables of structures.

� It is possible to pass structures as arguments to functions
and functions can return structures as their output value.

� It is possible to have arrays and other structures as
components of structures.

� It is also possible to have array variables of structures.

� It is possible to pass structures as arguments to functions
and functions can return structures as their output value.

12

Pointers to Structures
It is possible to declare pointers that can point to structure variables. The
arrow (->) operator can be used with the pointer to directly reach the
members of the structure. For example,

#include <stdio.h>

struct automobile{

int year;

char make[8], model [8];

int engpw;

float weight;

};

main() {

struct automobile mycar = {1982, "BMW", "3.16i", 1600, 1543.5};

struct automobile *pcar;

pcar = &mycar;

printf("mycar.year \t= %d\n", mycar.year);

printf("(*pcar).year \t= %d\n",(*pcar).year);

printf("pcar->year \t= %d\n",pcar->year);

}
mycar.year = 1982

(*pcar).year = 1982
pcar->year = 1982

Note how a member of the structure pointed by the
pointer pcar is referenced by -> operator.

Reaching the same memory
location with 3 different ways.

mycar

make

1982

3.16i

BMW

1543.5

1600

model

engpw

weight

pcar
year&mycar

*pcar
pcar->year

13

Structures as arguments of functions
It is possible to pass an entire structure to a function. In addition,
a function can return a structure back to its caller. E.g.
typedef struct automobile sauto;

sauto ChangeMake(sauto acar) {

sauto temp;

temp=acar;

printf("Current make is %s\n", acar.make);

printf("What is the make of the car? \n");

gets(temp.make);

return temp;

}

main() {

struct automobile mycar = {1982, "BMW", "3.16i", 1600, 1543.5};

struct automobile *pcar;

pcar = &mycar;

mycar=ChangeMake(mycar);

printf("mycar.make \t= %s\n", mycar.make);

}
Current make is BMW

What is the make of the car?
Anadol
mycar.make = Anadol

Instead of writing struct automobile each
time we can now shortly use sauto type.

This function changes the make of a given car and
returns the result as a new car.

14

Example #define MAX_CHARS 15

typedef char name_string[MAX_CHARS];

enum gen{male,female};

typedef enum gen type_gender;

struct structperson{

name_string name, surname;

int age;

type_gender gender;

};

typedef struct structperson person;

struct structstudent{

person individual;

name_string department;

int quiz[6];

int homework[6];

int final;

};

typedef struct structstudent student;

student studs[50];

#define MAX_CHARS 15

typedef char name_string[MAX_CHARS];

enum gen{male,female};

typedef enum gen type_gender;

struct structperson{

name_string name, surname;

int age;

type_gender gender;

};

typedef struct structperson person;

struct structstudent{

person individual;

name_string department;

int quiz[6];

int homework[6];

int final;

};

typedef struct structstudent student;

student studs[50];

15

studs ??? ? ?…

(1) (2) (3) (i) (50)

…

studs(i)

name

surname

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

?

age ?

gender

individual
? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?department

???? ?

[0] [1] [2] [3] [4]

?

[5]

???? ?

[0] [1] [2] [3] [4]

?

[5]

quiz

homework

final

?

16

main(){

student john={ {"John","Smith",20,male}, "Computer Eng.",

{20,45,-1,-1,-1,-1},{75,-1,-1,-1,-1},-1};

printf("%s\n",john.individual.name);

printf("%d\n",john.quiz[1]);

}

john

name

surname

J o h n \0 ? ? ? ? ? ? ? ? ? ?

-1

age 20

gender

individual
S ? i t h \0 ? ? ? ? ? ? ? ? ?m

C o p u t e r E n g . \0 ?department

quiz

homework

final

0

m

� John

� 45

-1-14520 -1
[0] [1] [2] [3] [4]

-1
[5]

-1-1-175 -1
[0] [1] [2] [3] [4]

-1
[5]

17

Example
Write a function named AvgQM(studs, num_studs, n) that finds the average mark of
nth Quiz for male students in a class. The function should return –1, if there are no
male students in the class.

float AvgQM(student *studs, int num_studs, int qn)
{

int i, num_male=0;
float sum=0.0;
student *pstud=studs;

for(i=0;i<num_studs;i++, pstud++)
if(pstud->individual.gender == male){

sum+=pstud->quiz[qn];
num_male++;

}

if(num_male == 0)
return -1;

else
return sum/num_male;

}

float AvgQM(student *studs, int num_studs, int qn)
{

int i, num_male=0;
float sum=0.0;
student *pstud=studs;

for(i=0;i<num_studs;i++, pstud++)
if(pstud->individual.gender == male){

sum+=pstud->quiz[qn];
num_male++;

}

if(num_male == 0)
return -1;

else
return sum/num_male;

}

