
Experimental Study of a Similarity Measure for Two Dimensional Sequences

 Şule Gündüz, Eşref Adalı

 Department of Computer Engineering,

 Istanbul Technical University

Istanbul, 34469, Turkey
 gunduz@cs.itu.edu.tr , adali@ cs.itu.edu.tr

ABSTRACT

In data mining and knowledge discovery, similarity between
objects is one of the central concepts. A measure of similarity
can be user-defined, but an important problem is defining
similarity on the basis of data. In this paper we introduce the
problem of finding the pair-wise similarities of quantitative
valued sequences where each sequence is a list of items.
Traditional approaches for defining the similarity between
two sequences typically consider only the binary values of
items in sequences, not the quantitative values. Such
similarity measure is often useful for finding the similarities
between genes or protein sequences. However, they cannot
reflect certain kinds of similarity where the sequences
contain two different kinds of information type, such as
quantitative and order information. However, such type of
sequence data arise in many applications, for example,
marketing and sales data or web log data may contain two
different kinds of information. Therefore, we introduce a
new similarity measure that takes into account the values of
items in sequences. We give an algorithm for calculating the
similarity between such quantitative sequences. Finally, we
describe the results of using this approach on two different
real-life datasets.

Keywords : pair-wise similarity, sequence similarity, data mining

1. Introduction

The rapid development of computer technology in last
decades has made it possible for data systems to collect huge
amounts of data. Analyzing such large datasets is tedious and

costly, and thus, we need efficient methods to be able to
understand how the data was generated, and what sort of
patterns and regularities there exists in the data. A research
area in computer science that considers this kind of questions
is called data mining [1].

An important form of data considered in data mining is
sequential data. This kind of data occurs in many
applications domains, such as biostatistics, medicine,
telecommunication, user interface studies, market basket
data, and WWW page request monitoring. Abstractly, such
data can be viewed as a sequence of events where each event
is associated time of occurrence.

A typical dataset considered as sequence database consists
of a number of data objects with several attributes in order.
An example of such a dataset is market basket data where
data objects present customers and attributes are different
products sold in the supermarket. Each sequence in this data
set is a list of products bought by a customer over period of
time. Another example could be user access data for web
sites where the objects are users and the attributes are pages
on the web site. Each sequence in such a dataset consists of a
set of pages that a user requests during his or her single visit
to a web site. It is clear that the attributes in such datasets
have usually a large value domain. For example, for market
basket data, the domain of attributes could be integers where
each number is the quantity of a product bought by a
customer. Similarly, the values of attributes for user access
dataset of a web site could be the time that users spend on
each page.

In order to find patterns and regularities in the data, it is
necessary to be able to describe how far from each other two
data objects are. This is the reason why similarity between
objects is one of the central concepts in data mining. When

discussing similarity and databases, one often talks about the
similarity between data objects stored in the database.
Analyzing similarities between sequences gives us an
important knowledge about the behavior and actions of a
system or a user which can be used in forming hierarchies or
clusters of data objects. Such a hierarchy describes the
structure of the data and can be used for forecasting. There
are some proposes for finding similarities of sequences
where the value of attributes are binary corresponding the
existence of an attribute in the sequence [2, 12].

The contribution of this paper is to propose a new
similarity measure that considers two different kinds of
information in sequences, namely the value of attributes and
the order of those attributes. Likewise, within our awareness,
existing tools for finding similarities between quantitative
sequences are hard to find. Therefore we will concentrate in
this study on a measure for pair-wise similarities of two-
dimesional sequences.

This paper is organized as follows: Section 2 briefly
describes sequence alignment methods. Section 3 presents
the proposed similarity measure. Section 4 provides detailed
experimental results. In Section 5, we examine related work.
Finally, in Section 6 we conclude and discuss future work.

2. Background

2.1 Pair-wise Sequence Alignment
Given two sequences of letters and a scoring scheme for

evaluating of matching letters, optimal sequence alignment
method finds the optimal pairing of letters from one
sequence to letters of the other sequence. A good alignment
has zero or more gaps inserted into the sequence to
maximize the number of positions in the aligned sequences
that match. For example, consider aligning the sequences of
visited pages on a Web site “P1P2P4P5” and “P4P1P2P5P3P6”.
By inserting gaps (-) in the appropriate place, the number of
positions where two sequences match can be maximized:

- P1 P2 P4 P5 - -
P4 P1 P2 - P5 P3 P6

Here the aligned sequences match in three positions.

Algorithms for efficiently solving this type of problem are
well known and are based on dynamic programming [2].

The structure and the function of lots of sequences in real
world are unknown. Only a few sequences are with known
structure and function. However, if they align they are
similar. If they are similar then they might have same
structure or function. Thus, aligned sequences give us
important knowledge about how similar the two sequences

are. Such knowledge can, for example, be used in
determining the behavior of Web users and predicting the
next action of them. Similarly, from financial time series data
a user may be interested in finding, for example, stocks that
had last week a large price fluctuations.
3. Two-Dimensional Similarity

Measure
In this section, we propose a similarity measure for two

dimensional sequences. The meaning of similarity depends
however, largely on data type. As mentioned in the
Introduction, the attributes of sequences may have values
other then binary. The meaning of similarity may also vary
depending on what kind of similarity we are looking for.
Two sequences can be determined to be very similar by
using only the order information of attributes and to be very
different by using the values of attributes. The following are
some definitions to formulate the two dimensional
sequences.

Definition 3.1 (Two-Dimensional Sequence) A two -
dimensional sequence of length n is a n-length sequence of
ordered pairs given by P=[(α1 , λ1

α) (α2 , λ2
α) … (αn , λn

α)]
where αi is the attribute over the set of attributes A={a1, a2,
…, an} and λi

α being the corresponding value of αi over the
integers.

In the following definitions P=[(α1 , λ1
α) (α2 , λ2

α) … (αn ,
λn

α)] and Q=[(β1 , λ1
β) (β2 , λ2

β) … (βm , λm
β)] denote two

two-dimensional sequences of length n and m respectively.
The problem of finding the optimal sequence alignment of
two two-dimensional sequences is solved using a dynamic
programming formulation. We develop an algorithm based
on the algorithm in [2] for this purpose. Briefly, the
algorithm consists of three steps. The first step is
initialization (Figure 1), where a scoring matrix is created
with n + 1 columns and m + 1 rows where n and m
correspond to the size of the sequences to be aligned. One
sequence is placed along the top of the matrix (Q) and the
other one along the left-hand-side of the matrix (P). A gap
is added to the end of each sequence which indicates the
starting point of calculation of similarity score. There are
three scores in this matrix: Scorel , r = sm which means that
the residue at position l of sequence P is the same as the
residue at position r of sequence Q (match score); otherwise
Scorel , r = sd (mismatch score) or Scorel , r = sg (gap penalty).
From this starting point, the last row is filled from right-to-
left such that each cell in the last row is the sum of the
previous cell and the gap penalty. The last column of the
matrix is filled from bottom-to-top in the same manner.

The second step of the algorithm is FindScore (Figure 2),
in which we calculate the two dimensional similarity of

Input: sg

Output: Score Matrix M
 M(n + 1 , m + 1) ← 0
2: for l = n down to l = 1 do
 M(l , m + 1) ← M(l + 1 , m + 1) + sg

4: end for
 for r = m down to r = 1 do
6: M(n + 1 , r) ← M(n + 1 , r + 1) + sg

 end for
Figure 1 : Algorithm of the initialization step

sequences. We implemented the algorithm with a module
that takes into account the values of attributes. In our
implementation the identical matching of attributes and the
values of those attributes is given a score sm = 2 and each
mismatch or gap inserted to the sequences is given a penalty
score of -1, i.e. sd = sg = -1. Then the two-dimensional
matching score Scorel , r = s(αl , βr) of the matrix is calculated
for a pair of matching attributes αl = βr = ak where ak ∈ A as
follows:

],[
],[

),(, rl

rl

mrlrl max
min

ssScore
βα

βα

αλ
αλ

βα ==

In that step the scoring matrix is filled by starting in the
lower right hand corner in the matrix and finding the
maximal score M(i , j) for each position in the matrix. Going
left corresponds to inserting a gap in sequence P. Going up
inserts a gap in sequence Q. Going diagonally up-left
corresponds to matching. For each position, M(i,j) is defined
to be the maximum of the three incoming values:

Input : P, Q, sm, sg

Output : Score Matrix M
 for r = m down to r = 1 do
2: for l = n down to l = 1 do
 if αl = βr then

4:
],[
],[

, rl

rl

mrl max
min

sScore
βα

βα

αλ
αλ

=

 else
6: Scorel , r = sd

 end if
8: Vertical = M(l + 1 , r) + sg

 Diagonal = M(l + 1 , r + 1) + Scorel , r

10: Horizontal = M(l , r + 1) + sg

 M(l , r) = Max[Vertical , Diogonal, Horizontal]
12: end for

 end for
Figure 2 : FindScore Algorithm

M(i,j) = max[M(i+1,j+1)+ Score(match / mismatch in the

diagonal),
 M(i,j+1)+ sg(gap in sequence P),

 M(i+1,j)+ sg(gap in sequence Q)]

The third step is FindPath which determines the actual

alignment(s) that lead to the maximal score (Figure 3).
FindPath traverses the matrix beginning from the destination
point (upper left corner) to the start point (lower right corner)
of the matrix. It takes the current cell and looks at the
neighboring cells that could be direct predecessors. This
means that it looks at the neighbor to the right (gap in
sequence P), the diagonal neighbor (match/mismatch), and
the neighbor below it (gap in sequence Q). The algorithm for
FindPath chooses as the next cell in the sequence one of the
possible predecessors that leads to the maximal score.

Input : Score Matrix M
Output: Aligned Sequences Seq1 and Seq2
 Seq1 ←{∅}
2: Seq2 ←{∅}
 r ← 1 , l ← 1
4: while r < m + 1 do
 while l < n + 1 do
6: Vertical = M(l + 1 , r)
 Diagonal = M(l + 1 , r + 1)
8: Horizontal = M(l , r + 1)
 max = Max[Vertical , Diogonal , Horizontal]
10: if max = Vertical then
 Seq1 ← Seq1 + {-}
12: Seq2 ← Seq2 + {αl}
 l ← l + 1
14: else
 if max = Diagonal then
16: Seq1 ← Seq1 + {βr}
 Seq2 ← Seq2 + {αl}
18: l ← l + 1, r ← r + 1
 else
20: if max = Horizontal then
 Seq1 ← Seq1 + {βr}
22: Seq2 ← Seq2 + {-}
 r ← r + 1
24: end if
 end if
26: end if
 end while
28: end while

Figure 3 : FindPath Algorithm

The similarity between sequences is then calculated such
that only the identical matching of sequences has a similarity
value of 1. The similarity measure has two components,
which we define as alignment score component and local
similarity component. The alignment score component
computes how similar the two sequences are in the region of
their overlap. If the highest value of the score matrix of two
sequences, P and Q is σ and the number of matching
attributes is M in the aligned sequences, then the alignment
score component is:

Ms
QPs

m
a *

),(σ=

The intuition behind this is that score σ is higher if the
sequences have more consecutive matching attributes. This
value is normalized by dividing it by the matching score and
the number of matching attributes. The local similarity
component computes how important the overlap region is. If
the length of the aligned sequences is L, the local similarity
component is:

L
MQPsl =),(

Then the overall similarity between two sessions is given by:

),(*),(),(QPsQPsQPsim la=

Example 1 Let us illustrate the calculation of two two-
dimensional sequences P = [(a2 , 1) (a8 , 1) (a4 , 2) (a3 , 2)]
and Q = [(a2 , 1) (a8 , 2) (a6 , 2) (a5 , 1) (a3 , 1)] where ai ∈ A
and A={a1, …, an} being the set of attributes. The scoring
matrix used in the computation of the similarity is given in
Figure 4. Since a2 is identical in both sequences the matching
score of this attribute is Score1,1 = 2 * (1/1). Then, the
maximum score of that cell in the matrix is M(1,1) = M(2,2)
+ Score1,1 = 0 + 2 = 2. However, the value of attribute a3 is
not equal in both sequences. The matching score of that
attribute is Score4,5 = 2 * (1/2). Then, the maximum score of
that cell in the matrix is M(4,5) = M(5,6) + Score4,5 = 0 + 1
= 1. Since the length of aligned sequences is 5 and the
number of matching attributes in the aligned sequences is 3,
the overall similarity between these two-dimensional
sequences is sim(P , Q) = (2 / (2 * 3)) * (3 / 5).

3.1 Complexity Considerations

The size of the scoring matrix is is (n + 1) x (m + 1) when
we consider two dimensional sequences of length n and m
respectively. It takes a constant number of cell examinations,
arithmetic operations and comparisons to fill in one cell of
the matrix. There the FindScore algorithm takes O(mn) time

and O(mn) space to compute. If the sequences compared are
fairly short, the quadratic behavior of FindScore algorithm is
not a problem. However, if the sequences are typically very
long, it should be better to compute the similarity of
sequences with more efficient algorithms than just dynamic
programming [3].

On each iteration in FindPath algorithm, either the index l,
the index r or both of them, is decremented. This means, that
the maximum number of iterations is m + n, and that the
best alignment for two sequences is done in O(m + n) time.

 a2 a8 a6 a5 a3 -
a2 2 -1 -2 -2 -2 -4
a8 -1 0 -1 -1 -1 -3
a4 -3 -2 -1 0 0 -2
a3 -3 -2 -1 0 1 -1
- -5 -4 -3 -2 -1 0
Figure 4: The scoring matrix for two-dimensional sequences

4 Experimental Results
In this section, we present some results of experiments on
similarity between two-dimensional sequences. In
subsection 4.1, we describe the data sets used in the
experiments. All Experiments were performed on a Pentium
II, 333 MHz PC with a 512 MB main memory running on
Microsoft Windows 2000. The programs are coded in Java
without code optimization
4.1 Data Sets

The experiments on similarity between two-dimensional
sequences were made with two different data sets of WWW
logs. The first data set is from the NASA Kennedy Space
Center (NASA) server over the months of July and August
1995 [4]. The second log is from ClarkNet (C.Net) Web
server which is a full Internet access provider for the Metro
Baltimore-Washington DC area [5]. This server log was
collected over the months of August and September, 1995.

A Web server log is an important source for performing
Web usage mining because it explicitly records the browsing
behavior of site visitors. The server records the time and date
of the transaction. It records the name of the file that was sent
and how big that file was. It records the Internet address to
which the file was sent. If the user goes to a page by clicking
a link on some other page, the server records the address of
the page with that link. It also records some details about
how the file was sent and any errors that may have occurred
as well as information about the browser that the user is
using. The data recorded in the server logs reflects the
(possibly concurrent) access of a Web site by multiple users.
The information provided by the Web server can all be used

to construct a data model consisting of several abstractions,
notably, users, pages, click-streams, server sessions. Since
user sessions are ordered URL requests, we can refer to them
as sequences of Web pages. The behavior of Web users can
be modeled using sequences. However, an important feature
of the user's navigation path is the time that a user spends on
different pages [6]. Thus, the user navigation path turns into
two-dimensional sequences. Each data set is cleaned in order
to obtain user sessions where each user session is defined as
the sequence of page views for a single visit of a user to a
Web site [7]. The cleaning step is beyond the scope of this
paper and the details of this step are given in [8]. After this
step each user session is represented by the set of ordered
Web pages that a user accessed during his or her single visit
to the Web site and corresponding time information.

4.2 Results and Discussion

Approximately 30% of the cleaned user sessions of each
data set are randomly selected as the test set, and the
remaining part as the training set. After each request of user
sessions in the test set we query the training set in order to
find the most matching sequence in it. If two user sessions
from the test set and training set are aligned with a high
similarity value it means that they have similar structure and
function. Thus, the pages of the matching user session in the
training set can be used to find out the next page request of
users in the test set. Based on the best matching sequence in
the training set three pages are recommended to the user in
the test set. A hit is declared if any one of the three
recommended pages is the next request of the user in the test
set. The hit-ratio is the number of hits divided by the total
number of recommendations made by the system. A high
hit-ratio means that the similarity measure is successful in
finding most similar two-dimensional sequences.

We have made three tests in order to evaluate the
similarity measure and the effect of using quantitative values
of attributes. In the first test we compare the two-
dimensional sequences with binary sequences. Figure 5
shows these results. As can be seen from the figure using
two-dimensional sequences improves the hit-ratio. These
results prove that using quantitative values of attributes in the
sequences provides useful knowledge in web domain.

Data Set Q-Values B-Values
NASA 61.61 59.9
C.Net 55.76 51.29

Figure 5: Results in %. (Q-Values = Quantitative values, B-
Values = Binary values)

In the second test we perform graph based clustering [9]

based on the pair-wise similarities of user sessions in order to
examine the effect of the similarity measure more deeply.
Since the clustering is based on the proposed similarity
measure the structure of the resulted clusters is tightly
correlated with this measure. Figure 6 illustrates these results
with 5 clusters. The effects of the number of clusters are
examined in [8].

Data Set Q-Values B-Values
NASA 57.41 56.19
C.Net 53 51.09

Figure 6: Results in % for 5 clusters.

In the third test, we run the experiments using another

similarity measure. The similarity between two user sessions
is calculated only using the length of common subsequence
and the length of the user sessions. For example, let two user
sessions be P=P1P2P3P4 and Q=P2P4P5P6. Since the length
of matching subsequence is 2 (P2P4) and the length of both
sessions is 4, the similarity is

)4/2(*)4/2(),(=QPsim . Our similarity measure

using time information performs about 8% better than this
similarity measure. Even without using time information our
measure results in about 4% better then this one. Figure 7
illustrates these results.

Data Set Q-Values Diff.

Measure
NASA 61.61 57.04
C.Net 55.76 52

Figure 7: Comparison of similarity measures.

These results prove that using two-dimensional sequences in
web domain improves the prediction accuracy. Furthermore,
the proposed similarity measure is effective for finding pair-
wise similarities of two-dimensional sequences.

5 Related Works

Similarity searches in sequence databases are important in
many application domains, such as information retrieval,
web mining and clustering. Detecting stocks that have
similar growth patterns, finding web users with similar
interests are a few examples of similarity queries. In
particular, we usually assume that similar sequences hold a
similar function and structure. It is not surprising, thus, that
among the first tools developed in the field of sequence
analysis were those aimed to determine the degree of
similarity between two sequences.

Most of the previous techniques [10, 11] for similarity
searches use the Euclidean distance measure as a similarity

measure. However, in many applications, the length of
sequences may be different, making it difficult or impossible
to use the Euclidean distance as a similarity measure.

A sequence matching method for sequences of different
lengths based on dynamic programming is proposed in [2].
However, this approach is appropriate for sequences having
binary valued attributes, such as biological sequences. While
we focus on the sequences of continous numeric values, the
approches of [2, 12] center on the sequences of charecters.
Our approach combines both the advantages of Euclidean
techniques and the advantages of dynamic programming
techniueqes.

6 Conclusion

In this paper, we considered the problem of finding pair-
wise similarities between sequences of continous numeric
values. We introduce a similarity measure for finding pair-
wise similarities of two-dimensional sequences. This
similarity measure compares two sequences by means of
their ordered attributes and corresponding values of those
attributes. The current implementation of this approach is
adapted to a recommendation model for web users. Another
application domain could be market basket analysis. The
proposed similarity measure may be useful to build a
predictive model. Such a model will help to categorize and
segment customers based on their purchase (or navigation)
patterns.
References
[1] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R.
Uthurusamy: "Advances in Knowledge Discovery and Data
Mining", MIT Press, Cambridge, MA, 1996.
[2] K. Cahrter, J. Schaeffer, and D. Szafron, "Sequence
Alignment Using FastLSA", Proc. Int. Conf. on
Mathematics and Engineering Techniques in Medicine and
Biological Sciences (METMBS'2000)., pp. 239-245, 2000.
[3] G. A. Stephen, “String Searching Algorithms”, World
Scientific Publications, Singapore, 1994.
[4] NASA Kennedy Space Center Log.,

http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
[5] ClarkNet WWW Server Log,

http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html.
[6] C. Shahabi, A. Zarkesh, J. Adibi, and V. Shah,
“Knowledge Discovery from Users Web-page Navigation”,
Proc. 7th Int. Workshop on Research Issues in Data
Engineering, pp. 20--29, April 1997.
[7] R. Cooley and B. Mobasher and J. Srivastava, Data
Preparation for Mining World Wide Web Browsing Patterns,
Journal of Knowledge and Information Systems, 1:1, pp. 5-
32, 1999.

[8] Ş. Gündüz, M.T. Özsu, A Web Page Prediction Model
Based On Click-Stream Tree Representation of User
Behavior", Proc. of Ninth ACM International Conference on
Knowledge Discovery and Data Mining (KDD),
Washington, DC, pages 535-540, 2003.
[9] Cluto,

 http://www-users.cs.umn.edu/~karypis/cluto/index.html
[10] C. Faloutsos, M. Ranganathan, Y. Manolopoulos, “Fasr
Subsequence Matching in Time-Series Databases”, Proc.
1994 ACM SIGMOD Conference, Mineapolis, MN, 1994.
[11] B.K. Yi, H.V. Jagadish, C. Faloutsos, Efficient Retrieval
of Similar Time Sequences Under Time Warping, Proc.
IEEE ICDE, 1998.
[12] J. T. L. Wang, G.-W. Chirn, T. G. Marr, B. A. Shapiro, D.
Shasha, and K. Zhang, “Combinatorial Pattern Discovery
for Scientific Data: Some Preliminary Results”, Proc. 1994
ACM SIGMOD Conference, Mineapolis, MN, 1994.

