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ABSTRACT  
 

In data mining and knowledge discovery, similarity between 
objects is one of the central concepts. A measure of similarity 
can be user-defined, but an important problem is defining 
similarity on the basis of data. In this paper we introduce the 
problem of finding the pair-wise similarities of quantitative 
valued sequences where each sequence is a list of items. 
Traditional approaches for defining the similarity between 
two sequences typically consider only the binary values of 
items in sequences, not the quantitative values. Such 
similarity measure is often useful for finding the similarities 
between genes or protein sequences. However, they cannot 
reflect certain kinds of similarity where the sequences 
contain two different kinds of information type, such as 
quantitative and order information. However, such type of 
sequence data arise in many applications, for example, 
marketing and sales data or web log data may contain two 
different kinds of information. Therefore, we introduce a 
new similarity measure that takes into account the values of 
items in sequences. We give an algorithm for calculating the 
similarity between such quantitative sequences. Finally, we 
describe the results of using this approach on two different 
real-life datasets.     
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1. Introduction 
 

The rapid development of computer technology in last 
decades has made it possible for data systems to collect huge 
amounts of data. Analyzing such large datasets is tedious and 

costly, and thus, we need efficient methods to be able to 
understand how the data was generated, and what sort of 
patterns and regularities there exists in the data. A research 
area in computer science that considers this kind of questions 
is called data mining [1].  

An important form of data considered in data mining is 
sequential data. This kind of data occurs in many 
applications domains, such as biostatistics, medicine, 
telecommunication, user interface studies, market basket 
data, and WWW page request monitoring. Abstractly, such 
data can be viewed as a sequence of events where each event 
is associated time of occurrence.  

A typical dataset considered as sequence database consists 
of a number of data objects with several attributes in order. 
An example of such a dataset is market basket data where 
data objects present customers and attributes are different 
products sold in the supermarket. Each sequence in this data 
set is a list of products bought by a customer over period of 
time. Another example could be user access data for web 
sites where the objects are users and the attributes are pages 
on the web site. Each sequence in such a dataset consists of a 
set of pages that a user requests during his or her single visit 
to a web site. It is clear that the attributes in such datasets 
have usually a large value domain. For example, for market 
basket data, the domain of attributes could be integers where 
each number is the quantity of a product bought by a 
customer. Similarly, the values of attributes for user access 
dataset of a web site could be the time that users spend on 
each page.  

In order to find patterns and regularities in the data, it is 
necessary to be able to describe how far from each other two 
data objects are. This is the reason why similarity between 
objects is one of the central concepts in data mining. When 



discussing similarity and databases, one often talks about the 
similarity between data objects stored in the database. 
Analyzing similarities between sequences gives us an 
important knowledge about the behavior and actions of a 
system or a user which can be used in forming hierarchies or 
clusters of data objects. Such a hierarchy describes the 
structure of the data and can be used for forecasting. There 
are some proposes for finding similarities of sequences 
where the value of attributes are binary corresponding the 
existence of an attribute in the sequence [2, 12].  

The contribution of this paper is to propose a new 
similarity measure that considers two different kinds of 
information in sequences, namely the value of attributes and 
the order of those attributes. Likewise, within our awareness, 
existing tools for finding similarities between quantitative 
sequences are hard to find. Therefore we will concentrate in 
this study on a measure for pair-wise similarities of two-
dimesional sequences.  

This paper is organized as follows: Section 2 briefly 
describes sequence alignment methods. Section 3 presents 
the proposed similarity measure. Section 4 provides detailed 
experimental results. In Section 5, we examine related work. 
Finally, in Section 6 we conclude and discuss future work. 

2. Background 

2.1 Pair-wise Sequence Alignment 
Given two sequences of letters and a scoring scheme for 

evaluating of matching letters, optimal sequence alignment 
method finds the optimal pairing of letters from one 
sequence to letters of the other sequence. A good alignment 
has zero or more gaps inserted into the sequence to 
maximize the number of positions in the aligned sequences 
that match. For example, consider aligning the sequences of 
visited pages on a Web site “P1P2P4P5” and “P4P1P2P5P3P6”. 
By inserting gaps (-) in the appropriate place, the number of 
positions where two sequences match can be maximized: 

 
- P1 P2 P4 P5 - - 
P4 P1 P2 - P5 P3 P6

 
Here the aligned sequences match in three positions. 

Algorithms for efficiently solving this type of problem are 
well known and are based on dynamic programming [2]. 

The structure and the function of lots of sequences in real 
world are unknown. Only a few sequences are with known 
structure and function. However, if they align they are 
similar. If they are similar then they might have same 
structure or function. Thus, aligned sequences give us 
important knowledge about how similar the two sequences 

are. Such knowledge can, for example, be used in 
determining the behavior of Web users and predicting the 
next action of them. Similarly, from financial time series data 
a user may be interested in finding, for example, stocks that 
had last week a large price fluctuations. 
3. Two-Dimensional Similarity 

Measure 
In this section, we propose a similarity measure for two 

dimensional sequences. The meaning of similarity depends 
however, largely on data type. As mentioned in the 
Introduction, the attributes of sequences may have values 
other then binary. The meaning of similarity may also vary 
depending on what kind of similarity we are looking for. 
Two sequences can be determined to be very similar by 
using only the order information of attributes and to be very 
different by using the values of attributes. The following are 
some definitions to formulate the two dimensional 
sequences.  

Definition 3.1 (Two-Dimensional Sequence) A two -
dimensional sequence of length n is a n-length sequence of 
ordered pairs given by P=[(α1 , λ1

α) (α2 , λ2
α) … (αn , λn

α)] 
where αi is the attribute over the set of attributes A={a1, a2, 
…, an} and λi

α being the corresponding value of αi over the 
integers. 

In the following definitions P=[(α1 , λ1
α) (α2 , λ2

α) … (αn , 
λn

α)] and Q=[(β1 , λ1
β) (β2 , λ2

β) … (βm , λm
β)] denote two 

two-dimensional sequences of length n and m respectively. 
The problem of finding the optimal sequence alignment of 
two two-dimensional sequences is solved using a dynamic 
programming formulation. We develop an algorithm based 
on the algorithm in [2] for this purpose. Briefly, the 
algorithm consists of three steps. The first step is 
initialization (Figure 1), where a scoring matrix is created 
with n + 1 columns and m + 1 rows where n and m 
correspond to the size of the sequences to be aligned. One 
sequence is placed along the top of the matrix (Q) and the 
other one along the left-hand-side of the matrix (P).  A gap 
is added to the end of each sequence which indicates the 
starting point of calculation of similarity score. There are 
three scores in this matrix: Scorel , r = sm which means that 
the residue at position l of sequence P is the same as the 
residue at position r of sequence Q (match score); otherwise 
Scorel , r = sd (mismatch score) or Scorel , r = sg (gap penalty). 
From this starting point, the last row is filled from right-to-
left such that each cell in the last row is the sum of the 
previous cell and the gap penalty. The last column of the 
matrix is filled from bottom-to-top in the same manner. 

The second step of the algorithm is FindScore (Figure 2), 
in which we calculate the two  dimensional  similarity  of  



Input: sg

Output: Score Matrix M 
 M(n + 1 , m + 1) ← 0 
2: for l = n down to l = 1 do 
  M(l , m + 1) ← M(l + 1 , m + 1) + sg 

4: end for 
 for r = m down to r = 1 do 
6:  M(n + 1 , r) ← M(n + 1 , r + 1) + sg

 end for  
Figure 1 : Algorithm of the initialization step  

 
sequences.  We implemented the algorithm with a module 
that takes into account the values of attributes. In our 
implementation the identical matching of attributes and the 
values of those attributes is given a score sm = 2  and  each 
mismatch or gap inserted to the sequences is given a penalty 
score of -1, i.e. sd = sg = -1.  Then the two-dimensional 
matching score Scorel , r = s(αl , βr) of the matrix is calculated 
for a pair of matching attributes αl = βr = ak where ak ∈ A as 
follows: 

],[
],[

),(, rl

rl

mrlrl max
min

ssScore
βα

βα

αλ
αλ

βα ==   

In that step the scoring matrix is filled by starting in the 
lower right hand corner in the matrix and finding the 
maximal score M(i , j) for each position in the matrix. Going 
left corresponds to inserting a gap in sequence P. Going up 
inserts a gap in sequence Q. Going diagonally up-left 
corresponds to matching. For each position, M(i,j) is defined 
to be the maximum of the three incoming values: 
 
Input : P, Q, sm, sg

Output : Score Matrix M 
 for r = m down to r = 1 do 
2:  for l = n down to l = 1 do 
  if αl = βr then  

4:    
],[
],[

, rl

rl

mrl max
min

sScore
βα

βα

αλ
αλ

=  

 else 
6:  Scorel , r = sd

 end if  
8: Vertical = M(l + 1 , r) + sg

 Diagonal = M(l + 1 , r + 1) + Scorel , r

10: Horizontal = M(l , r + 1) + sg

 M(l , r) = Max[Vertical , Diogonal, Horizontal] 
12: end for 

 end for   
Figure 2 : FindScore Algorithm 

 
M(i,j) = max[M(i+1,j+1)+ Score(match / mismatch in the 

diagonal), 
 M(i,j+1)+ sg(gap in sequence P), 

 M(i+1,j)+ sg(gap in sequence Q)] 
 
The third step is FindPath which determines the actual  

alignment(s) that lead to the maximal score (Figure 3). 
FindPath traverses the matrix beginning from the destination 
point (upper left corner) to the start point (lower right corner) 
of the matrix. It takes the current cell and looks at the 
neighboring cells that could be direct predecessors. This 
means that it looks at the neighbor to the right (gap in 
sequence P), the diagonal neighbor (match/mismatch), and 
the neighbor below it (gap in sequence Q). The algorithm for 
FindPath chooses as the next cell in the sequence one of the 
possible predecessors that leads to the maximal score. 

 
Input : Score Matrix M 
Output: Aligned Sequences Seq1 and Seq2 
 Seq1 ←{∅} 
2: Seq2 ←{∅} 
 r ← 1 , l ← 1 
4:  while r < m + 1 do 
  while l < n + 1 do 
6:    Vertical = M(l + 1 , r) 
   Diagonal = M(l + 1 , r + 1) 
8:   Horizontal = M(l , r + 1) 
   max = Max[Vertical , Diogonal , Horizontal] 
10:   if max = Vertical then  
    Seq1 ← Seq1 + {-} 
12:    Seq2 ← Seq2 + {αl} 
    l ← l + 1 
14:   else 
    if max = Diagonal then 
16:     Seq1 ← Seq1 + {βr} 
     Seq2 ← Seq2 + {αl} 
18:     l ← l + 1, r ← r + 1  
    else 
20:     if max = Horizontal then 
      Seq1 ← Seq1 + {βr} 
22:      Seq2 ← Seq2 + {-} 
      r ← r + 1 
24:     end if 
    end if 
26:   end if 
  end while 
28: end while 

Figure 3 : FindPath Algorithm 



The similarity between sequences is then calculated such 
that only the identical matching of sequences has a similarity 
value of 1. The similarity measure has two components, 
which we define as alignment score component and local 
similarity component. The alignment score component 
computes how similar the two sequences are in the region of 
their overlap. If the highest value of the score matrix of two 
sequences, P and Q is σ and the number of matching 
attributes is M in the aligned sequences, then the alignment 
score component is: 

Ms
QPs

m
a *

),( σ=  

The intuition behind this is that score σ is higher if the 
sequences have more consecutive matching attributes. This 
value is normalized by dividing it by the matching score and 
the number of matching attributes. The local similarity 
component computes how important the overlap region is. If 
the length of the aligned sequences is L, the local similarity 
component is: 

L
MQPsl =),(  

Then the overall similarity between two sessions is given by: 

),(*),(),( QPsQPsQPsim la=  

Example 1 Let us illustrate the calculation of two two-
dimensional sequences P = [(a2 , 1) (a8 , 1) (a4 , 2) (a3 , 2)] 
and Q = [(a2 , 1) (a8 , 2) (a6 , 2) (a5 , 1) (a3 , 1)] where ai ∈ A 
and A={a1, …, an} being the set of attributes.  The scoring 
matrix used in the computation of the similarity is given in 
Figure 4. Since a2 is identical in both sequences the matching 
score of this attribute is Score1,1 = 2 * (1/1). Then, the 
maximum score of that cell in the matrix is M(1,1) = M(2,2) 
+ Score1,1 = 0 + 2 = 2. However, the value of attribute a3 is 
not equal in both sequences. The matching score of that 
attribute is Score4,5 = 2 * (1/2). Then, the maximum score of 
that cell in the matrix is M(4,5) = M(5,6) + Score4,5 = 0 + 1 
= 1. Since the length of aligned sequences is 5 and the 
number of matching attributes in the aligned sequences is 3, 
the overall similarity between these two-dimensional 
sequences is sim(P , Q) = (2 / (2 * 3)) * (3 / 5).  

 
3.1 Complexity Considerations 

The size of the scoring matrix is is (n + 1) x (m + 1) when 
we consider two dimensional sequences of length n and m 
respectively. It takes a constant number of cell examinations, 
arithmetic operations and comparisons to fill in one cell of 
the matrix. There the FindScore algorithm takes O(mn) time 

and O(mn) space to compute. If the sequences compared are 
fairly short, the quadratic behavior of FindScore algorithm is 
not a problem. However, if the sequences are typically very 
long, it should be better to compute the similarity of 
sequences with more efficient algorithms than just dynamic 
programming [3].  

On each iteration in FindPath algorithm, either the index l, 
the index r or both of them, is decremented. This means, that 
the maximum number of iterations is m + n, and that the 
best alignment for two sequences is done in O(m + n) time. 

 
 a2 a8 a6 a5 a3 - 
a2 2 -1 -2 -2 -2 -4 
a8 -1  0 -1 -1 -1 -3 
a4 -3 -2 -1  0  0 -2 
a3 -3 -2 -1  0  1 -1 
- -5 -4 -3 -2 -1  0 
Figure 4: The scoring matrix for two-dimensional sequences 

 
4 Experimental Results  
In this section, we present some results of experiments on 
similarity between two-dimensional sequences. In 
subsection 4.1, we describe the data sets used in the 
experiments. All Experiments were performed on a Pentium 
II, 333 MHz PC with a 512 MB main memory running on 
Microsoft Windows 2000. The programs are coded in Java 
without code optimization 
4.1 Data Sets 

The experiments on similarity between two-dimensional 
sequences were made with two different data sets of WWW 
logs. The first data set is from the NASA Kennedy Space 
Center (NASA) server over the months of July and August 
1995 [4]. The second log is from ClarkNet (C.Net) Web 
server which is a full Internet access provider for the Metro 
Baltimore-Washington DC area [5]. This server log was 
collected over the months of August and September, 1995.  

A Web server log is an important source for performing 
Web usage mining because it explicitly records the browsing 
behavior of site visitors. The server records the time and date 
of the transaction. It records the name of the file that was sent 
and how big that file was. It records the Internet address to 
which the file was sent. If the user goes to a page by clicking 
a link on some other page, the server records the address of 
the page with that link. It also records some details about 
how the file was sent and any errors that may have occurred 
as well as information about the browser that the user is 
using. The data recorded in the server logs reflects the 
(possibly concurrent) access of a Web site by multiple users. 
The information provided by the Web server can all be used 



to construct a data model consisting of several abstractions, 
notably, users, pages, click-streams, server sessions. Since 
user sessions are ordered URL requests, we can refer to them 
as sequences of Web pages. The behavior of Web users can 
be modeled using sequences. However, an important feature 
of the user's navigation path is the time that a user spends on 
different pages [6]. Thus, the user navigation path turns into 
two-dimensional sequences. Each data set is cleaned in order 
to obtain user sessions where each user session is defined as 
the sequence of page views for a single visit of a user to a 
Web site [7]. The cleaning step is beyond the scope of this 
paper and the details of this step are given in [8]. After this 
step each user session is represented by the set of ordered 
Web pages that a user accessed during his or her single visit 
to the Web site and corresponding time information.  

4.2 Results and Discussion 

Approximately 30% of the cleaned user sessions of each 
data set are randomly selected as the test set, and the 
remaining part as the training set. After each request of user 
sessions in the test set we query the training set in order to 
find the most matching sequence in it. If two user sessions 
from the test set and training set are aligned with a high 
similarity value it means that they have similar structure and 
function. Thus, the pages of the matching user session in the 
training set can be used to find out the next page request of 
users in the test set. Based on the best matching sequence in 
the training set three pages are recommended to the user in 
the test set. A hit is declared if any one of the three 
recommended pages is the next request of the user in the test 
set. The hit-ratio is the number of hits divided by the total 
number of recommendations made by the system. A high 
hit-ratio means that the similarity measure is successful in 
finding most similar two-dimensional sequences.  

We have made three tests in order to evaluate the 
similarity measure and the effect of using quantitative values 
of attributes. In the first test we compare the two-
dimensional sequences with binary sequences. Figure 5 
shows these results. As can be seen from the figure using 
two-dimensional sequences improves the hit-ratio. These 
results prove that using quantitative values of attributes in the 
sequences provides useful knowledge in web domain.  

 
Data Set Q-Values B-Values 
NASA 61.61 59.9 
C.Net 55.76 51.29 

Figure 5: Results in %. (Q-Values = Quantitative values, B-
Values = Binary values) 

 
In the second test we perform graph based clustering  [9] 

based on the pair-wise similarities of user sessions in order to 
examine the effect of the similarity measure more deeply. 
Since the clustering is based on the proposed similarity 
measure the structure of the resulted clusters is tightly 
correlated with this measure. Figure 6 illustrates these results 
with 5 clusters. The effects of the number of clusters are 
examined in [8].  

 
Data Set Q-Values B-Values 
NASA 57.41 56.19 
C.Net 53 51.09 

Figure 6: Results in % for 5 clusters. 
 
In the third test, we run the experiments using another 

similarity measure. The similarity between two user sessions 
is calculated only using the length of common subsequence 
and the length of the user sessions. For example, let two user 
sessions be P=P1P2P3P4 and Q=P2P4P5P6. Since the length 
of matching subsequence is 2 (P2P4) and the length of both 
sessions is 4, the similarity is 

)4/2(*)4/2(),( =QPsim . Our similarity measure 

using time information performs about 8% better than this 
similarity measure. Even without using time information our 
measure results in about 4% better then this one. Figure 7 
illustrates these results. 

 
Data Set Q-Values Diff. 

Measure 
NASA 61.61 57.04 
C.Net 55.76 52 

Figure 7: Comparison of similarity measures.  
 

These results prove that using two-dimensional sequences in 
web domain improves the prediction accuracy. Furthermore, 
the proposed similarity measure is effective for finding pair-
wise similarities of two-dimensional sequences.  

5 Related Works 

Similarity searches in sequence databases are important in 
many application domains, such as information retrieval, 
web mining and clustering. Detecting stocks that have 
similar growth patterns, finding web users with similar 
interests are a few examples of similarity queries. In 
particular, we usually assume that similar sequences hold a 
similar function and structure. It is not surprising, thus, that 
among the first tools developed in the field of sequence 
analysis were those aimed to determine the degree of 
similarity between two sequences. 

Most of the previous techniques [10, 11] for similarity 
searches use the Euclidean distance measure as a similarity 



measure. However, in many applications, the length of 
sequences may be different, making it difficult or impossible 
to use the Euclidean distance as a similarity measure.  

A sequence matching method for sequences of different 
lengths based on dynamic programming is proposed in [2]. 
However, this approach is appropriate for sequences having 
binary valued attributes, such as biological sequences. While 
we focus on the sequences of continous numeric values, the 
approches of [2, 12] center on the sequences of charecters. 
Our approach combines both the advantages of Euclidean 
techniques and the advantages of dynamic programming 
techniueqes.  

6 Conclusion 

In this paper, we considered the problem of finding pair-
wise similarities between sequences of continous numeric 
values. We introduce a similarity measure for finding pair-
wise similarities of two-dimensional sequences. This 
similarity measure compares two sequences by means of 
their ordered attributes and corresponding values of those 
attributes. The current implementation of this approach is 
adapted to a recommendation model for web users. Another 
application domain could be market basket analysis. The 
proposed similarity measure may be useful to build a 
predictive model. Such a model will help to categorize and 
segment customers based on their purchase (or navigation) 
patterns.  
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