Towards Robust Behavioral Modeling of Reinforced Concrete Members

Kutay Orakçal

Boğaziçi University

with contributions of:

Denizhan Ulugtekin (M.Sc, B.U.)

Tevfik Terzioglu (M.Sc. B.U.)

S. Reza Chowdhury (Ph.D., B.U.)

International Workshop on "Role of Research Infrastructures in Seismic Rehabilitation"

Structural Modeling

- Modern codes on performance-based seismic assessment and design require nonlinear response analysis of structures.
- Analytical models should represent the behavioral characteristics of the members at both global and local response levels.
- Examples of novel analytical modeling approaches to be presented for nonlinear response simulation of RC members.
- Emphasis on simulation of nonlinear flexural, shear, and bond-slip responses in RC columns and walls

Modeling of Flexural Responses: The "MVLEM" for Structural Walls

Material Constitutive Models

Concrete:

- Chang and Mander (1994)
 - Generalized (can be updated)
 - > Allows refined calibration
 - Gap closure and tension stiffening
 - Validated with extensive data

Reinforcing Steel:

- Menegotto and Pinto (1973)
- Filippou et al. (1984)
 - > Simple but effective
 - Degradation of cyclic curvature

Experimental Verification of the Model

 Cyclic test results on slender rectangular and T-shaped wall specimens

(Thomsen and Wallace, 1995)

- Approximately 1/4 scale
- Aspect ratio = 3
- Prototype building design (UBC)
- Displacement based evaluation for detailing
- 3.66 m x 122 cm x 10 cm
- Loading:
 - Constant axial load
 - Cyclic lateral load applied at top of walls

Model Predictions:Lateral Load – Displacement Response

Strain Distribution and Curvatures

Modeling of Bond Slip Responses: MVLEM with Bond Slip Springs (Chowdhury, 2011)

Modified Model Element

Constitutive Bond Stress vs. Slip Models

Slip Deformation

Slip Deformation

Splitting

- Harajli et al. (2009)
- Unconfined and partiallyconfined concrete
- Experimentally-validated

Pull-out

- Eligehausen et al. (1983)
- Confined concrete, in vicinity of ties
- Experimentally-validated

Experimental Verification

- Melek and Wallace (2006)
- Columns with inadequate lap splices
- Detailed local response measurements
- Also verified with various experimental results available in the literature:

Harajli and Dagher (2008) Elgawady et al. (2010) Verderame et al. (2008) Yılmaz (2009) (ITU)

Model Predictions:Lateral Load – Displacement Response

• Specimen 2S10M $(P_{axial} = 10\% A_g f_c)$

Steel Strain Histories

Specimen 2S20M (at straingauge no. 7)

Concrete Strain Distribution

Specimen 2S10M (at halfway along lap splice length)

Columns with Plain Bars and 180° Hooks

Specimen LS-44\(\phi\rightarrow\nd{N1}\) by Yılmaz and İlki (2009), İstanbul Tech. Univ.

Plain bar

Lap length = 44∳

180-degree hooks

•
$$f_c = 10 \text{ MPa}$$
 $f_v = 285 \text{ MPa}$

$$P_{axial} = 0$$

Presence of 180-degree hooks prevents slip failure!!

Modeling of Shear-Flexure Interaction (SFI): MVLEM with Panel Sub-Elements

Assumptions:

- Plane sections remain plane
- Shear strains (γ_{xy}) are uniformly distributed along I_w
- Resultant horizontal stress (σ_x) is equal to zero for each panel element (agrees with boundary condition at sides)
- Assumptions are valid for h_w/l_w ≥ 1.0

Constitutive RC Panel Model Developed

The Fixed-Strut-Angle Panel Model

- Uncracked Panel Response:
 - Rotating principal stress angle approach
 - Monotonic stress-strain relationships
 - Behavior mostly in the linear elastic range

The Fixed-Strut-Angle Panel Model

Cracked Panel Response

- $\epsilon_1 > \epsilon_{cr,mon} \rightarrow \theta_{crA}$ (principal strain direction)
- σ_1 and σ_2 are || and \perp to θ_{crA}
- $\gamma_{x'y'} \rightarrow \tau_{x'y'} = 0$ (zero aggregate interlock)

Compression strut (direction fixed)

Experimental Verification of the Panel Model

- Cyclic panel test results by:
 - Mansour and Hsu (2001)
 - Stevens and Collins (1987)
- Accurate response predictions

Panel Tester at Univ. Of Houston

SFI Model Prediction for Slender Walls: Lateral Load – Displacement Response

Specimen RW2
Thomsen and
Wallace (1995)

Strain Distribution and Curvatures

SFI Model Prediction for Short Walls:

- Hirosawa (1975)
 - Cantilever wall
 - Shear cap. ≈ Flex. cap.

- Hidalgo et al. (2002)
 - Fixed-Fixed wall
 - ➤ Shear cap. ≈ 0.5 Flex. Cap.

Short Wall Test Program at B.U. (Terzioglu, 2011)

- 11 short wall specimens
- Aspect ratios: 1, 1/2, 1/3
- Width = 1.5 m
- Thickness = 120 mm
- Web reinforcement ratios: $\rho_{web} = 0.34\%$ or 0.68%
- Boundary reinforcement:
 4-φ16 or 2-φ8
- $P_{axial} = 0\%, 5\%, 10\% A_g f_c$
- $f_c = 20 \text{ MPa} 35 \text{ Mpa}$
- $f_y = 520 \text{ MPa}$

Different Failure Modes Observed

Instrumentation

• Detailed measurement of flexural and shear deformations, and average transverse normal strain (ε_x) distribution

Overview of Shear Modeling Approaches

ongoing efforts on a simplified finite element modeling approach for predominant shear (diagonal tension/compression or sliding)

Results and Ongoing Efforts

- Flexural response modeling for slender walls
 - accurate response predictions overall
 - compressive strain predictions improved via SFI
 - bar buckling and low-cycle fatigue effects can be adopted
- Bond slip response modeling for lap-spliced columns
 - accurate predictions for columns with deformed bars
 - > reasonable predictions for columns with plain bars
 - > need better constitutive models for 180° hooks
- Shear and shear-flexure interaction response modeling
 - fixed-crack-angle constitutive panel element developed
 - accurate response predictions for M/VI ratios > 0.7
 - test results will help improve predictions for shorter walls
 - a simple finite element modeling approach underway
- Implementation into computational platforms
 - OpenSees (in progress)

Towards Robust Behavioral Modeling of Reinforced Concrete Members

Kutay Orakçal

Boğaziçi University

with contributions of:

Denizhan Ulugtekin (M.Sc, B.U.)

Tevfik Terzioglu (M.Sc. B.U.)

S. Reza Chowdhury (Ph.D., B.U.)

International Workshop on "Role of Research Infrastructures in Seismic Rehabilitation"

