Hybrid Control of a 3-D Structure by using Seismic isolators and Semi-Active Dampers

Gürsoy Turan İzmir Yüksek Teknoloji Enstitüsü

gursoyturan@iyte.edu.tr

(sponsored by TÜBİTAK, Grant No: 107M353)

Goal

During strong seismic ground motions

- Base isolators shall not rupture
- Structural response should not be badly affected

Seismic Isolator displacement

Structural displacement

Goal

During strong seismic ground motions

- Base isolators shall not rupture
- Structural response should not be badly affected

Seismic Isolator displacement

Structural displacement

Goal

During strong seismic ground motions

- Base isolators shall not rupture
- Structural response should not be badly affected

Seismic Isolator displacement

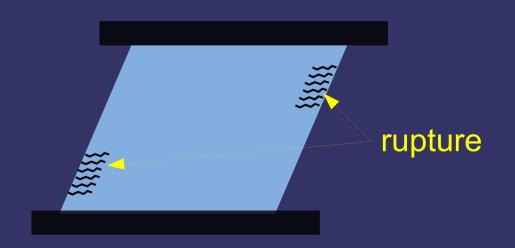
Structural displacement

- Intro: Control of Seismic isolated Structures
- 3-story building model
- semi active hydraulic damper
- Control Design
 - Linear Quadratic Regulator(LQR)
 - Upper Controller
- Response simulation
- **⇒** Results

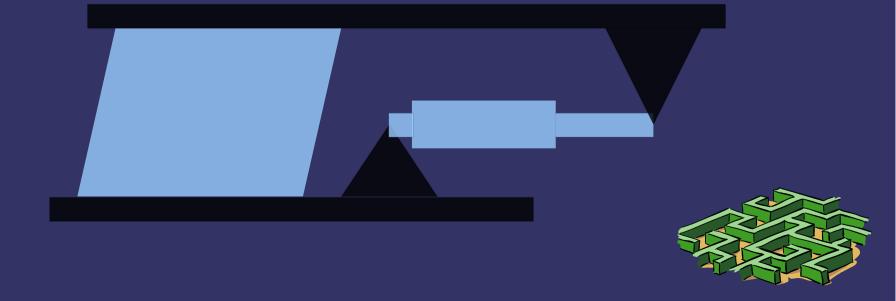
- Intro: Control of Seismic isolated Structures
- 3-story building model
- semi active hydraulic damper
- Control Design
 - Linear Quadratic Regulator(LQR)
 - Upper Controller
- Response simulation
- → Results

- Intro: Control of Seismic isolated Structures
- 3-story building model
- semi active hydraulic damper
- Control Design
 - Linear Quadratic Regulator(LQR)
 - Upper Controller
- Response simulation
- **⇒** Results

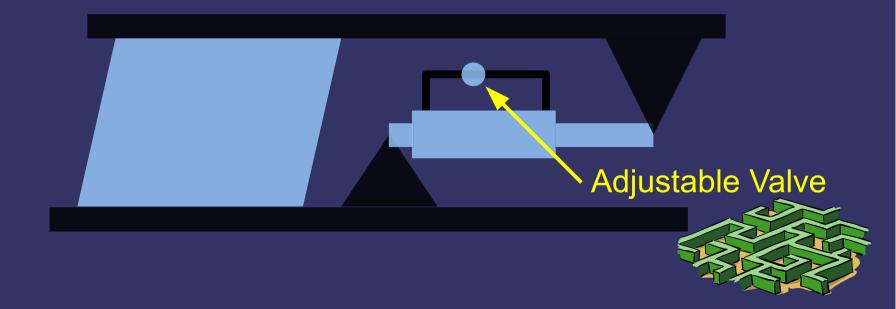
- Intro: Control of Seismic isolated Structures
- 3-story building model
- semi active hydraulic damper
- Control Design
 - Linear Quadratic Regulator(LQR)
 - Upper Controller
- Response simulation
- → Results


- Intro: Control of Seismic isolated Structures
- 3-story building model
- semi active hydraulic damper
- Control Design
 - Linear Quadratic Regulator(LQR)
 - Upper Controller
- Response simulation
- → Results

- Intro: Control of Seismic isolated Structures
- 3-story building model
- semi active hydraulic damper
- Control Design
 - Linear Quadratic Regulator(LQR)
 - Upper Controller
- Response simulation
- Results



- Base Isolator: Rupture at large displacements
- → Damper: Increases the impedance (dynamic rigidity) of the structure
- Solution: Adjustable damping foce



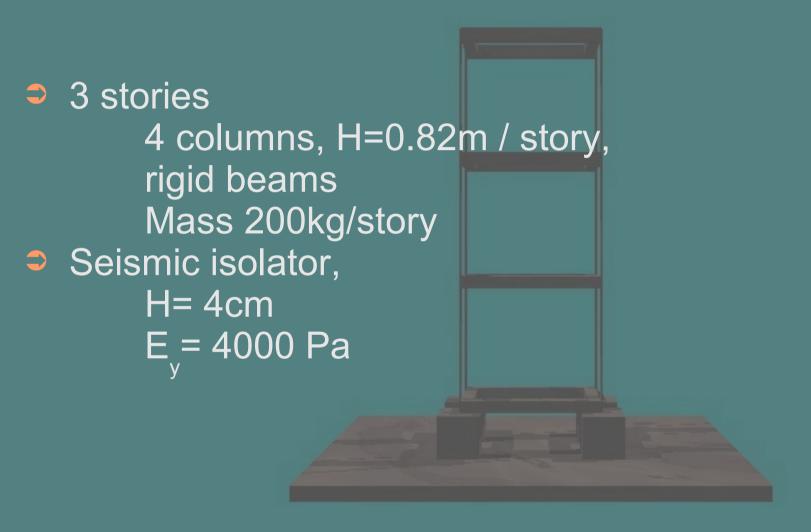
- Base Isolator: Rupture at large displacements
- Damper: Increases the impedance (dynamic rigidity) of the structure
- Solution: Adjustable damping foce

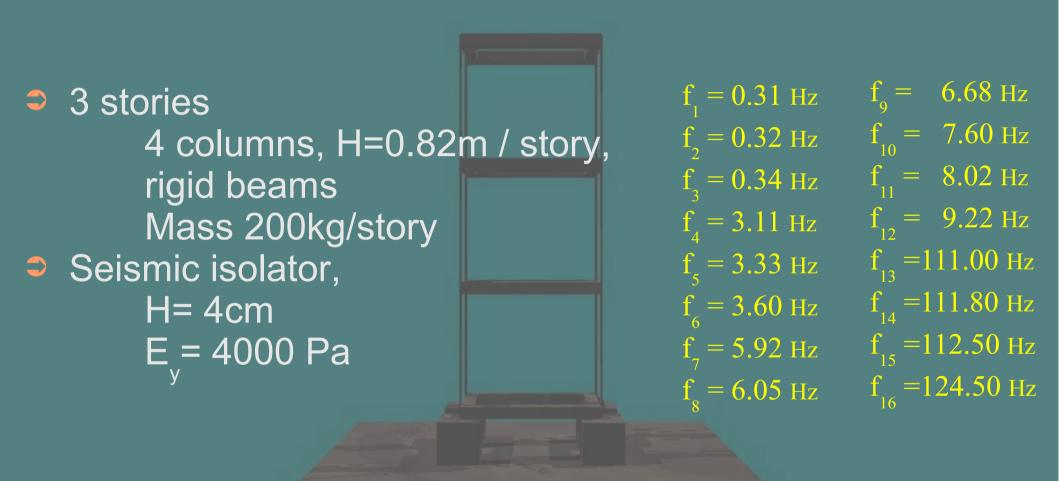
- Base Isolator: Rupture at large displacements
- Damper: Increases the impedance (dynamic rigidity) of the structure
- Solution: Adjustable damping foce

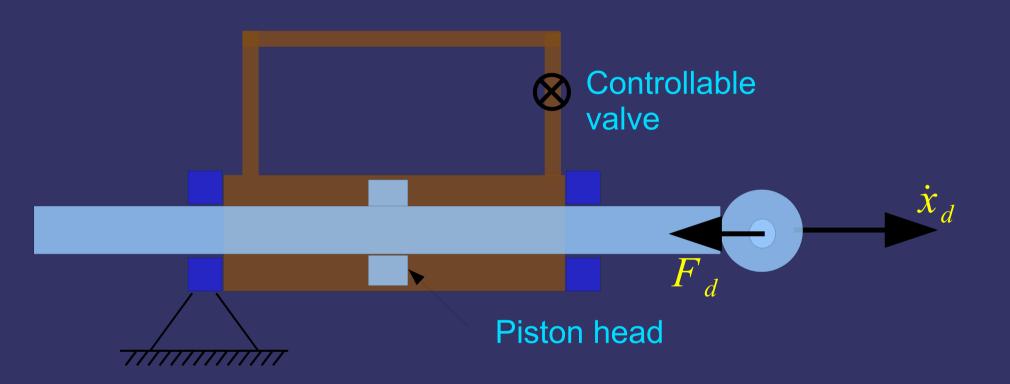
- ➤ Kurata et al. (1999) → response of full scale building model with semi active damper
- → Wongprasert & Symans (2005) → Building model with variable orifice damping - using fuzzy logic
- ⇒ Aldemir & Bakioğlu (2000) → Time scale controller design for semi active damper
- ⇒ Ribakov & Glück (2002) → MR damper control + ON-OFF upper controller
- ⇒ Çetin et.al (2009) → MR damper control

- ➤ Kurata et al. (1999) → response of full scale building model with semi active damper
- → Wongprasert & Symans (2005) → Building model with variable orifice damping - using fuzzy logic
- ⇒ Aldemir & Bakioğlu (2000) → Time scale controller design for semi active damper
- ⇒ Ribakov & Glück (2002) → MR damper control + ON-OFF upper controller
- ⇒ Çetin et.al (2009) → MR damper control

- ⇒ Kurata et al. (1999) → response of full scale building model with semi active damper
- → Wongprasert & Symans (2005) → Building model with variable orifice damping - using fuzzy logic
- → Aldemir & Bakioğlu (2000) → Time scale controller design for semi active damper
- ⇒ Ribakov & Glück (2002) → MR damper control + ON-OFF upper controller
- ⇒ Çetin et.al (2009) → MR damper control


- Sturata et al. (1999) → response of full scale building model with semi active damper
- → Wongprasert & Symans (2005) → Building model with variable orifice damping - using fuzzy logic
- → Aldemir & Bakioğlu (2000) → Time scale controller design for semi active damper
- Pibakov & Glück (2002) → MR damper control + ON-OFF upper controller
- → Çetin et.al (2009) → MR damper control


- ⇒ Kurata et al. (1999) → response of full scale building model with semi active damper
- → Wongprasert & Symans (2005) → Building model with variable orifice damping - using fuzzy logic
- → Aldemir & Bakioğlu (2000) → Time scale controller design for semi active damper
- ⇒ Ribakov & Glück (2002) → MR damper control + ON-OFF upper controller
- Çetin et.al (2009) → MR damper control


Building Model

Building Model

Damper with adjustable valve (semi active damper)

$$F_d \approx -c_d \dot{x}_d$$

$$5000 \frac{N \cdot s}{m} < c_d < 25000 \frac{N \cdot s}{m}$$

$$\mathbf{M} \ddot{x} + (\mathbf{C} + \mathbf{\Gamma}_d \mathbf{C}_d \mathbf{\Gamma}_d^T) \dot{x} + \mathbf{K} x = -\mathbf{M} \mathbf{\Gamma}_{eq} \ddot{x}_{eq}$$

$$\begin{split} \mathbf{M} \, \ddot{x} + (\mathbf{C} + \boldsymbol{\Gamma}_d \, \boldsymbol{C}_d \, \boldsymbol{\Gamma}_d^T) \, \dot{x} + \mathbf{K} \, x &= -\mathbf{M} \, \boldsymbol{\Gamma}_{eq} \, \ddot{x}_{eq} \\ \mathbf{M} \, \ddot{x} + (\mathbf{C} + \boldsymbol{\Gamma}_d \, \boldsymbol{C}_d \, \boldsymbol{\Gamma}_d^T) \, \dot{x} + \mathbf{K} \, x &= -\mathbf{M} \, \boldsymbol{\Gamma}_{eq} \, \ddot{x}_{eq} + \boldsymbol{\Gamma}_d \, u \end{split}$$

$$\begin{split} \mathbf{M} \, \ddot{x} + (\mathbf{C} + \boldsymbol{\Gamma}_d \, \boldsymbol{C}_d \, \boldsymbol{\Gamma}_d^T) \, \dot{x} + \mathbf{K} \, x &= -\mathbf{M} \, \boldsymbol{\Gamma}_{eq} \, \ddot{x}_{eq} \\ \mathbf{M} \, \ddot{x} + (\mathbf{C} + \boldsymbol{\Gamma}_d \, \boldsymbol{C}_d \, \boldsymbol{\Gamma}_d^T) \, \dot{x} + \mathbf{K} \, x &= -\mathbf{M} \, \boldsymbol{\Gamma}_{eq} \, \ddot{x}_{eq} + \boldsymbol{\Gamma}_d \, u \end{split}$$

2nd order diff. Equation --> 1st order diff.Eqn.

$$\dot{q} = A q + B_1 \ddot{x}_g + B_2 u$$

$$\begin{split} \mathbf{M} \, \ddot{x} + (\mathbf{C} + \boldsymbol{\Gamma}_d \, \boldsymbol{C}_d \, \boldsymbol{\Gamma}_d^T) \, \dot{x} + \mathbf{K} \, x &= -\mathbf{M} \, \boldsymbol{\Gamma}_{eq} \, \ddot{x}_{eq} \\ \mathbf{M} \, \ddot{x} + (\mathbf{C} + \boldsymbol{\Gamma}_d \, \boldsymbol{C}_d \, \boldsymbol{\Gamma}_d^T) \, \dot{x} + \mathbf{K} \, x &= -\mathbf{M} \, \boldsymbol{\Gamma}_{eq} \, \ddot{x}_{eq} + \boldsymbol{\Gamma}_d \, u \end{split}$$

2nd order diff. Equation --> 1st order diff.Eqn.

$$\dot{q} = A q + B_1 \ddot{x}_g + B_2 u$$

Here,
$$q = \begin{bmatrix} x & \dot{x} \end{bmatrix}^T$$

$$A = \begin{bmatrix} 0 & I \\ -\mathbf{M}^{-1}\mathbf{K} & -\mathbf{M}^{-1}(\mathbf{C} + \mathbf{\Gamma}_d \mathbf{C}_d \mathbf{\Gamma}_d^T) \end{bmatrix} \qquad B_1 = \begin{bmatrix} 0 \\ \mathbf{\Gamma}_{eq} \end{bmatrix} \quad B_2 = \begin{bmatrix} 0 \\ \mathbf{M}^{-1} \mathbf{\Gamma}_d \end{bmatrix}$$

$$B_1 = \begin{bmatrix} 0 \\ \Gamma_{eq} \end{bmatrix} \quad B_2 = \begin{bmatrix} 0 \\ \Gamma_{eq} \end{bmatrix}$$

Control Design: (LQR)

Minimization problem

$$V(q) = \int_{0}^{\infty} q^{T} Q q + u^{T} R u dt$$

Kontrol force contribution

Structural response contribution

Control Design: (LQR)

The optimal control force that minimizes the problem definition

$$u^o = -R^{-1}B_2^T \bar{P} q^o$$

Here, \bar{P} is the solution to the following Ricatti equation

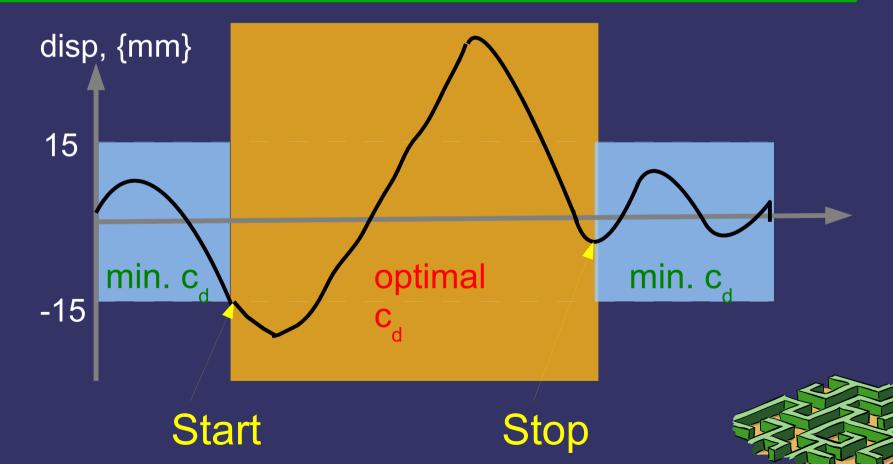
$$A^{T}\bar{P} + \bar{P}A + Q - \bar{P}B_{2}R^{-1}B_{2}^{T}\bar{P} = 0$$

- Damping levels: 5000 : 5000 : 25000 Ns/m
 5 positions / damper
- No. of dampers = 4

Therefore

- 625 damping configurations, and thus
- 625 optimal control equations
 (The minimization problem is solved for 625 different configurations)

- Damping levels: 5000 : 5000 : 25000 Ns/m5 positions / damper
- No. of dampers = 4


Therefore

- 625 damping configurations, and thus
- 625 optimal control equations
 (The minimization problem is solved for 625 different configurations)

- d_{base} < 15mm → minimum damping
- ⇒ d_{base} > 15mm → optimal damping

- ⇒ d_{base} < 15mm → minimum damping</p>
- ⇒ d_{base} > 15mm → optimal damping

At time t_i, the upper controller

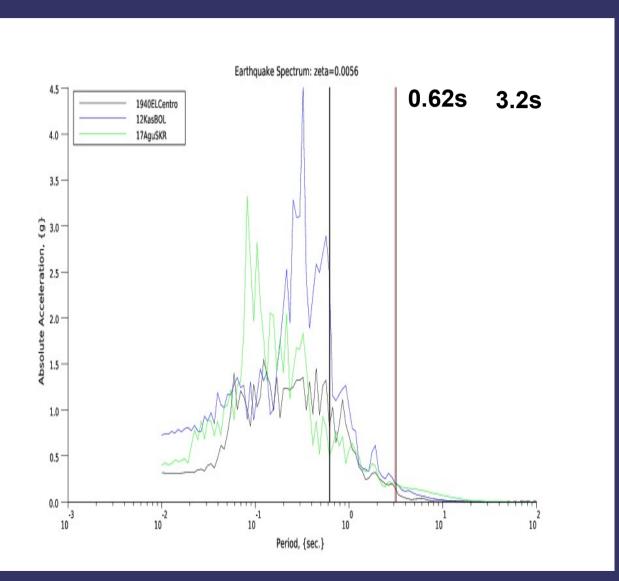
- calculates the optimal control force, u
- calculates the closest damping force to achieve the desired optimal control force
- switches to the calculated damping state

At time t_i, the upper controller

- calculates the optimal control force, u
- calculates the closest damping force to achieve the desired optimal control force
- switches to the calculated damping state

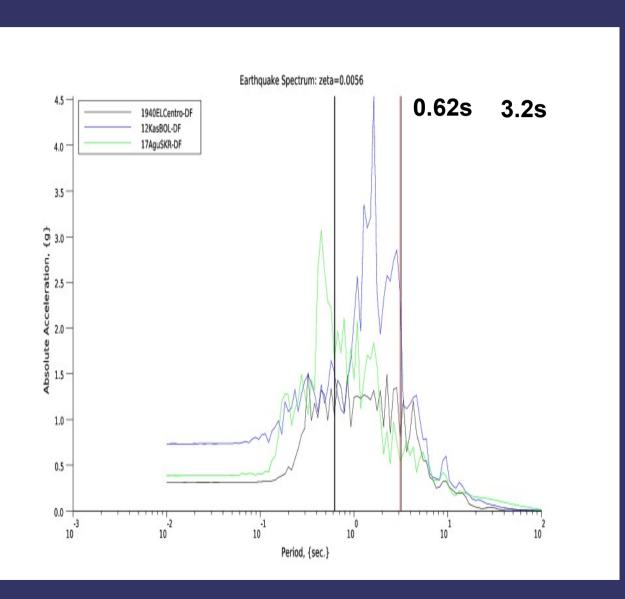
At time t_i, the upper controller

- calculates the optimal control force, u
- calculates the closest damping force to achieve the desired optimal control force
- switches to the calculated damping state

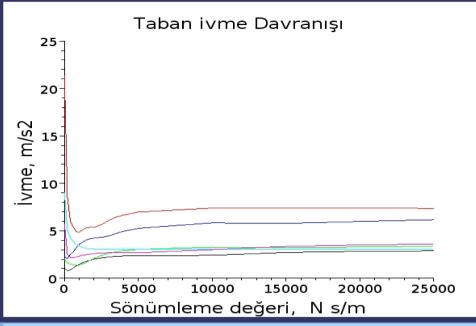

Response simulation

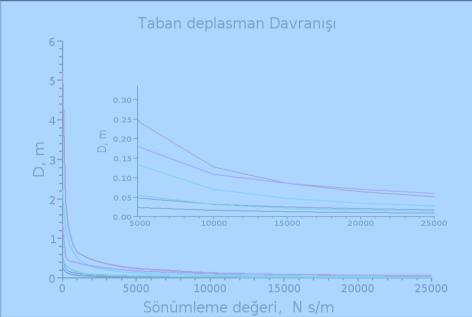
Selected Earthquakes

19.05.1940 Imperial Valley (El Centro) 12.11.1999 Düzce (Bolu) 17.08.1999 Kocaeli (Sakarya)

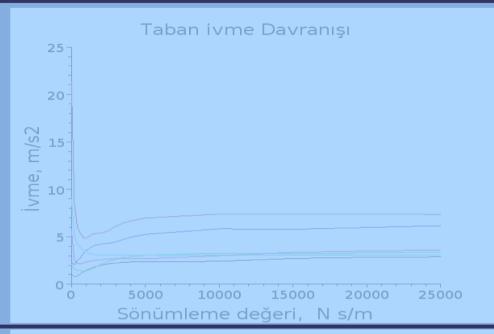

Earthquake		Date	A _{max} ,	V _{max} ,	D _{max} ,
			{ g }	{m/s}	{m}
1	I-ELC-180	1940	0.296	0.236	0.130
	I-ELC-270	1940	0.179	0.279	0.221
2	Bolu-000	1999	0.728	0.405	0.230
	Bolu-090	1999	0.822	0.620	0.132
3	SKR-090	1999	0.317	0.284	0.442
4	I-ELC-180-DF	-	0.304	1.18	3.25
	I-ELC-270-DF	1	0.182	1.39	5.51
5	Bolu-000-DF	-	0.733	2.03	5.74
	Bolu-090-DF	-	0.830	3.10	3.30
6	SKR-090-DF	-	0.337	1.42	11.0

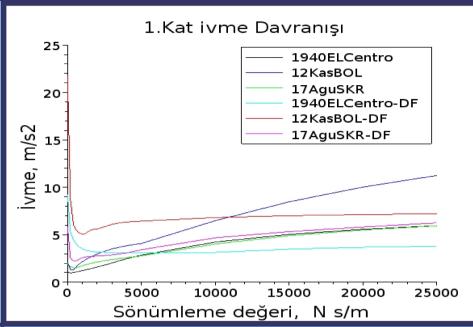
Response simulation

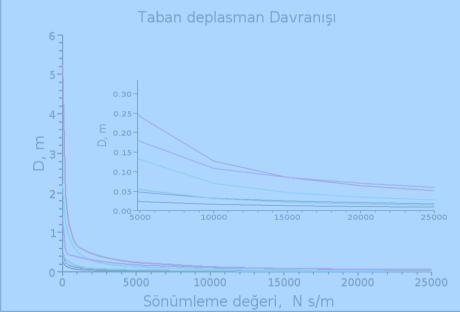

19.05.1940 Imperial Valley (El Centro) 12.11.1999 Düzce (Bolu) 17.08.1999 Kocaeli (Sakarya)

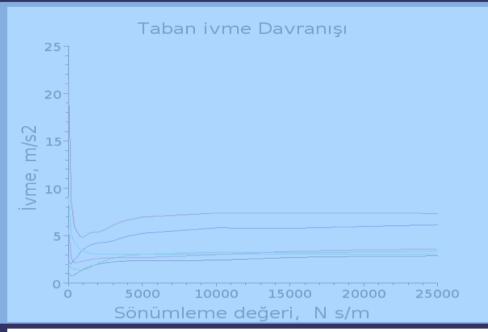


19.05.1940 Imperial Valley (El Centro) 12.11.1999 Düzce (Bolu) 17.08.1999 Kocaeli (Sakarya)

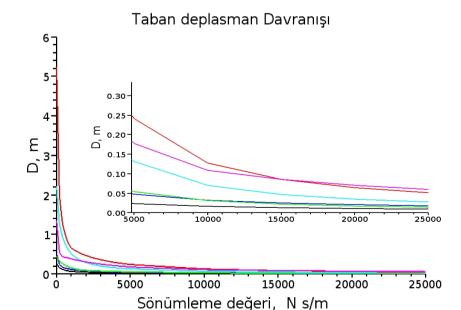


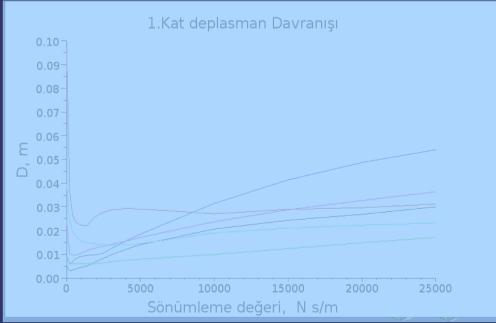


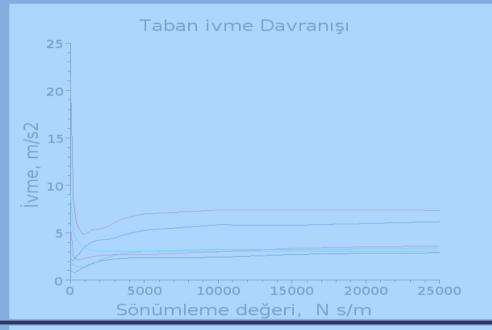


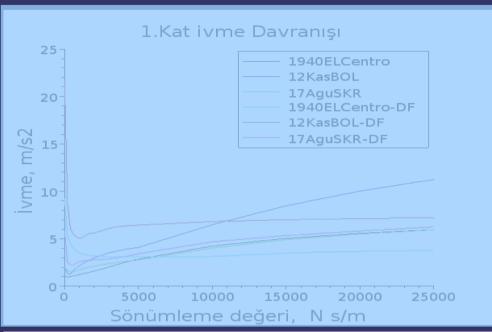


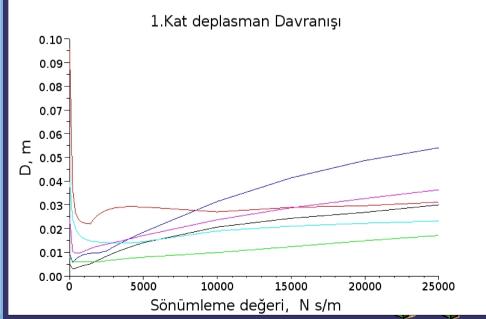


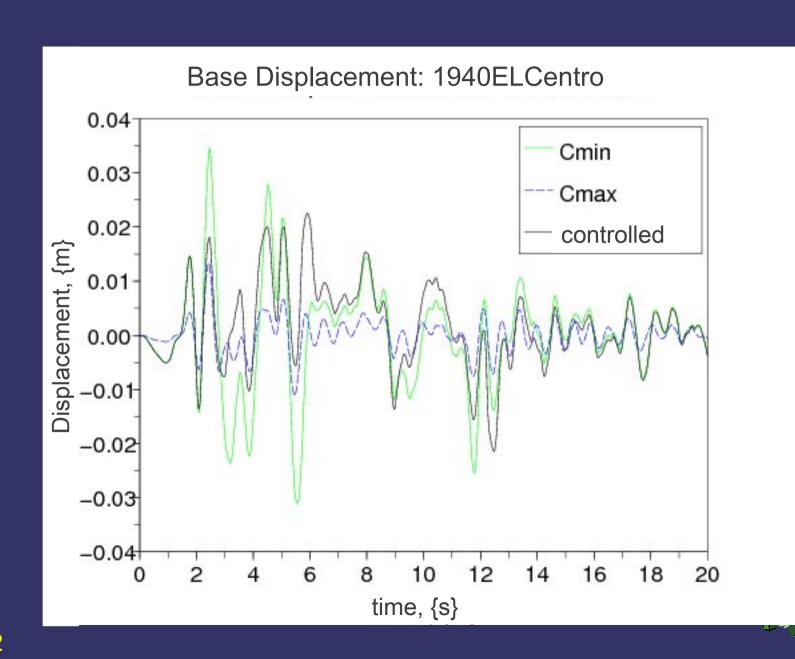


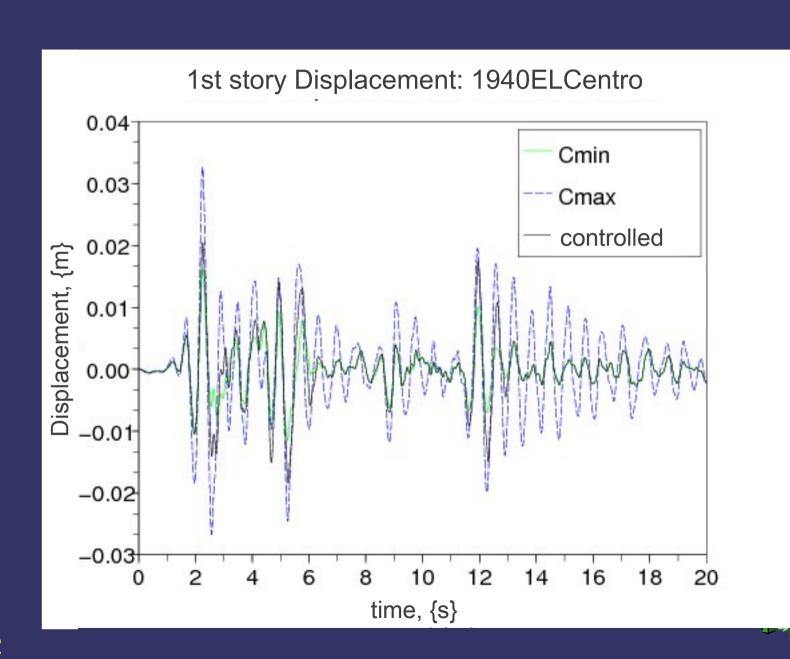


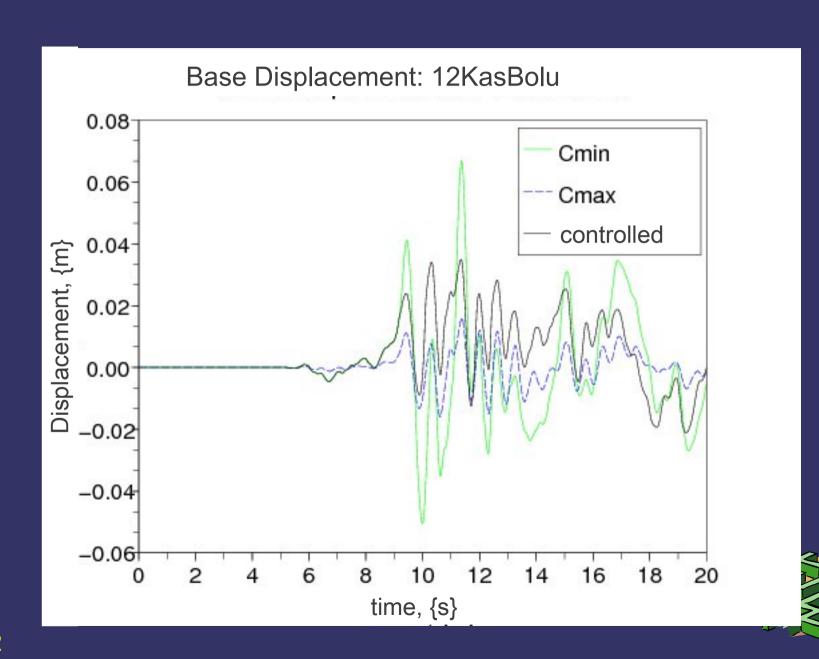


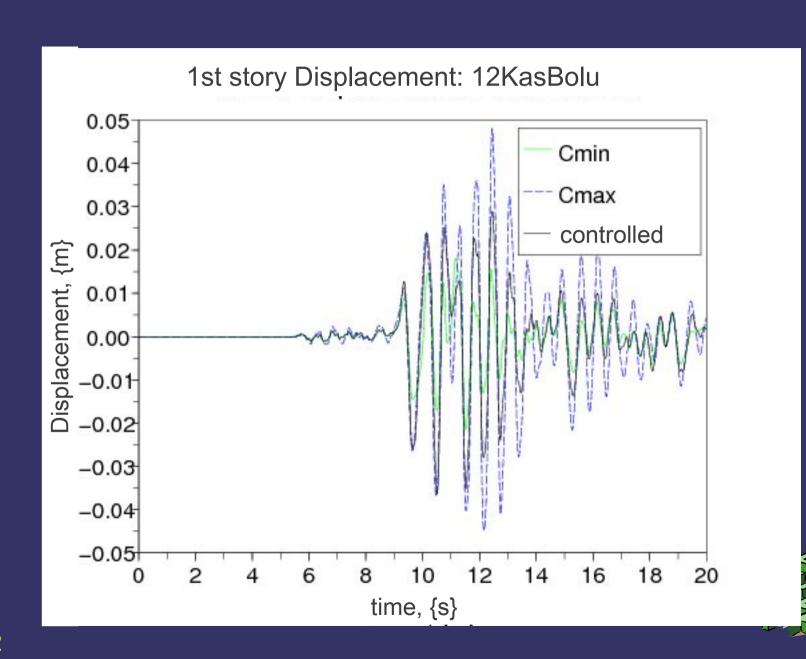


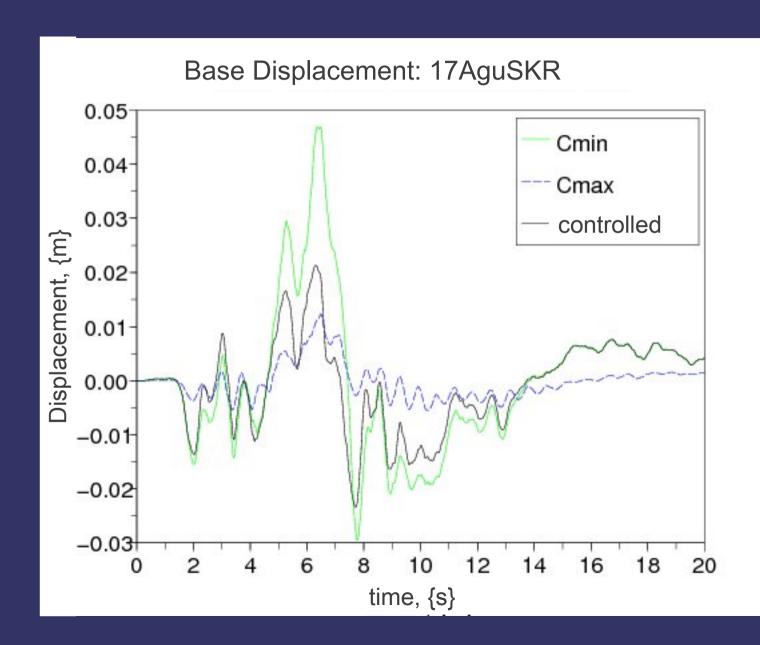


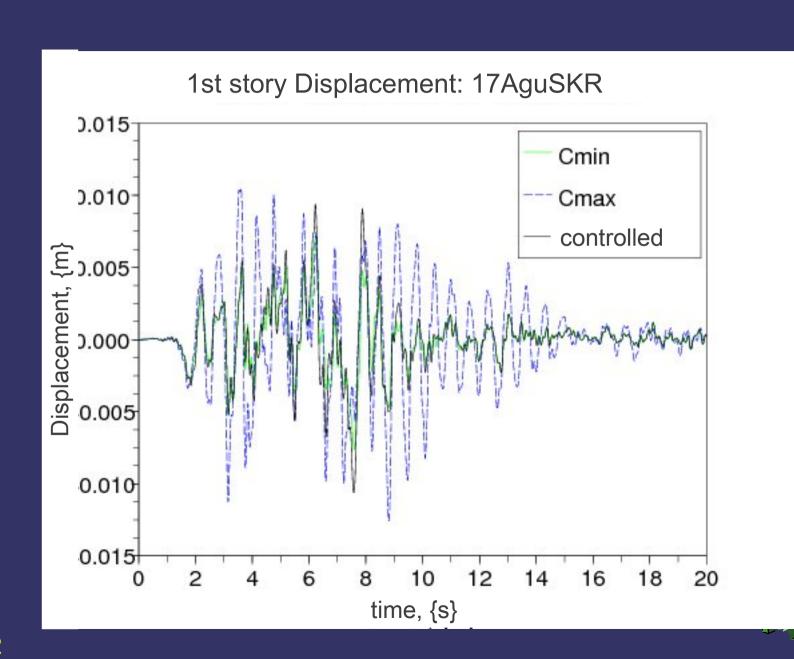












	d	C _{min}	C _{max}	C _{contr}	$\frac{C_{contr} - C_{min}}{C_{min}}$
El Centro	Base {m}	0.035	0.013	0.022	-35 %
	1st story {m}	0.016	0.033	0.020	26 %
Bolu	Base {m}	0.067	0.016	0.035	-48 %
	1st story {m}	0.022	0.048	0.036	69 %
Sakarya	Base {m}	0.047	0.012	0.023	-50 %
	1st story {m}	0.0076	0.0126	0.0106	39 %

	d	C _{min}	C _{max}	C _{contr}	$\frac{C_{contr} - C_{min}}{C_{min}}$
El Centro	Base {m}	0.035	0.013	0.022	-35 %
	1st story {m}	0.016	0.033	0.020	26 %
Bolu	Base {m}	0.067	0.016	0.035	-48 %
	1st story {m}	0.022	0.048	0.036	69 %
Sakarya	Base {m}	0.047	0.012	0.023	-50 %
	1st story {m}	0.0076	0.0126	0.0106	39 %

	d	C _{min}	C _{max}	C _{contr}	$\frac{C_{contr} - C_{min}}{C_{min}}$	$\frac{C_{contr} - C_{max}}{C_{max}}$
El Centro	Base {m}	0.035	0.013	0.022	-35 %	69 %
	1st story {m}	0.016	0.033	0.020	26 %	-37 %
Bolu	Base {m}	0.067	0.016	0.035	-48 %	117 %
	1st story {m}	0.022	0.048	0.036	69 %	-24 %
Sakarya	Base {m}	0.047	0.012	0.023	-50 %	90 %
	1st story {m}	0.0076	0.0126	0.0106	39 %	-16 %

Results

Benefits of using base isolators together with semi active dampers

- Isolator displacement is reduced (%35-%50 reduction w.r.t. min. damping case).
- ⇒ No significant increase in 1st story displacement response (%16-%37 w.r.t. max. damping)
- This control system is robust because energy is only introduced to change the valve positions of the dampers

Results

Benefits of using base isolators together with semi active dampers

- Isolator displacement is reduced (%35-%50 reduction w.r.t. min. damping case).
- No significant increase in 1st story displacement response (%16-%37 w.r.t. max. damping)
- This control system is robust because energy is only introduced to change the valve positions of the dampers

Results

Benefits of using base isolators together with semi active dampers

- Isolator displacement is reduced (min. sönümlemeye göre 35-%50 azalmıştır.).
- No significant increase in 1st story displacement response (%16-%37 w.r.t. max. damping)
- This control system is robust because energy is only introduced to change the valve positions of the dampers

Thank you

Gürsoy Turan İzmir Yüksek Teknoloji Enstitüsü

gursoyturan@iyte.edu.tr

(TÜBİTAK 107M353)