## WORKSHEET-3

Course: MAT101E
Subject: Derivatives

1. Using the definition, find the derivatives of the following functions. Then evaluate the derivatives at the specified points.
(a) $f(x)=(x-1)^{2}+1 ; \quad f^{\prime}(-1), f^{\prime}(0), f^{\prime}(2)$.
(b) $f(x)=\frac{1}{\sqrt[3]{x}} ; \quad f^{\prime}(-1), f^{\prime}(2)$.
(c) $f(x)=\cos (2 x+1) ; \quad f^{\prime}(-1 / 2), f^{\prime}\left(\frac{\pi-2}{4}\right)$.
(d) $f(x)=\frac{1}{\sqrt{x}} ; \quad f^{\prime}(1), f^{\prime}(1 / 2)$.
2. Show that the following functions are differentiable at $x=0$.
(a) $f(x)=|x| \sin x$
(c) $f(x)=\sqrt[3]{x}(1-\cos x)$
(b) $f(x)=x^{2 / 3} \sin x$
(d) $h(x)= \begin{cases}x^{2} \sin (1 / x), & x \neq 0 \\ 0 & x=0\end{cases}$
3. Let $f(x)=\left\{\begin{array}{rl}\sqrt{x} & 0 \leq x \leq 1 \\ 2 x-1 & x>1\end{array}\right.$. Is $f$ differentiable at $x=1$ ? Give your reasons by using the definition of differentiability.
4. Find the values of $a$ and $b$ that make

$$
f(x)=\left\{\begin{array}{rl}
a x+b & x<0 \\
2 \sin x+3 \cos x & x \geq 0
\end{array}\right.
$$

differentiable at $x=0$ ?
5. (a) Graph the function $f(x)=\left\{\begin{array}{rl}x^{3} & x<1 \\ \sqrt{x} & x \geq 1 .\end{array}\right.$
(b) Is $f$ continuous at $x=1$ ?
(c) Is $f$ differentiable at $x=1$ ?

Give reasons for your answers.
6. Let $f(x)=\left\{\begin{array}{ll}x+b & x<0 \\ \cos x & x \geq 0\end{array}\right.$.
(a) Is there a value of $b$ that makes $f(x)$ continuous at $x=0$ ? If so, what is it? If not, why not?
(b) Is there a value of $b$ that makes $f(x)$ differentiable at $x=0$ ? If so, what is it? If not, why not?
7. Does the curve $y=2 \sqrt{x}$ have a horizontal tangent line? Explain your answer.
8. Does the parabola $y=2 x^{2}-13 x+5$ have a tangent line with slope -1 ? If so, find the equation of that tangent line.
9. (a) Let $f(x)$ be a function defined on $[-1,1]$ for which $|f(x)| \leq x^{2}$ holds. Show that $f(x)$ is differentiable at $x=0$ and find $f^{\prime}(0)$.
(b) Using (a), evaluate $g^{\prime}(0)$ for the function

$$
g(x)=\left\{\begin{array}{rl}
x^{2} \sin \frac{1}{x} & x \neq 0 \\
0 & x=0
\end{array}\right.
$$

10. Find the first and second order derivatives of the following functions.
(a) $y=\left(x^{2}+1\right)\left(x+5+\frac{1}{x}\right)$
(b) $y=(1-x)^{4}\left(1+\sin ^{2} x\right)^{-5}$
(c) $y=\left(\frac{1-\sqrt{x}}{1+\sqrt{x}}\right)^{4}$
(d) $y=\frac{1}{\left(x^{2}+1\right)\left(x^{2}+x+1\right)}$
11. If $u$ and $v$ are differentiable functions of $x$ and $u(1)=2, u^{\prime}(1)=0, v(1)=5, v^{\prime}(1)=-1$, evaluate the following derivatives at $x=1$.
(a) $\frac{d}{d x}(u v)$,
(b) $\frac{d}{d x}\left(\frac{u}{v}\right)$,
(c) $\frac{d}{d x}\left(\frac{v}{u}\right)$,
(d) $\frac{d}{d x}(7 v-2 u)$.
12. Is there a value of the constant $m$ for which the function $f(x)=\left\{\begin{array}{cl}\sin 2 x, & x \leq 0 \\ m x, & x>0\end{array}\right.$
(a) is continuous at $x=0$ ?
(b) is differentiable at $x=0$ ?

Give reasons for your answers.
13. For which values of $a$ and $b$ is the function

$$
f(x)= \begin{cases}a x+b & , \\ a x^{3}+x+2 b, & x>-1\end{cases}
$$

differentiable for all real numbers?
14. Consider the function

$$
f(x)=\left\{\begin{array}{cl}
3 x, & x<0 \\
-(2-x)^{2}, & 0 \leq x \leq 2 . \\
x^{2}-4, & x>2
\end{array} .\right.
$$

(a) Analyze the continuity of $f(x)$ at $x=0$ and $x=2$ ?
(b) Analyze the differentiability of $f(x)$ at $x=0$ and $x=2$ ?

Give reasons for your answers.
15. Find the derivatives of the following functions:
(a) $y=x^{7}+\sqrt{7} x-\frac{1}{\pi+1}$,
(e) $y=2 \tan ^{2} x-\sec ^{2} x$,
(b) $y=(x+1)^{2}\left(x^{2}+2 x\right)$,
(c) $y=(2 x-5)(4-x)^{-1}$,
(f) $y=x^{-3} \sec (2 x)^{2}$,
(d) $y=\left(-1-\frac{\csc \theta}{2}-\frac{\theta^{2}}{4}\right)^{2}$,
(g) $y=5 \cot x^{2}$.
16. Find the derivatives of the following functions:
(a) $y=\frac{t}{\sqrt{t+1}}$,
(f) $y=\left(\frac{x^{2}}{8}+x-\frac{1}{x}\right)^{4}$,
(b) $y=(\sec x+\tan x)(\sec x-\tan x)$,
(g) $y=\left(\frac{x}{5}+\frac{1}{5 x}\right)^{5}$,
(c) $y=\frac{\sin t}{1-\cos t}$,
(h) $y=\left(x^{2}+3 x+1\right)^{1 / 4}$,
(d) $y=\frac{\tan x}{1+\tan x}$,
(i) $y=\left(\frac{\sin x}{1+\cos x}\right)^{2}$,
(e) $y=\sin x^{3}$,
(j) $y=4 \sin (\sqrt{x})$.
17. Find the derivatives of the following functions:
(a) $y(x)=\frac{\sqrt{x}}{1+\sqrt{x}}+(\sec x+\tan x)^{5}$,
(b) $y(x)=\sin (x+\sqrt{x+1})+\left(\frac{1-x^{3}}{2 x^{2}+5}\right)^{2}$.
18. Find the points on the curve $y=2 x^{3}-3 x^{2}-12 x+20$ at which the tangent line is
(a) perpendicular to the line $y=1-\frac{x}{24}$,
(b) parallel to the line $y=\sqrt{2}-12 x$.
19. The curve $y=a x^{2}+b x+c$ passes through the point $(1,2)$ and is tangent to the line $y=x$ at the origin. Find the constants $a, b$, and $c$.
20. Suppose that $f$ is continuous and it satisfies the following conditions for all real values of $x$ and $y$ :
(a) $f(x+y)=f(x) \cdot f(y)$;
(b) $f(x)=1+x g(x)$, where $\lim _{x \rightarrow 0} g(x)=1$.

Show that the derivative $f^{\prime}(x)$ exists at every value of $x$ and that $f^{\prime}(x)=f(x)$.
21. Find $d^{2} y / d x^{2}$ of the following functions:
(a) $x^{3}+y^{3}=1$,
(b) $y^{2}=1-\frac{2}{x}$.
22. By differentiating $x^{2}-y^{2}=1$ implicitly, show that:
(a) $d y / d x=x / y$,
(b) $d^{2} y / d x^{2}=-1 / y^{3}$.
23. Use implicit differentiation to find $d y / d x$ for the following:
(a) $x^{2} y+x y^{2}=6$
(c) $y^{2} \cos \frac{1}{y}=2 x+2 y$
(e) $2 x y+y^{2}=x+y$
(b) $x+\sin y=x y$
(d) $y^{2}=\frac{x-1}{x+1}$
(f) $x^{2}(x-y)^{2}=x^{2}-y^{2}$
24. Find an equation for the tangent line to each of the following parametrized curves at the given value. Also, find the value of $\frac{d^{2} y}{d x^{2}}$ at the given point.
(a) $x=\sec ^{2} t-1, y=\tan t ; \quad t=-\pi / 4$,
(b) $x=-\sqrt{t+1}, y=\sqrt{3 t} ; \quad t=3$,
(c) $x=2 t^{2}+3, y=t^{4} ; \quad t=-1$,
(d) $x=t-\sin t, y=1-\cos t ; \quad t=\pi / 3$,
(e) $x=t, y=\sqrt{t} ; \quad t=1 / 4$.
25. If $y^{3}+y=2 \cos x$, find the value of $\frac{d^{2} y}{d x^{2}}$ at the point $(0,1)$.
26. Find an equation of the tangent line to the curve $x \sin \left(x y-y^{2}\right)=x^{2}-1$ at $(1,1)$.
27. Find an equation of the line tangent to the curve $\left(x^{2}+1\right) y+\frac{1}{\pi} \sin (\pi(y+\sqrt{x}))=2$ at the point $(1,1)$.
28. Find the points on the curve $x^{2}+x y+y^{2}=7$; (a) at which the tangent line is parallel to the $x$-axis and (b) at which the tangent line is parallel to the $y$-axis.
29. Assuming that the following equations define a parametrized curve giving $x$ and $y$ implicitly as differentiable functions of $t$, find the slope of the curve at the given value.

$$
x \sin t+\sqrt{x}=t, \quad t \sin t-2 t=y, \quad t=\pi
$$

