WORKSHEET 2

Course: Mat101E / Mat103E
Content: Limit and Continuity

1. Use $\epsilon-\delta$ definition to prove that:
(a) $\lim _{x \rightarrow-4} \sqrt{1-2 x}=3$
(b) $\lim _{x \rightarrow \sqrt{3}} \frac{1}{x^{2}}=\frac{1}{3}$
(c) $\lim _{x \rightarrow 2} \frac{x^{2}-1}{x+3}=\frac{3}{5}$
(d) $\lim _{x \rightarrow 1} \frac{1}{\sqrt{x}+1}=\frac{1}{2}$
(e) $\lim _{x \rightarrow 2}(x-2)^{3} \sin \frac{1}{x-2}=0$
(f) $\lim _{x \rightarrow 1}\left(x^{2}-1\right) \cos \frac{1}{x-1}=0$
(g) $\lim _{x \rightarrow 1}\left(x^{2}+x+3\right)=5$
(h) $\lim _{x \rightarrow 1}\left(x^{2}+x+3\right) \neq 1$
2. For the following limits find the appropriate value of δ that corresponds to the given ϵ value:
(a) $\lim _{x \rightarrow-1}(1-2 x)=3, \epsilon=0.01$
(b) $\lim _{x \rightarrow 0} \frac{1}{x-1}=-1, \epsilon=0.5$
(c) $\lim _{x \rightarrow 2} \sqrt{11-x}=3, \epsilon=1$
3. Find the following limits if they exist or explain why they do not exist.
(a) $\lim _{x \rightarrow 64} \frac{\sqrt{x}-8}{\sqrt[3]{x}-4}$
(j) $\lim _{x \rightarrow \infty} \frac{\sqrt{x}+x}{\sqrt{x}+\cos x}$
(s) $\lim _{x \rightarrow 0} x \sin \frac{1}{x}$
(b) $\lim _{x \rightarrow 1} \frac{1-\sqrt{x}}{1-x}$
(k) $\lim _{x \rightarrow \infty} e^{x} \sin \left(e^{-x}\right)$
(t) $\lim _{x \rightarrow 0} \frac{\sin ^{2} 3 x}{5 x^{2}}$
(c) $\lim _{x \rightarrow 27} \frac{\sqrt{x}-3 \sqrt{3}}{\sqrt[3]{x}-3}$
(l) $\lim _{x \rightarrow \infty} \frac{x^{2}+2}{x-5}$
(d) $\lim _{x \rightarrow 0} \frac{\sqrt[3]{x+1}-1}{\sqrt[4]{x+1}-1}$
(m) $\lim _{x \rightarrow \infty} \frac{x-5}{x^{2}+2}$
(e) $\lim _{x \rightarrow 0} \frac{x}{\tan 3 x}$
(n) $\lim _{h \rightarrow 0} \frac{\cos h-1}{h}$
(u) $\lim _{x \rightarrow 0} \frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x^{3}}$
(f) $\lim _{x \rightarrow \pi} \frac{\sin x}{x-\pi}$
(o) $\lim _{x \rightarrow \infty} \frac{2 x}{\sin x}$
(v) $\lim _{x \rightarrow 0} \frac{\sqrt{1+x^{2}}-\sqrt{1+x}}{x}$
(w) $\lim _{x \rightarrow 0} \frac{1+\sin x-\cos x}{1-\sin x-\cos x}$
(g) $\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x(1-\cos x)}$
(p) $\lim _{x \rightarrow \infty} \frac{x+\sin x}{2 x+5}$
(x) $\lim _{x \rightarrow \infty} x\left(\sqrt{9 x^{2}+1}-3 x\right)$
(h) $\lim _{x \rightarrow \infty} \frac{x+\sin x}{x+\cos x}$
(q) $\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{x}$
(y) $\lim _{x \rightarrow 3} \frac{3-x}{\sqrt{4-x}-\sqrt{\frac{x}{3}}}$
(i) $\lim _{x \rightarrow \mp \infty} \tan ^{-1} x$
(r) $\lim _{x \rightarrow 0} \frac{\frac{1}{2+x}-\frac{1}{2}}{x}$
(z) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-\sqrt{x^{2}-1}\right)$
4. Let $\lim _{x \rightarrow 1} f(x)=-1$. Evaluate $\lim _{x \rightarrow 1} \frac{\sin (1+f(x))}{1-f^{2}(x)}$.
5. Find the right-hand and left-hand limits of the following functions at the given point.
(a) $y=\frac{|x-1|}{x-1}+x^{2}, \quad(x=1)$
(b) $y=\frac{x}{x^{2}-1}+x^{2}, \quad(x=\mp 1)$
(c) $y=\frac{1}{x^{4 / 3}}-\frac{1}{(x-2)^{1 / 3}}, \quad(x=0,2)$
(d) $y=\frac{2+x}{1+2^{1 / x}}, \quad(x=0)$
(e) $y=\left\{\begin{array}{cl}1-x^{2} & |x| \leq 1 \\ \frac{1}{|x|} & |x|>1\end{array},(x=-1)\right.$
(f) $y=\frac{\sqrt{1-\cos 2 x}}{\sqrt{2} x}, \quad(x=0)$
(g) $y=\tan ^{-1} \frac{x}{x-2},(x=2)$
(h) $y=\frac{1}{3-4^{\frac{1}{x-2}}},(x=2)$
6. Suppose that f is an even function of x. Does knowing that $\lim _{x \rightarrow 2^{-}} f(x)=7$ tell you anything about either $\lim _{x \rightarrow-2^{-}} f(x)$ or $\lim _{x \rightarrow-2^{+}} f(x)$? Give reasons for your answer.
7. Find the asymptotes of the following functions.
(a) $f(x)=\frac{x^{3}}{4-x^{2}}$
(b) $f(x)=\frac{x^{3}+2 x-1}{x^{3}+2 x^{2}-x-2}$
8. Let $f(x)=\left\{\begin{array}{rl}x+3 & -3 \leq x<-1 \\ -1 & x=-1 \\ -x+1 & -1<x \leq 1 \\ \frac{1}{x-1} & 1<x \leq 2 \\ x & x>2\end{array}\right.$
(a) Graph $f(x)$.
(b) Find the points, if any, at which the function $f(x)$ is discontinuous and classify the types of the discontinuities.
9. Discuss limit, one-sided limits, continuity and one-sided continuity of f and g at each of the points $x=0, \mp 1$.
$f(x)=\left\{\begin{array}{rl}1 & x \leq-1 \\ -x & -1<x<0 \\ 1 & x=0 \\ -x & 0<x<1 \\ 1 & x>1\end{array} \quad g(x)= \begin{cases}0 & x \leq-1 \\ \frac{1}{x} & |x|<1 \\ 0 & x=1 \\ 1 & x>1\end{cases}\right.$
10. For the following functions find the discontinuity points, if any, and classify the types of the discontinuities.
(a) $f(x)=\frac{x-2}{x+2}$
(b) $f(x)=\frac{x^{2}+1}{x^{2}-4 x+3}$
(c) $f(x)=\frac{1}{x^{2}+1}$
(d) $f(x)=\frac{|x|}{x}$
(e) $f(x)=\frac{1}{1-3^{\frac{3-x}{x}}}$
(f) $f(x)=\sqrt{x} \sin \frac{1}{x}$
(g) $f(x)= \begin{cases}\sin ^{-1} \frac{x}{2} & 0<x<2 \\ \pi & x=2 \\ \tan ^{-1} \frac{1}{x-2} & x>2\end{cases}$
(h) $f(x)= \begin{cases}\frac{1-\cos x}{x^{2}} & x \neq 0 \\ 1 & x=0\end{cases}$
11. Evaluate the following limit (Do not use the L'Hospital's Rule).

$$
\lim _{x \rightarrow 1^{+}}\left\{\ln \left[\sin \left(x^{2}-1\right)\right]-\ln (x-1)\right\}
$$

12. Define $f(1)$ in a way that extends $f(x)=\frac{x^{2}+2 x-3}{x^{2}-1}$ to be continuous at $x=1$.
13. For what value of a is $f(x)=\left\{\begin{array}{ll}x^{2}-1 & x<3 \\ 2 a x & x \geq 3\end{array}\right.$ continuous at every x ?
14. If $x^{4} \leq f(x) \leq x^{2}$ for all x in $[-1,1]$ and $x^{2} \leq f(x) \leq x^{4}$ for all $x \in(-\infty, \infty)$, at which point(s) c do you automatically know $\lim _{x \rightarrow c} f(x)$? What is the value of the limit at these points?
15. Let $f(x)=x^{3}-2 x+2$. Show that f must have a zero between -2 and 0 .
16. Show that the following functions have at least one root.
(a) $f(x)=\sqrt[3]{x}+x-2$
(b) $f(x)=\cos x+\sin x-x$
17. Suppose that a function f is continuous on the closed interval $[0,1]$ and that $0 \leq f(x) \leq 1$ for every $x \in[0,1]$. Show that there must exist a number $c \in[0,1]$ such that $f(c)=c$.
18. Suppose that f and g are continuous on $[a, b]$ and that $f(a)<g(a)$ but $f(b)>g(b)$. Prove that $f(c)=g(c)$ for some $c \in[a, b]$.
19. If $F(x)=(x-a)^{2}(x-b)^{2}+x$ where $a, b \in R$. Show that there must exist a number $c \in(a, b)$ such that $F(c)=\frac{a+b}{2}$.
