WORKSHEET 1

Course: Mat101E Content: Preliminaries

- Write an equation for the line that passes through

 (a) (-1,4) and (0,2);
 (b) (1,1) and (0,1);
 (c) (1,1) and (1,0).
- 2. Write an equation for the line that passes through
 (a) (-2,2) with slope -1; (b) (-3,-1) with slope 0; (c) (5,-6) and has no slope.
- 3. Write an equation for the line with
 - (a) y-intercept 2 and slope -2/3; (b) x-intercept 2 and y-intercept -2;
 - (c) x-intercept 3 and no slope; (d) x-intercept 3 and slope 0.
- 4. Write an equation for the line passing through the given point P that are (i) parallel and (ii) perpendicular to the given line:
 - (a) P(-1,2), 2x + y = 4; (b) P(-1,1/2), y = 5; (c) P(2,-1), x = 1.
- 5. Find the value of c for the lines passing through the given points with the given slope:
 - (a) (-2, 4), (2c, 1), m = 1/2; (b) $(-2, c^2)$, (1, c), m = 0;
 - (c) (c+1, -2), $(c^2 3c + 5, 5)$, no slope.
- 6. Find the domain and the range of the following functions:

(a)
$$f(x) = \sqrt{1 - x^2}$$
; (b) $f(x) = \frac{1}{\sqrt{x^2 - 1}}$; (c) $f(x) = 2 - |3 - x|$;
(d) $f(x) = \frac{1}{1 - 3^{-x}}$; (e) $f(x) = \frac{1}{\ln^2(x + 1)}$; (f) $f(x) = 1 + \cos(x + \pi)$;
(g) $f(x) = \begin{cases} 4 - x^2 & x \le 1 \\ (3/2)x + (3/2) & 1 < x \le 3 \\ x + 3 & x > 3 \end{cases}$

- 7. Compare the domain and the range of the functions $y = \sqrt{x^2}$ and $y = (\sqrt{x})^2$.
- 8. Find the domain and the range of the following functions:

(a)
$$f(x) = \sqrt{\ln(x^2 - 8)}$$
; (b) $f(x) = \cos^{-1}(\ln x)$; (c) $f(x) = \ln(\sin 3x)$

9. Graph the following equations. Determine whether the curve is a graph of a function. If so, is it a 1-1 function and is it possible to define the inverse function? What symmetries, if any, do the graphs have?

(a)
$$|x+y| = 1$$
; (b) $|x|+|y| = 1$; (c) $y = -\frac{1}{x}$; (d) $y = -\frac{1}{x^2}$

- 10. Determine whether the following functions are even, odd, or neither?
 - (a) $f(x) = \frac{x}{x^2 1}$; (b) $f(x) = x \sin x \cos x$; (c) f(x) = 2 |x| 1; (d) $f(x) = 2^x (1 - \sec x)$; (e) $f(x) = \ln \frac{x - 2}{x + 2}$; (f) $f(x) = \ln(\sqrt{4x^2 + 1} - 2x)$.
- 11. Assume that f is an even and g is an odd function, and both f and g are defined on the entire real line. Determine whether the following functions are even, odd, or neither?

(a)
$$f^2 = f \cdot f$$
; (b) f/g ; (c) gog .

- 12. Graph the following functions by using shifting and reflection:
- 13. For the following functions find f^{-1} and verify that $(fof^{-1})(x) = (f^{-1}of)(x) = x$. Graph f and f^{-1} .
 - (a) $f(x) = x^2 + 2x + 1$, $x \ge -1$; (b) $f(x) = \frac{x+5}{x-3}$, $x \ne 3$; (c) f(x) = (2-x)(x-8), $x \le 5$; (d) $f(x) = \sqrt{x-1} + 2$.
- 14. Let $f(x) = \ln\left(\frac{5x x^2}{4}\right)$ and $g(x) = \sqrt{x}$. Find the domain of the composition (gof)(x).
- 15. Find the functions f(x) and g(x) which satisfy the equations $(gof)(x) = |\sin x|$ and $(fog)(x) = (\sin \sqrt{x})^2$.
- 16. Find the values of the following trigonometric expressions:

(a)
$$\cos \frac{3\pi}{4}$$
 (b) $\csc \frac{3\pi}{4}$ (c) $\sin \frac{4\pi}{3}$ (d) $\cot \frac{4\pi}{3}$ (e) $\sec \frac{11\pi}{6}$ (f) $\tan \frac{11\pi}{6}$

17. Express the given quantity in terms of $\sin x$ and $\cos x$.

(a)
$$\cos(\frac{\pi}{2} \mp x)$$
 (b) $\sin(\pi \mp x)$ (c) $\tan(\frac{3\pi}{4} \mp x)$

18. By using the sum formulas, find the values of the following trigonometric expressions:

(a)
$$\sin \frac{5\pi}{12} + \sin \frac{\pi}{12}$$
 (b) $\cos \frac{7\pi}{12} - \cos \frac{\pi}{12}$

19. Let $a = x^2 + x + 1$, b = 2x + 1 and $c = x^2 - 1$ be the sides of a triangle ABC. Find the angle A.

20. Evaluate the following:

(a)
$$\sin^{-1}\frac{1}{2}$$
 (b) $\sin^{-1}(-\frac{1}{2})$ (c) $\cos^{-1}\frac{1}{\sqrt{2}}$ (d) $\cos^{-1}(-\frac{1}{\sqrt{2}})$

21. Prove the following identities.

- (a) $\sin(\cos^{-1} x) = \sqrt{1 x^2}$ (b) $\cos(\sin^{-1} x) = \sqrt{1 - x^2}$ (c) $\cos^{-1} x + \sin^{-1} x = \pi/2$ (d) $\cos^{-1} x + \cos^{-1}(-x) = \pi$ (e) $\cot^{-1} \frac{1}{x} - \tan^{-1} x = \pi, \ x < 0$ (f) $\tan^{-1} \left(\frac{x}{\sqrt{1 - x^2}}\right) - \sin^{-1} x = 0$
- 22. Find the parametric equations and a parameter interval for the motion of a particle that starts at (a, 0) and traces the circle $x^2 + y^2 = a^2$
 - (a) once clockwise (b) twice counterclockwise.
- 23. Find a Cartesian equation for each of the following paths. Graph the Cartesian equation.

(a)
$$x = \sec^2 t - 1$$
, $y = \tan t$, $-\pi/2 < t < \pi/2$
(b) $x = 4 \sin t$, $y = 4 \cos t$, $0 \le t \le 2\pi$
(c) $x = 4 \cos t$, $y = 2 \sin t$, $0 \le t \le \pi$
(d) $x = 4 \cos t$, $y = 2 \sin t$, $-\pi/2 \le t \le \pi/2$
(e) $x = 2t + 3$, $y = t^2 - 1$, $-2 \le t \le 2$

24. Find parametrizations for

- (a) the line segment with the end points (-1, 3), (2, 3)
- (b) the upper half of the parabola $x 1 = y^2$
- (c) the ray (half line) with the initial point (-1, 2) that passes through the point (0, 0)