WORKSHEET 1

Course: Mat101E
Content: Preliminaries

1. Write an equation for the line that passes through
(a) $(-1,4)$ and $(0,2)$;
(b) $(1,1)$ and $(0,1)$;
(c) $(1,1)$ and $(1,0)$.
2. Write an equation for the line that passes through
(a) $(-2,2)$ with slope -1 ;
(b) $(-3,-1)$ with slope 0 ;
(c) $(5,-6)$ and has no slope.
3. Write an equation for the line with
(a) y-intercept 2 and slope $-2 / 3$;
(b) x-intercept 2 and y-intercept -2 ;
(c) x-intercept 3 and no slope;
(d) x-intercept 3 and slope 0 .
4. Write an equation for the line passing through the given point P that are (i) parallel and (ii) perpendicular to the given line:
(a) $P(-1,2), \quad 2 x+y=4$;
(b) $P(-1,1 / 2), \quad y=5$;
(c) $P(2,-1), \quad x=1$.
5. Find the value of c for the lines passing through the given points with the given slope:
(a) $(-2,4),(2 c, 1), m=1 / 2$;
(b) $\left(-2, c^{2}\right),(1, c), m=0$;
(c) $(c+1,-2),\left(c^{2}-3 c+5,5\right)$, no slope.
6. Find the domain and the range of the following functions:
(a) $f(x)=\sqrt{1-x^{2}}$;
(b) $f(x)=\frac{1}{\sqrt{x^{2}-1}}$;
(c) $f(x)=2-|3-x|$;
(d) $f(x)=\frac{1}{1-3^{-x}}$;
(e) $f(x)=\frac{1}{\ln ^{2}(x+1)}$;
(f) $f(x)=1+\cos (x+\pi)$;
(g) $f(x)=\left\{\begin{array}{rl}4-x^{2} & x \leq 1 \\ (3 / 2) x+(3 / 2) & 1<x \leq 3 \\ x+3 & x>3\end{array}\right.$.
7. Compare the domain and the range of the functions $y=\sqrt{x^{2}}$ and $y=(\sqrt{x})^{2}$.
8. Find the domain and the range of the following functions:
(a) $f(x)=\sqrt{\ln \left(x^{2}-8\right)}$;
(b) $f(x)=\cos ^{-1}(\ln x)$;
(c) $f(x)=\ln (\sin 3 x)$.
9. Graph the following equations. Determine whether the curve is a graph of a function. If so, is it a 1-1 function and is it possible to define the inverse function? What symmetries, if any, do the graphs have?
(a) $|x+y|=1$;
(b) $|x|+|y|=1$;
(c) $y=-\frac{1}{x}$;
(d) $y=-\frac{1}{x^{2}}$.
10. Determine whether the following functions are even, odd, or neither?
(a) $f(x)=\frac{x}{x^{2}-1}$;
(b) $f(x)=x \sin x-\cos x$;
(c) $f(x)=2|x|-1$;
(d) $f(x)=2^{x}(1-\sec x)$;
(e) $f(x)=\ln \frac{x-2}{x+2} ;$
(f) $f(x)=\ln \left(\sqrt{4 x^{2}+1}-2 x\right)$.
11. Assume that f is an even and g is an odd function, and both f and g are defined on the entire real line. Determine whether the following functions are even, odd, or neither?
(a) $f^{2}=f \cdot f$;
(b) f / g;
(c) $g \circ g$.
12. Graph the following functions by using shifting and reflection:
(a) $y=\sqrt{x}$,
(g) $y=|\sin x|$,
(k) $y=1-3^{x+1}$,
(b) $y=|\sqrt{x}|$,
(h) $y=\sin \left(x+\frac{\pi}{2}\right)-1$,
(1) $y=1-\ln x$,
(c) $y=\sqrt{|x|}$,
(i) $y=\frac{1}{x}$,
(m) $y=-(x+1)^{2}$,
(d) $y=x^{3}$,
(n) $y=(-x+1)^{2}$,
(e) $y=\left|x^{3}\right|$,
(j) $y=\left|\frac{1}{x}\right|$,
(o) $y=\cos ^{-1}(x+1)+\frac{\pi}{2}$.
13. For the following functions find f^{-1} and verify that $\left(f o f^{-1}\right)(x)=\left(f^{-1} o f\right)(x)=x$. Graph f and f^{-1}.
(a) $f(x)=x^{2}+2 x+1, x \geq-1$;
(b) $f(x)=\frac{x+5}{x-3}, x \neq 3$;
(c) $f(x)=(2-x)(x-8), x \leq 5$;
(d) $f(x)=\sqrt{x-1}+2$.
14. Let $f(x)=\ln \left(\frac{5 x-x^{2}}{4}\right)$ and $g(x)=\sqrt{x}$. Find the domain of the composition $(g \circ f)(x)$.
15. Find the functions $f(x)$ and $g(x)$ which satisfy the equations $(g \circ f)(x)=|\sin x|$ and $(f \circ g)(x)=$ $(\sin \sqrt{x})^{2}$.
16. Find the values of the following trigonometric expressions:
(a) $\cos \frac{3 \pi}{4}$
(b) $\csc \frac{3 \pi}{4}$
(c) $\sin \frac{4 \pi}{3}$
(d) $\cot \frac{4 \pi}{3}$
(e) $\sec \frac{11 \pi}{6}$
(f) $\tan \frac{11 \pi}{6}$
17. Express the given quantity in terms of $\sin x$ and $\cos x$.
(a) $\cos \left(\frac{\pi}{2} \mp x\right)$
(b) $\sin (\pi \mp x)$
(c) $\tan \left(\frac{3 \pi}{4} \mp x\right)$
18. By using the sum formulas, find the values of the following trigonometric expressions:
(a) $\sin \frac{5 \pi}{12}+\sin \frac{\pi}{12}$
(b) $\cos \frac{7 \pi}{12}-\cos \frac{\pi}{12}$
19. Let $a=x^{2}+x+1, b=2 x+1$ and $c=x^{2}-1$ be the sides of a triangle $A B C$. Find the angle A.
20. Evaluate the following:
(a) $\sin ^{-1} \frac{1}{2}$
(b) $\sin ^{-1}\left(-\frac{1}{2}\right)$
(c) $\cos ^{-1} \frac{1}{\sqrt{2}}$
(d) $\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)$
21. Prove the following identities.
(a) $\sin \left(\cos ^{-1} x\right)=\sqrt{1-x^{2}}$
(e) $\cot ^{-1} \frac{1}{x}-\tan ^{-1} x=\pi, x<0$
(b) $\cos \left(\sin ^{-1} x\right)=\sqrt{1-x^{2}}$
(c) $\cos ^{-1} x+\sin ^{-1} x=\pi / 2$
(d) $\cos ^{-1} x+\cos ^{-1}(-x)=\pi$
(f) $\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)-\sin ^{-1} x=0$
22. Find the parametric equations and a parameter interval for the motion of a particle that starts at $(a, 0)$ and traces the circle $x^{2}+y^{2}=a^{2}$
(a) once clockwise
(b) twice counterclockwise.
23. Find a Cartesian equation for each of the following paths. Graph the Cartesian equation.
(a) $x=\sec ^{2} t-1, \quad y=\tan t, \quad-\pi / 2<t<\pi / 2$
(b) $x=4 \sin t, \quad y=4 \cos t, \quad 0 \leq t \leq 2 \pi$
(c) $x=4 \cos t, \quad y=2 \sin t, \quad 0 \leq t \leq \pi$
(d) $x=4 \cos t, \quad y=2 \sin t, \quad-\pi / 2 \leq t \leq \pi / 2$
(e) $x=2 t+3, \quad y=t^{2}-1, \quad-2 \leq t \leq 2$
24. Find parametrizations for
(a) the line segment with the end points $(-1,3),(2,3)$
(b) the upper half of the parabola $x-1=y^{2}$
(c) the ray (half line) with the initial point $(-1,2)$ that passes through the point $(0,0)$
