WORKSHEET 9

Course: Mat101E
Content: Polar Coordinates and Graphs

1. Graph the set of points whose polar coordinates satisfy the given equations and inequalities:
(a) $1 \leq r \leq 2$ and $0 \leq \theta \leq \pi / 2$,
(b) $r \leq 0$ and $\theta=\pi / 4$.
2. Replace the following Cartesian equations by equivalent polar equations:
(a) $x y=2$,
(c) $x=7$,
(b) $(x+2)^{2}+(y-5)^{2}=16$,
(d) $x^{2}+x y+y^{2}=1$.
3. Replace the following polar equations by equivalent Cartesian equations:
(a) $r^{2}=-4 r \cos \theta$,
(c) $r=(\csc \theta) \mathrm{e}^{r \cos \theta}$,
(e) $r=\frac{5}{\sin \theta-2 \cos \theta}$.
(b) $r=\theta$,
(d) $r=2 \cot \theta \csc \theta$,
(g) $r^{2}=\cos 2 \theta$
(a) $r=2 \cos \theta+1$,
(d) $r=1+2 \sin \theta$,
(b) $r=a(1+\sin \theta)$,
(e) $r=2 \cos 3 \theta$.
(c) $r^{2}=-\sin 2 \theta$,
(f) $r=\cos 2 \theta$
(h) $r=2 /(1-\cos \theta)$
4. Find the points of intersection of the pairs of curves:
(a) $r=1+\cos \theta, r=1-\cos \theta$,
(c) $r=\cos \theta, r=1-\cos \theta$,
(b) $r=2 \sin \theta, r=2 \sin 2 \theta$,
(d) $r=1, r^{2}=2 \sin 2 \theta$.
5. Find equations for the horizontal and vertical tangent lines to the curves.
(a) $r=-1+\sin \theta, 0 \leq \theta \leq 2 \pi$,
(c) $r=2 \sin \theta, 0 \leq \theta \leq \pi$,
(b) $r=1+\cos \theta, 0 \leq \theta \leq 2 \pi$,
(d) $r=3-4 \cos \theta, 0 \leq \theta \leq 2 \pi$.
6. Find the areas of the following regions:
(a) Inside the oval limaçon $r=4+2 \cos \theta$,
(c) Inside the lemniscate $r^{2}=2 a^{2} \cos (2 \theta)$,
(b) Inside the cardioid $r=a(1+\cos \theta), \quad a>0$,
(d) Inside the six-leaved rose $r^{2}=2 \sin (3 \theta)$.
7. Find the areas of the following regions:
(a) Shared by the circles $r=2 \cos \theta$ and $r=2 \sin \theta$,
(b) Shared by the circle $r=2$ and the cardioid $r=2(1-\cos \theta)$,
(c) Inside the circle $r=-2 \cos \theta$ and outside the circle $r=1$,
(d) Inside the circle $r=6$, above the line $r=3 \csc \theta$,
(e) Inside the circle $r=3 a \cos \theta$ and outside of the cardioid $r=a(1+\cos \theta), a>0$.
8. Find the lengths of the following curves:
(a) The spiral $r=\theta^{2}, \quad 0 \leq \theta \leq \sqrt{5}$,
(b) The curve $r=a \sin ^{2}(\theta / 2), \quad 0 \leq \theta \leq \pi, \quad a>0$,
(c) The curve $r=\cos ^{3}(\theta / 3), \quad 0 \leq \theta \leq \pi / 4$,
(d) The spiral $r=\mathrm{e}^{\theta} / \sqrt{2}, \quad 0 \leq \theta \leq \pi$.
