WORKSHEET 9

Course: Mat101E **Content:** Polar Coordinates and Graphs

1. Graph the set of points whose polar coordinates satisfy the given equations and inequalities:

(a) $1 \le r \le 2$ and $0 \le \theta \le \pi/2$, (b) $r \le 0$ and $\theta = \pi/4$.

2. Replace the following Cartesian equations by equivalent polar equations:

(a)
$$xy = 2$$
,
(b) $(x+2)^2 + (y-5)^2 = 16$,
(c) $x = 7$,
(d) $x^2 + xy + y^2 = 1$

3. Replace the following polar equations by equivalent Cartesian equations:

(a)
$$r^2 = -4r\cos\theta$$
, (c) $r = (\csc\theta)e^{r\cos\theta}$, (e) $r = \frac{5}{\sin\theta - 2\cos\theta}$.
(b) $r = \theta$, (d) $r = 2\cot\theta\csc\theta$,

- 4. Graph the following polar curves:
 - (a) $r = 2\cos\theta + 1$, (b) $r = a(1 + \sin\theta)$, (c) $r^2 = -\sin 2\theta$, (d) $r = 1 + 2\sin\theta$, (e) $r = 2\cos 3\theta$. (f) $r = \cos 2\theta$ (h) $r = 2/(1 - \cos\theta)$
- 5. Find the points of intersection of the pairs of curves:
 - (a) $r = 1 + \cos \theta$, $r = 1 \cos \theta$, (c) $r = \cos \theta$, $r = 1 \cos \theta$, (b) $r = 2\sin \theta$, $r = 2\sin 2\theta$, (d) r = 1, $r^2 = 2\sin 2\theta$.
- 6. Find equations for the horizontal and vertical tangent lines to the curves.
 - (a) $r = -1 + \sin \theta$, $0 \le \theta \le 2\pi$, (b) $r = 2\sin \theta$, $0 \le \theta \le \pi$, (c) $r = 2\sin \theta$, $0 \le \theta \le \pi$,
 - (b) $r = 1 + \cos \theta, \ 0 \le \theta \le 2\pi$, (d) $r = 3 4\cos \theta, \ 0 \le \theta \le 2\pi$.

- 7. Find the areas of the following regions:
 - (a) Inside the oval limaçon $r = 4 + 2\cos\theta$, (c) Inside the lemniscate $r^2 = 2a^2\cos(2\theta)$,
 - (b) Inside the cardioid $r = a(1 + \cos \theta)$, a > 0, (d) Inside the six-leaved rose $r^2 = 2\sin(3\theta)$.

8. Find the areas of the following regions:

- (a) Shared by the circles $r = 2\cos\theta$ and $r = 2\sin\theta$,
- (b) Shared by the circle r = 2 and the cardioid $r = 2(1 \cos \theta)$,
- (c) Inside the circle $r = -2 \cos \theta$ and outside the circle r = 1,
- (d) Inside the circle r = 6, above the line $r = 3 \csc \theta$,
- (e) Inside the circle $r = 3 a \cos \theta$ and outside of the cardioid $r = a (1 + \cos \theta), a > 0$.

9. Find the lengths of the following curves:

- (a) The spiral $r = \theta^2$, $0 \le \theta \le \sqrt{5}$,
- (b) The curve $r = a \sin^2(\theta/2), \quad 0 \le \theta \le \pi, \quad a > 0,$
- (c) The curve $r = \cos^3(\theta/3), \quad 0 \le \theta \le \pi/4,$
- (d) The spiral $r = e^{\theta} / \sqrt{2}, \quad 0 \le \theta \le \pi.$