WORKSHEET-5

Course Title: Mat101E Content: Integration

1. Evaluate the following integrals

(a)
$$\int \frac{t\sqrt{t} + \sqrt{t}}{t^2} dt,$$

(b)
$$\int \frac{9r^2}{\sqrt{1-r^3}} dr$$
,

(c)
$$\int \frac{\sin(2t+1)}{\cos^2(2t+1)} dt$$
,

(d)
$$\int \frac{18 \tan^2 x \sec^2 x}{(2 + \tan^3 x)} dx$$
,

(e)
$$\int \frac{\cos \sqrt{\theta}}{\sqrt{\theta} \sin^2 \sqrt{\theta}} d\theta,$$

(f)
$$\int \frac{1}{\theta^2} \sin \frac{1}{\theta} \cos \frac{1}{\theta} d\theta,$$

(g)
$$\int (\theta^4 - 2\theta^2 + 8\theta - 2)(\theta^3 - \theta + 2) d\theta$$
,

(h)
$$\int x^{1/3} \sin(x^{4/3} - 8) \, dx,$$

(i)
$$\int \frac{\sin \sqrt{\theta}}{\sqrt{\theta \cos^3 \sqrt{\theta}}} d\theta,$$

$$(j) \int \frac{1 - \cos(6t)}{2} dt,$$

(k)
$$\int \frac{x + \sin x}{1 + \cos x} \, dx,$$

(l)
$$\int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx,$$

(m)
$$\int \frac{dx}{1 + \cos x},$$

2. Evaluate the following integrals

(a)
$$\int x \sec x^2 \tan x^2 dx,$$

(b)
$$\int \frac{\cos^2 y}{7} \, dy,$$

(c)
$$\int \frac{x^4}{\sin^2 x^5} dx,$$

(d)
$$\int 1 - \cot^2 x \, dx,$$

(e)
$$\int \frac{\csc \theta}{\csc \theta - \sin \theta} d\theta,$$

(f)
$$\int \sin^{3/4} x \cos^3 x \, dx,$$

(g)
$$\int \sin^2 x \cos^2 x \, dx$$

(h)
$$\int \sqrt{1 + \cos 3x} \, dx$$

(i)
$$\int \sqrt[3]{\frac{2x^2+3}{x^{11}}} dx$$

$$(j) \int \sqrt{\frac{x^2 - 2x}{x^6}} \, dx$$

(k)
$$\int \cos(3z+4) \, dz$$

(l)
$$\int y^3 (y^4 + 1)^8 dy$$

(m)
$$\int \tan^2 \theta \, d\theta$$

(n)
$$\int \sin^2 5t \cos 5t \, dt$$

(o)
$$\int \left(1 - \cos\frac{x}{2}\right)^2 \sin\frac{x}{2} \, dx$$

(p)
$$\int \frac{18 \tan^2 x \sec^2 x}{(2 + \tan^3 x)^2} dx$$

(q)
$$\int \frac{(2x-1)\cos\sqrt{3(2x-1)^2+6}}{\sqrt{3(2x-1)^2+6}} dx$$

3. Verify by differentiation that the integral formulas

$$\int \sin x \cos x \ dx = \frac{1}{2} \sin^2 x + c_1$$

and

$$\int \sin x \cos x \, dx = -\frac{1}{2} \cos^2 x + c_2$$

are both valid. Reconcile these seemingly different results. What is the relation between the constants c_1 and c_2 ?

2

4. Evaluate the following integrals by computing $\lim_{n\to\infty}\sum_{i=1}^n f(x_i)\Delta x$.

(a)
$$\int_{0}^{2} x^{2} dx$$

(b)
$$\int_{1}^{5} (4-3x)dx$$

5. Express the following limits as definite integrals.

(a)
$$\lim_{||p||\to 0} \sum_{k=1}^{n} c_k^2 \Delta x_k$$
, where P is a partition of $[0,2]$

(b)
$$\lim_{||p||\to 0} \sum_{k=1}^{n} (c_k^2 - 3c_k) \Delta x_k$$
, where P is a partition of $[-7, 5]$

(c)
$$\lim_{\|p\|\to 0} \sum_{k=1}^{n} \frac{1}{1-c_k} \Delta x_k$$
, where P is a partition of $[2,3]$

(d)
$$\lim_{\|p\|\to 0} \sum_{k=1}^n \sqrt{4-c_k^2} \Delta x_k$$
, where P is a partition of [0, 1]

(e)
$$\lim_{\|p\|\to 0} \sum_{k=1}^n \sec c_k \, \Delta x_k$$
, where P is a partition of $[-\pi/4, 0]$

6. Find the following limits by using the definition of definite integral or sum formulas.

(a)
$$\lim_{n \to \infty} \frac{1}{n^3} (1^2 + 2^2 + 3^2 + \dots + n^2)$$

(b)
$$\lim_{n \to \infty} \frac{1}{n^4} (1^3 + 2^3 + 3^3 + \dots + n^3)$$

(c)
$$\lim_{n\to\infty} \frac{1}{n} \left(\sin\frac{\pi}{n} + \sin\frac{2\pi}{n} + \sin\frac{3\pi}{n} + \dots + \sin\frac{n\pi}{n}\right)$$

(d)
$$\lim_{n\to\infty} \frac{1}{n^{3/2}} \left(1 + \sqrt{2} + \sqrt{3} + \dots + \sqrt{n}\right)$$

7. Find the indicated derivatives for the given functions

(a)
$$y(x) = \int_0^x \sqrt{1+t^2} dt$$
, $y' = ?$

(b)
$$y(x) = \int_{\sqrt{x}}^{0} \sin t^2 dt$$
, $y' = ?$

(c)
$$y(x) = \int_{\tan x}^{0} \frac{1}{t^2} dt$$
, $y'' = ?$

(d)
$$y(x) = \int_{\sqrt{x}}^{x^2} t\sqrt{t^2 + 1} dt$$
, $y' = ?$

(e)
$$y(x) = \int_0^{\sin x} \sqrt{1 - t^2} dt$$
, $y'' = ?$

(f)
$$y(x) = \int_{\sin x}^{\cos x} \frac{1}{1 - t^2} dt$$
, $y' = ?$

8. If
$$F(t) = \int_0^t \cos(x^2) dx$$
, find $\frac{d}{dx} F(\sqrt{x})$.

9. If
$$H(x) = 3x \int_4^{x^2} e^{-\sqrt{t}} dt$$
, find $H'(2)$.

10. Find a function f such that

$$x^{2} = 1 + \int_{1}^{x} \sqrt{1 + [f(t)]^{2}} dt$$

for all x > 1.

- 11. Suppose that f(x) = f(x+w) for all x and f is continuous. We define $g(x) = \int_{x}^{x+w} f(t) dt$ for all x. Prove that the function g(x) is constant.
- 12. Evaluate the following integrals

(a)
$$\int_0^1 (1-2x)^3 dx$$

(b)
$$\int_9^4 \frac{1 - \sqrt{u}}{\sqrt{u}} \, du$$

(c)
$$\int_{-4}^{4} |x| \, dx$$

(d)
$$\int_{2}^{-2} |1 - x| dx$$

(e)
$$\int_{5}^{0} (2 - |x|) dx$$

(f)
$$\int_{6}^{0} |5 - |2x|| dx$$

(g)
$$\int_0^{\pi/4} \sin^2(4x - \frac{\pi}{4}) dx$$

13. The fundamental theorem of calculus seems to say that

$$\int_{-1}^{1} \frac{dx}{x^2} = -\frac{1}{x} \Big|_{-1}^{1} = -2$$

in apparent contradiction to the fact that $1/x^2$ is always positive. What's wrong here?

14. If f(x) = f(a - x), prove that

$$\int_0^a f(x) \ dx = 2 \int_0^{a/2} f(x) \ dx \text{ and } 2 \int_0^a x f(x) \ dx = a \int_0^a f(x) \ dx$$

15. If
$$f(x) = f(a - x)$$
, prove that $2 \int_0^a x f(x) dx = a \int_0^a f(x) dx$

- 16. Prove that for all positive numbers a and b $\int_{t=a}^{ab} \frac{1}{t} dt = \int_{t=1}^{b} \frac{1}{t} dt$ (Hint: t = au)
- 17. Prove that $\int_0^{\sin^2 x} \sin^{-1} \sqrt{t} \ dt + \int_0^{\cos^2 x} \cos^{-1} \sqrt{t} \ dt = \text{constant.}$ $(\sin x, \cos x \ge 0)$
- 18. Prove that $\int_{1/2}^{2} \frac{1}{x} \sin\left(x \frac{1}{x}\right) dx = 0$ (Hint: $x = \frac{1}{t}$)
- 19. Prove that $\int_0^\pi x f(\sin x) dx = \frac{\pi}{2} \int_0^\pi f(\sin x) dx$ (Hint: $x = \pi t$)
- 20. Use properties of integrals to establish each of the following inequality without evaluating the integrals involved.

4

(a)
$$\frac{\pi}{2} \le \int_0^{\frac{\pi}{2}} \sqrt{1 + \frac{1}{2}\sin^2 x} \, dx \le \frac{\pi}{2} \sqrt{\frac{3}{2}}$$

(b)
$$\frac{\pi}{8} \le \int_0^{\frac{\pi}{4}} \frac{1}{1 + \cos^2 x} \, dx \le \frac{\pi}{6}$$

(c)
$$1 \le \int_0^1 \sqrt{1+x^2} \, dx \le \int_0^1 \sqrt{1+x} \, dx$$

(d)
$$\int_0^1 \frac{1}{1+\sqrt{x}} dx \le \int_0^1 \frac{1}{1+x^2} dx$$

- 21. Find f(4) if $\int_0^{x^2} f(t) dt = x \cos(\pi x)$, x > 0.
- 22. What values of a and b maximize the value of $\int_a^b (4x^2 x^4) dx$?
- 23. Find the area of the region R enclosed by the curves $y = \cos x$; $y = \sin x$ and the y axis in the first quadrant.
- 24. Find the area of the region R enclosed by the curves $y = x^2$; $y = -x^2 + 2$ and the x axis.
- 25. Find the area of the region R enclosed by the curves $y = \frac{x^2}{2} + 4$; and $y = |x^2 4|$.
- 26. Find the area of the region R between the graphs of $x = 8 y^2$ and $x = y^2 8$.
- 27. Find the area of the region bounded below by the circle $x^2 + y^2 = a^2$ and above by the line y = b, $(-a \le b \le a)$.
- 28. Find the area of the region bounded by the curves $x = y^2$ and $x = 2y^2 y 2$ by integrating with respect to y.
- 29. Find the area of the finite plane region bounded by the curve $y = x^3$ and the tangent line to that curve at the point (1,1). (Hint: Find the other point at which that tangent line meets the curve.)
- 30. Find the areas of the regions enclosed by the following curves.

(a)
$$y = x^4 - 2x^2 + 1$$
, $y = x^2 - 1$

(b)
$$x + 1 = (y - 1)^2$$
, $(y - 1)^2 = 1 - x$

(c)
$$y = \frac{1}{2} \sec^2 t$$
, $y = -4 \sin^2 t$, $t = \mp \frac{\pi}{3}$

- 31. Find the area of the region R bounded by the curves $x = 3y^2$ and $x = 12y y^2 5$.
- 32. Find a number k > 0 such that the area bounded by the curves $y = x^2$ and $y = k x^2$ is 72.
- 33. Find a number k > 0 such that the line y = k divides the region between the parabola $y = 100 x^2$ and the x-axis into two regions having equal areas.
- 34. Let A and B be the points of intersection of the parabola $y = x^2$ and the line y = x + 2, and let C be the point on the parabola where the tangent line is parallel to the graph of y = x + 2. Show that the area of the parabolic segment cut from the parabola by the line is four-thirds the area of the triangle ABC.