WORKSHEET-5

Course Title: Mat101E
Content: Integration

1. Evaluate the following integrals
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2. Evaluate the following integrals
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. Verify by differentiation that the integral formulas
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are both valid. Reconcile these seemingly different results. What is the relation between
the constants ¢; and ¢y?
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. Express the following limits as definite integrals.
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6. Find the following limits by using the definition of definite integral or sum formulas.
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7. Find the indicated derivatives for the given functions
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8. If F(t) = /0 cos(z?) dx, find CZCF(\/E)
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9. If H(x) = 3x/ eVt dt, find H'(2).
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10. Find a function f such that
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for all x > 1.



11. Suppose that f(z) = f(z + w) for all x and f is continuous.
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We define g(z) = / f(t) dt for all z.
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Prove that the function g(x) is constant.

12. Evaluate the following integrals
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13. The fundamental theorem of calculus seems to say that
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in apparent contradiction to the fact that 1/2? is always positive. What’s wrong here?
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14. If f(z) = f(a — x), prove that
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18. Prove that —sin <x — > dr =0 (Hint: z = %)
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19. Prove that /fo(sinx) dr = g/ﬁ f(sinz) dz (Hint: x = —t)
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20. Use properties of integrals to establish each of the following inequality without evaluating
the integrals involved.
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Find f(4) if /Ox2 f(t) dt = xcos(mz) , x> 0.
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What values of @ and b maximize the value of [’(42® — z*) dz?

Find the area of the region R enclosed by the curves y = cosz ; y = sinz and the y axis
in the first quadrant.

Find the area of the region R enclosed by the curves y = 22 ; y = —2? + 2 and the z axis.

2
Find the area of the region R enclosed by the curves y = % +4;and y = |z? —4|.

Find the area of the region R between the graphs of + =8 — 3% and x = y?> — 8 .
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Find the area of the region bounded below by the circle 2 + y* = a* and above by the

line y =05, (—a <b<a).

Find the area of the region bounded by the curves z = y* and x = 2y®> —y — 2 by
integrating with respect to y.

Find the area of the finite plane region bounded by the curve y = 2*® and the tangent
line to that curve at the point (1,1). (Hint: Find the other point at which that tangent
line meets the curve.)

Find the areas of the regions enclosed by the following curves.

(@) y=a'—222+1, y=2a>—1
(c) y =13 sec’t, y=—4 sin’t, t=F%
Find the area of the region R bounded by the curves o = 3y? and z = 12y — > — 5 .

Find a number k£ > 0 such that the area bounded by the curves y = 2? and y = k — 22 is
72.

Find a number £ > 0 such that the line y = k divides the region between the parabola
y = 100 — 22 and the z—axis into two regions having equal areas.

Let A and B be the points of intersection of the parabola y = x? and the line y = = + 2,
and let C' be the point on the parabola where the tangent line is parallel to the graph of
y = x + 2. Show that the area of the parabolic segment cut from the parabola by the line
is four-thirds the area of the triangle ABC.



