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Abstract: Automated action planning is crucial for efficient execution of mobile robot missions. 

Automated planners use complete domain descriptions to construct plans. Nevertheless, there is usually a 

gap between the real world and its representation. Therefore, there is another source of uncertainty for 

mobile robot systems due to the impossibility of perfectly representing action descriptions (e.g., 

preconditions and effects) in all circumstances. Incomplete domain representations may lead a planner to 

fail constructing a valid plan when unforeseen events are encountered. We investigate these types of 

situations, especially the failure cases and how robots can recover from real-time execution failures. The 

main focus of our research is to design a dynamic planning framework which can generate alternative 

plans by applying generic updates in the domain representation when the execution of a plan fails. Our 

proposed method constructs new feasible plans by using the updated domain representations even if the 

outcomes of the operators are partially known in advance or feasible plans are not possible with the 

original representation of the domain. Besides updating the domain representation, our method 

manipulates the planner by using a reasoning mechanism so that it chooses more relevant actions to 

recover from failures. This is achieved by considering the effects of the failed action and trying to 

accomplish these effects with alternative actions. 
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1. INTRODUCTION 

Cognitive robots need automated onboard high-level action 

planning for online generation of action sequences against 

exogenous events. Temporal planners, capable of generating 

efficient sequences of durative actions, are convenient to be 

used with real robot missions. There have been significant 

advances in devising efficient temporal planners for 

continually enhanced benchmark planning domains. 

However, these algorithms operate at a high level and are not 

completely able to deal with hardware or physical 

environment limitations. In particular, real world is partially 

observable and involves different sources of uncertainty due 

to noisy sensor information, unexpected outcomes of actions 

and failures. Our research focuses on continual planning, 

execution and monitoring issues for cognitive robots. In 

particular, we investigate failure recovery methods for 

enabling efficient completion of tasks on unexpected 

outcomes. 

Failure detection and diagnosis is investigated in earlier 

planning frameworks (de Jonge, Roos and Witteveen 2009) 

and plan repairing methods are proposed for recovering from 

failures (van der Krogt and de Weerdt 2005, Micalizio 2009). 

However, in some real-world cases, a planner may not come 

up with a valid (re)plan with the available operators at hand 

(Brenner and Nebel 2009, Göbelbecker et al. 2010) but with 

unforeseen opportunistic features or outcomes of actions. 

This is due to lack of detailed and realistic representations 

(e.g., preconditions and effects) of actions (i.e., real-world 

instantiations of planning operators) in a planning domain or 

the abstraction of the problem for reducing complexity. When 

action representations are incorrect or incomplete, learning 

methods are required. However, even for simple learning 

methods, a certain amount of background knowledge is 

needed.  

Our prior work (Usug and Sariel-Talay 2011) presents a 

dynamic temporal planning framework for mobile robots to 

handle action failures which occur due to misbeliefs about 

environmental issues. In this work, we extend that framework 

by applying more intuitive reasoning methods in selecting 

alternative actions to overcome failures. These types of 

failures are analysed in a taxonomy of failures presented in 

our earlier work (Karapinar, Altan and Sariel-Talay 2012). 

Different from earlier studies, the presented solution 

constructs alternative plans even when guidance by experts, 

relevant new information or repairing operators for 

replanning is not available. Real outcomes of existing 

operators may not be completely known in advance (e.g., due 

to abstraction) or valid plans are not possible with the 

existing representation of the domain. The proposed 

framework includes a domain representation update 

procedure that provides reasoning tools to replan accordingly 

for the resolution of a failure by reasoning about the cause of 

a failure in planning level using low-level scene 

understanding. Background knowledge needed for updating 

the existing domain operators is almost negligible and a 

generic approach is applied by searching for the effects of 

existing operators that may resolve the failure. After the 



 

 

     

 

required domain representation updates are performed, a 

replanning approach is employed as opposed to repairing 

since makespan (near-) optimal solutions are targeted 

(Cushing, Benton and Kambhampati 2008). TLPlan (Bacchus 

and Ady 2001) is used as a forward chaining temporal 

planner in the system to construct makespan-optimized plans. 

Low and high-level planning procedures of the system are 

made compatible by using efficient domain  representations 

(e.g., map).  

The rest of the paper is structured as follows. The next 

section presents the formulation of the investigated problem. 

Section 3 describes the dynamic temporal planning 

framework as a proposed solution to the presented problem 

and the developed algorithms for domain representation 

updates and replanning. The experimental results are 

presented in the following section and then, the paper is 

concluded with suggestions for future work. 

2. PROBLEM STATEMENT 

A planning domain is as a tuple   where  is 

a set of constants,  is a set of types,  is a set of predicates 

and  is a set of planning operators representing real-world 

actions that can be executed by robots. A planning problem is 

modeled as  where  and  are initial and goal 

states, respectively. Each world state includes a set of facts 

including the representations of resources and robots in the 

system ( ). A planning operator  is represented 

with a set of parameters , a set of preconditions 

 and add/delete effects . An operator  

is only applicable in the current state  if . 

Whenever  is applied, the world state  is transformed to a 

successor  which is represented as .  

A temporal plan , a solution to a planning problem , 

satisfying  optimization with a sequence of 

instantiated and scheduled operator instances, which 

correspond to real-world actions ( ). Each 

action  is represented with a set of arguments , a set 

of allocated robots for execution and a start time  in the 

constructed temporal plan. Action  has  representing 

the total duration (i.e., the amount of duration between  

and the time step that  effects are available) of the 

corresponding real-world action.  is a 

simulation control function that checks the validity of the 

plan  prior to its execution. A plan is valid if its operators 

satisfy the constraints and achieves the goal state  from the 

current state  by applying them. An executable plan is a 

valid plan of which real-world execution is possible with the 

existing resources. In some situations, even when a plan  is 

valid, its runtime execution may fail. In this case,  becomes 

non-executable during the execution of an action, , in 

state . The cause of failure is represented as  

and it has an attribute list of  defined in and each 

element  of this list has a value  in . It is 

assumed that  is detected as just the subject of the action or 

encountered objects by the low level components (e.g., 

perception and path planning modules) of the robot. When 

such a failure occurs, the existing plan cannot be executed 

and replanning is needed. In this case, the corresponding 

domain representation update procedure transforms the 

planning problem from  to  for replanning.  includes 

the encoded cause, c and the failure situation. The planner 

may still fail to find an executable plan for  due to missing 

information although an executable plan exists in the real 

world. In that case, the updated planning problem  should 

be transformed to  that includes necessary updates to 

generate an executable plan.  

The problem that we investigate in this paper is updating the 

domain representation appropriately whenever an execution 

failure occurs. Relevant updates should be made in such a 

way to autonomously find an executable plan involving 

alternative actions to the failed ones. Note that before the 

domain representation is updated, these alternative actions 

may not be applicable for generating a valid plan due to 

incomplete representations. Therefore, an executable (also 

valid) plan is to be found for even when no valid plan is 

found for or there are valid but non-executable plans (i.e., 

with non-executable actions  for which ) 

generated by replanning for .  

The presented problem involves two types of action 

execution failures, namely, temporary and permanent 

failures. Temporary failures occur at runtime and can be 

resolved by replanning. Temporarily failed actions may 

become available whenever alternative actions are executed 

to achieve the required preconditions of these failed actions. 

When an action permanently fails, there is no way to execute 

that action to achieve the goals. 

As a motivating example to illustrate the above mentioned 

problem, a single-robot scenario can be given with an object, 

located on one end of a corridor, to be moved to the other 

end. The robot is able to execute several actions such as 

pick/drop objects by its gripper, move from one location to 

another and push movable objects. However, since the 

environment is unstructured, the move action fails 

temporarily while transferring the object due to an unknown 

obstacle blocking the passage to the destination. This failure 

is detected by the path planner module of the robot after 

updating its map and path plan accordingly. If the path 

planner cannot find a solution, replanning is needed in the 

higher level. Although a valid plan is impossible from the 

perspective of the planner, there indeed exists a valid and 

executable plan according to which the robot pushes this 

obstacle until the target is reachable. Although action push 

has a single effect of changing the location of an object, it is 

not designed to have an effect of clearing the pathway to 

reach at the target which prevents it to be included in the 

replan. 

3. DYNAMIC TEMPORAL PLANNING 

One way to handle a real-time action execution failure is 

changing the initial and/or goal state representations (Fox et 

al. 2006) to reconstruct a valid plan. However, it is not 

guaranteed that this new plan is executable in the real world. 

Additional precautions should be taken to prevent generating 

such plans (Cushing and Kambhampati 2005). There may be 

different intuitive solutions to the presented problem: (1) 
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Fig. 1. Dynamic Temporal Planning Framework

disabling the failed actions, (2) suspending the failed actions, 

(3) incremental or subgoal planning. Disabling the failed 

actions may prevent their use in the constructed plan 

permanently. The second method overcomes this problem by 

just suspending the selection of the failed action for a certain 

time period. In this case, since the duration of suspension is 

domain-dependent and unpredictable, a complicated 

reasoning process is needed to estimate the realistic duration 

for the suspension. Incremental or subgoal planning is 

another method, however, in this case, suboptimal solutions 

may be observed or the planner may fail to find a subplan to 

achieve subgoals if there is missing domain information. 

Our solution to the presented problem involves a dynamic 

temporal planning framework (Fig. 1) to handle temporary 

action failures. The overall framework employs four 

interleaved processes, namely, planning, execution, 

monitoring and  updating the knowledge base and recovering 

from failures if any. The framework constructs plans to 

achieve given goals, executes the actions in the constructed 

plan, updates the domain representation appropriately on a 

failure, reasons about the failure and, then replans 

continually. After appropriate domain representation updates 

are performed, a new executable plan can be constructed if 

any, even when there is not a valid plan with the given 

operator representations. Domain representation updates 

include causes of a failure and conclusions from reasoning, 

R, that includes the attributes which the failed action intends 

to change. These updates are used in the replaning phase. R is 

initially an empty set, and in this situation, planner constructs 

new plans without any reasoning. However, after telling the 

cause of the failure in the knowledge base and updating the 

reasoning set, more relevant actions could be selected by the 

planner in the replanning phase. Depending on the quality of 

the reasoning about the failure cause, the results of the update 

procedure can be more specific when semantic attachments 

can be made. For example, if an obstacle-related cause is 

detected by the path planner, only the attributes of cause 

which are related to the location of the object should be 

considered for replanning. However, if no such reasoning is 

available, irrelevant preconditions including attributes such as 

the color of the obstacle may also be considered.   

3.1. Planning and Execution  

The framework includes a temporal planner which is 

continually called whenever replanning is needed. The entire 

procedures for robust continual mission execution are given 

in Algorithm 1. There are four execution states: start, 

executing, suspended and failed. In state start, a new plan is 

constructed and the robots start executing this renewed plan. 

State executing is active whenever robots are in execution of 

the plan. State failed is activated when the monitoring 

process detects an action failure, and state suspended is 

activated after state failed until the execution is ceased. 

The algorithm starts with state start for planning (line 22) 

using the existing domain representation. When a plan is 

constructed, it is sent to the robots. In state executing, the 

algorithm is suspended on WAITMESSAGE subroutine waiting 

for any interruption from the monitoring process (at line 7). 

Robots communicate with each other and each message 

contains the state of action execution for a specified action, 

perceptual information about the domain and the cause of 

failure if any. Receiving a message, Algorithm 1 resumes and 

calls the MONITOR subroutine (Algorithm 2). Algorithm 1 

remains in state executing until a failure message is received 

from a robot in the domain or VALID  subroutine 

returns false when the corresponding plan becomes invalid. 

In this case, a stop-execution message is sent to all robots. 

Receiving a stop message, each robot stops the execution of 

its action. 

Whenever the plan is no longer executable by the robots, the 

cause of the failure is encoded in the domain representation 

and state failed is activated. Then, the validity of the failed 

plan is checked for the updated state information. If the failed 

plan is still treated as valid from the planner’s perspective,  



 

 

     

 

Algorithm 1 DYNAMICTEMPORALPLANNING  

Input: current state , goal state   

Output: returns success or failure: messages to robots are sent 

  1:    

  2:   ,     

  3:    

  4:   for  do 

  5:       if  then 

  6:            if VALID  

  7:                 WAITMESSAGE  

  8:                 MONITOR  

  9:            else 

10:                  SENDALLROBOTSSTOPEXECUTION  

11:                   

12:       else if  then 

13:            if VALID  then  

14:                UPDATEDOMAINDESCRIPTION  

15:             

16:       else if  then 

17:            for all robots stop execution do 

18:                  WAITMESSAGE  

19:                  MONITOR  

20:              

21:        else  

22:              PLANNER  

23:             if  then 

24:                  return NOPLAN 

25:              

26:             SENDPLANTOROBOTS  

27:  return SUCCESS 

 

replanning cannot handle this failure case. In this case, 

UPDATEDOMAINDESCRIPTION subroutine is called to make 

the required domain representation updates, reason about the 

failure and handle it. The body of this subroutine is described 

in the following subsection given in Algorithm 3. After the 

domain representation is updated, Algorithm 1 waits for 

execution-stopped messages from all robots. After then, the 

state is changed to start and a new plan is constructed. 

3.2. Execution Monitoring and Failure Recovery  

Algorithm 2 is used to monitor the status of the existing plan 

and to parse messages coming from robots. Monitoring of the 

existing plan is performed by simulating the plan from the 

current world state. The plan is simulated by applying the 

start and end effects of the actions to the fact base. The 

perceptions are applied on the current state, when finished, 

started and stopped messages are received, the status is set to 

executing. However, when a failed message is received, the 

status is set to failed which activates replanning. When 

failures are detected, the required domain updates are applied 

in the knowledge base. 

Algorithm 3 implements the appropriate domain updates. At 

lines (5) to (9), the failed action is locked by defining a new 

predicate ( ) with the name of the operator 

(concatenated with string “_locked”) and its parameters in the 

domain. This predicate is added to the preconditions of the  

Algorithm 2 MONITOR  

Input: message , currrent state  

Output: status of planning, current state  

  1:    

  2:    

  3:    

  4:    

  5:   if  then 

  6:         APPLYSTARTEFFECTS  

  7:   else if  then 

  8:         APPLYENDEFFECTS  

  9:         MERGE  

10:   else if  then 

11:         MERGE  

12:          

13:   else if  then 

14:         MERGE  

15:   return  

 

failed operator. Then, a corresponding fact ( ) is 

included in the domain description. At line (14), reasoning set 

is updated by adding the attributes which exist in the effects 

of the failed action in the domain description. This update 

makes the planner to primarily choose the actions that 

suppress the failure cause. At lines (15) to (19), a new pseudo 

operator ( ) is created for the failed action-cause pairs 

, if not created before (for avoiding from loops). 

Line (21) assigns the pseudo operator to the corresponding 

failed action and cause pair. This pseudo operator diverges 

from the original domain operators by its specific 

preconditions, effects and parameters for representing the 

failure cause. It has additional preconditions for restricting its 

selection (for preventing cycling plans) only when the 

corresponding failed action is locked and the related cause is 

given as an argument. It has also additional effects for 

unlocking the failed action. 

The appropriate preconditions are generated by 

MAKEFAILUREPRECONDITIONS subroutine (Algorithm 4). 

This subroutine first searches for the domain operators which 

possess the related effects to the attributes of cause. Then, it 

creates a precondition list as a disjunction of the inequality 

statements between the attributes of cause and their values in 

the failed state Sfailed. In addition to this operation, the 

attributes that do not exist in the reasoning set R are 

eliminated to manipulate the planner to choose relevant 

actions to overcome the failure in its first attempt. Therefore, 

these inequality statements ensure reactivating the failed 

actions when the status of cause is changed in a desired way. 

If the pseudo operator is created earlier, and the plan is still 

non-executable, that means the alternative action does not 

produce the desired effect for resolving the failure. In this 

case, lines (23) to (30) in Algorithm 3 remove the related 

effects of this alternative action from the list of the 

preconditions of the pseudo operator. Therefore, it is not 

considered as an alternative action in future plans. An 

inappropriate alternative action is not considered in a future 

plan for the resolution of the related failure. 



 

 

     

 

Algorithm 3 UPDATEDOMAINDESCRIPTION (msg, S, ) 

Input: message , planning domain , 

            current state , current failed plan , reasoning set R 

Output: updated planning domain  and reasoning set R 

  1:    

  2:  

  3:    

  4:    

  5:    CONCAT  

  6:   

  7:    

  8:  GENERATEFACT  

  9:    

10:   

11:    

12:    

13:   GETPSEUDOOPERATOR( ) 

14:      

15:   if  then 

16:        

17:         

18:        

19:                     MAKEFAILUREPRECONDITIONS( ) 

20:        

21:         

22:       SETPSEUDOOPERATOR( ) 

23:   else 

24:        GETPREDECESSORACTION( , , ) 

25:        

26:        GETEXECUTEDOPERATORS( ) 

27:         

28:       SETEXECUTEDOPERATORS( ) 

29:        

30:        

31:       MAKEFAILUREPRECONDITIONS( ) 

 

Algorithm 4 MAKEFAILUREPRECONDITIONS ( , , ) 

Input: failure cause , planning domain , reasoning set R 

            current state , executed operator list  

Output: disjunctive precondition list  

  1:  

  2: for each in  but not in  do 

  3:      for each effect  in  do 

  4:           for each attribute  in  do 

  5:                if  affects  and   R then 

  6:                      

  7:                        

  8: return  

4. SIMULATION RESULTS 

A failure resolution scenario is analyzed for presenting the 

solution in the realistic Webots simulator with two mobile 

robots. This scenario includes a temporary action execution 

failure case to test and validate the success of the proposed 

method. There are 6 operators available in the planning 

domain: operator (move-to-loc ?robot ?loc) is to forward 

robots to a destination,  operator (move-to-obj ?robot ?obj) is 

to forward robots to a position nearby an object to act on it, 

operators (pick ?robot ?smallObj) and (drop ?robot 

?smallObj) are for picking/dropping a small object by the 

grippers of the robots, operator (push ?robot ?largeObj) is 

used to change the position of a large object by dragging, and 

operator (paint ?robot ?obj ?color) to paint an object.  

The overall goal in the planning problem is transferring the 

small red cylindrical objects to a target location behind the 

obstacle (Fig. 4). However, the robots are not informed about 

the existence of the obstacle which blocks the passageway.  

During the execution of the move-to-loc action, one of the 

robots detects the obstacle and its path planner returns a 

failure since it is impossible to generate a path from the 

current position to the destination. The failure cause of the 

action move-to-loc is reported as obstacle with its estimated 

location. This new information is encoded in the knowledge 

base ( ). If there is a valid solution at this step, replanning is 

performed. At this moment, it is assumed that there is no 

knowledge of how to resolve this failure (i.e., operator push 

would not be selected by the planner since it does not have an 

effect “clear the pathway to reach at the target”). Even when 

replanning is not possible, the proposed generic domain 

representation update method enables creating an alternative 

plan by means of the UPDATEDOMAINDESCRIPTION 

subroutine. This subroutine adds a pseudo operator for the 

reported cause to the domain to transform to a new planning 

problem . 

(def-adl-operator (move-to-loc ?loc) 

 (pre 

      … 

     (not (move-to-loc_locked ?loc)) 

 ) 

 … 

) 
(def-adl-operator (pseudo1 ?obj ?loc) 

 (pre 

     … 

        (and 

     (= ?obj obstacle) 

    (move-to-loc_locked ?loc) 

    (or 

       (not (xcoord ?obj obs_x)) 

       (not (ycoord ?obj obs_y))   

         ) 

        ) 

 ) 

 (del (move-to-loc_locked ?loc)) 

) 

Fig. 2. Domain updates for the resolution of the failure. The 

color attribute of the object is not included in the pseudo 

operator since reasoning set R excludes it. 

MAKEFAILUREPRECONDITIONS subroutine searches for the 

operators in the domain representation and finds operators 

push and paint as the related operators to the cause (obstacle) 

since they have the effects to change the attributes of an 

object. A new pseudo operator pseudo1 is created with the 

preconditions related to both the failed action (move-to-loc) 

and the effects x and y coordinates. Note that the color 

attribute of the object is not included in the pseudo operator 

since reasoning set R excludes it. The domain representation 

is updated with the inclusion of a disabling fact (move-to-

loc_locked obstacle) of the failed action and the new pseudo 



 

 

     

 

 

pseudo1 (obstacle, target)

initial plan
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Fig. 3. The plans that are generated by the planner before (initial plan) and after (new plan) the failure 

operator. All domain representation updates including the 

change made on the disabled action are illustrated in Fig. 2. 

The robots’ plans for the given scenario are also illustrated in 

Fig. 3. The top row of the Fig. 3 shows the original plans of 

the robots. After detecting a failure, robots update their 

beliefs and the planner generates a new plan including the 

pseudo operator which enables the operator push to be 

included in the first robot’s updated plan. Action paint is not 

included in the final plan since the color attribute of the 

object does not exist in the reasoning set R. Therefore, the 

planner chooses push action to overcome the failure. Since 

TLPlan generates makespan optimal plans, the durations of 

the actions, illustrated in Fig. 3, are also taken into 

consideration. Overall plan execution is illustrated in Fig. 4. 

(a) (b) (c) 

(d) (e) (f) 

Fig. 4. The overall plan execution of moving the red objects 

to their destinations. (a-b) The initial plan is executed. (b) 

After detecting an obstacle, the necessary domain 

representation updates are applied and a new plan is 

generated. (c-f)  The new plan involves pushing the obstacle 

to an appropriate location before the red objects are moved. 

5. CONCLUSIONS 

In this paper, we present a framework which successfully 

recovers from failures against environmental issues. The 

proposed method can efficiently handle temporary action 

execution failures by updating the robot’s domain 

representation, and reasoning about the cause of failures. 

Different from our earlier study (Usug and Sariel-Talay 

2011), the planner can generate alternative plans that recover 

from an encountered failure in a shorter time by an intuitive 

reasoning approach. The new plans are generated after 

appropriate domain representation updates. An example 

failure scenario is given in the Webots simulator; and the 

failure is successfully handled by applying our proposed 

method. As simulation results show, new valid plans are 

generated by replanning with the addition of new pseudo 

operators into the knowledge base and by reasoning to enable 

the planner choose actions that recover from the failure 

cause. The proposed method provides a new and efficient 

way to detect and recover from failures in dynamic 

environments. Our future work includes more advanced 

reasoning strategies to be included in the framework. 
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