

 Robots That Create Alternative Plans against Failures

C. Ugur Usug. Dogan Altan. Sanem Sariel-Talay

Artificial Intelligence and Robotics Laboratory

Computer Engineering Department

Istanbul Technical University, Istanbul, Turkey

(e-mail: {usugc,daltan,sariel}@itu.edu.tr)

Abstract: Automated action planning is crucial for efficient execution of mobile robot missions.

Automated planners use complete domain descriptions to construct plans. Nevertheless, there is usually a

gap between the real world and its representation. Therefore, there is another source of uncertainty for

mobile robot systems due to the impossibility of perfectly representing action descriptions (e.g.,

preconditions and effects) in all circumstances. Incomplete domain representations may lead a planner to

fail constructing a valid plan when unforeseen events are encountered. We investigate these types of

situations, especially the failure cases and how robots can recover from real-time execution failures. The

main focus of our research is to design a dynamic planning framework which can generate alternative

plans by applying generic updates in the domain representation when the execution of a plan fails. Our

proposed method constructs new feasible plans by using the updated domain representations even if the

outcomes of the operators are partially known in advance or feasible plans are not possible with the

original representation of the domain. Besides updating the domain representation, our method

manipulates the planner by using a reasoning mechanism so that it chooses more relevant actions to

recover from failures. This is achieved by considering the effects of the failed action and trying to

accomplish these effects with alternative actions.

Keywords: Multirobot planning, dynamic planning, failure recovery.

1. INTRODUCTION

Cognitive robots need automated onboard high-level action

planning for online generation of action sequences against

exogenous events. Temporal planners, capable of generating

efficient sequences of durative actions, are convenient to be

used with real robot missions. There have been significant

advances in devising efficient temporal planners for

continually enhanced benchmark planning domains.

However, these algorithms operate at a high level and are not

completely able to deal with hardware or physical

environment limitations. In particular, real world is partially

observable and involves different sources of uncertainty due

to noisy sensor information, unexpected outcomes of actions

and failures. Our research focuses on continual planning,

execution and monitoring issues for cognitive robots. In

particular, we investigate failure recovery methods for

enabling efficient completion of tasks on unexpected

outcomes.

Failure detection and diagnosis is investigated in earlier

planning frameworks (de Jonge, Roos and Witteveen 2009)

and plan repairing methods are proposed for recovering from

failures (van der Krogt and de Weerdt 2005, Micalizio 2009).

However, in some real-world cases, a planner may not come

up with a valid (re)plan with the available operators at hand

(Brenner and Nebel 2009, Göbelbecker et al. 2010) but with

unforeseen opportunistic features or outcomes of actions.

This is due to lack of detailed and realistic representations

(e.g., preconditions and effects) of actions (i.e., real-world

instantiations of planning operators) in a planning domain or

the abstraction of the problem for reducing complexity. When

action representations are incorrect or incomplete, learning

methods are required. However, even for simple learning

methods, a certain amount of background knowledge is

needed.

Our prior work (Usug and Sariel-Talay 2011) presents a

dynamic temporal planning framework for mobile robots to

handle action failures which occur due to misbeliefs about

environmental issues. In this work, we extend that framework

by applying more intuitive reasoning methods in selecting

alternative actions to overcome failures. These types of

failures are analysed in a taxonomy of failures presented in

our earlier work (Karapinar, Altan and Sariel-Talay 2012).

Different from earlier studies, the presented solution

constructs alternative plans even when guidance by experts,

relevant new information or repairing operators for

replanning is not available. Real outcomes of existing

operators may not be completely known in advance (e.g., due

to abstraction) or valid plans are not possible with the

existing representation of the domain. The proposed

framework includes a domain representation update

procedure that provides reasoning tools to replan accordingly

for the resolution of a failure by reasoning about the cause of

a failure in planning level using low-level scene

understanding. Background knowledge needed for updating

the existing domain operators is almost negligible and a

generic approach is applied by searching for the effects of

existing operators that may resolve the failure. After the

required domain representation updates are performed, a

replanning approach is employed as opposed to repairing

since makespan (near-) optimal solutions are targeted

(Cushing, Benton and Kambhampati 2008). TLPlan (Bacchus

and Ady 2001) is used as a forward chaining temporal

planner in the system to construct makespan-optimized plans.

Low and high-level planning procedures of the system are

made compatible by using efficient domain representations

(e.g., map).

The rest of the paper is structured as follows. The next

section presents the formulation of the investigated problem.

Section 3 describes the dynamic temporal planning

framework as a proposed solution to the presented problem

and the developed algorithms for domain representation

updates and replanning. The experimental results are

presented in the following section and then, the paper is

concluded with suggestions for future work.

2. PROBLEM STATEMENT

A planning domain is as a tuple where is

a set of constants, is a set of types, is a set of predicates

and is a set of planning operators representing real-world

actions that can be executed by robots. A planning problem is

modeled as where and are initial and goal

states, respectively. Each world state includes a set of facts

including the representations of resources and robots in the

system (). A planning operator is represented

with a set of parameters , a set of preconditions

 and add/delete effects . An operator

is only applicable in the current state if .

Whenever is applied, the world state is transformed to a

successor which is represented as .

A temporal plan , a solution to a planning problem ,

satisfying optimization with a sequence of

instantiated and scheduled operator instances, which

correspond to real-world actions (). Each

action is represented with a set of arguments , a set

of allocated robots for execution and a start time in the

constructed temporal plan. Action has representing

the total duration (i.e., the amount of duration between

and the time step that effects are available) of the

corresponding real-world action. is a

simulation control function that checks the validity of the

plan prior to its execution. A plan is valid if its operators

satisfy the constraints and achieves the goal state from the

current state by applying them. An executable plan is a

valid plan of which real-world execution is possible with the

existing resources. In some situations, even when a plan is

valid, its runtime execution may fail. In this case, becomes

non-executable during the execution of an action, , in

state . The cause of failure is represented as

and it has an attribute list of defined in and each

element of this list has a value in . It is

assumed that is detected as just the subject of the action or

encountered objects by the low level components (e.g.,

perception and path planning modules) of the robot. When

such a failure occurs, the existing plan cannot be executed

and replanning is needed. In this case, the corresponding

domain representation update procedure transforms the

planning problem from to for replanning. includes

the encoded cause, c and the failure situation. The planner

may still fail to find an executable plan for due to missing

information although an executable plan exists in the real

world. In that case, the updated planning problem should

be transformed to that includes necessary updates to

generate an executable plan.

The problem that we investigate in this paper is updating the

domain representation appropriately whenever an execution

failure occurs. Relevant updates should be made in such a

way to autonomously find an executable plan involving

alternative actions to the failed ones. Note that before the

domain representation is updated, these alternative actions

may not be applicable for generating a valid plan due to

incomplete representations. Therefore, an executable (also

valid) plan is to be found for even when no valid plan is

found for or there are valid but non-executable plans (i.e.,

with non-executable actions for which)

generated by replanning for .

The presented problem involves two types of action

execution failures, namely, temporary and permanent

failures. Temporary failures occur at runtime and can be

resolved by replanning. Temporarily failed actions may

become available whenever alternative actions are executed

to achieve the required preconditions of these failed actions.

When an action permanently fails, there is no way to execute

that action to achieve the goals.

As a motivating example to illustrate the above mentioned

problem, a single-robot scenario can be given with an object,

located on one end of a corridor, to be moved to the other

end. The robot is able to execute several actions such as

pick/drop objects by its gripper, move from one location to

another and push movable objects. However, since the

environment is unstructured, the move action fails

temporarily while transferring the object due to an unknown

obstacle blocking the passage to the destination. This failure

is detected by the path planner module of the robot after

updating its map and path plan accordingly. If the path

planner cannot find a solution, replanning is needed in the

higher level. Although a valid plan is impossible from the

perspective of the planner, there indeed exists a valid and

executable plan according to which the robot pushes this

obstacle until the target is reachable. Although action push

has a single effect of changing the location of an object, it is

not designed to have an effect of clearing the pathway to

reach at the target which prevents it to be included in the

replan.

3. DYNAMIC TEMPORAL PLANNING

One way to handle a real-time action execution failure is

changing the initial and/or goal state representations (Fox et

al. 2006) to reconstruct a valid plan. However, it is not

guaranteed that this new plan is executable in the real world.

Additional precautions should be taken to prevent generating

such plans (Cushing and Kambhampati 2005). There may be

different intuitive solutions to the presented problem: (1)

Planning

Execution

Planning Model

Failure Recovery

Problem

Definition

Action Plan
Problem

Domain

Planning Problem

Interface

Actuators and

Effectors

Sensors (Camera,

Distance/Obstacle

Sensors and Kinect)

Environment

(Other robots and

objects)

Scene

Understanding

Path

Planning

Mapping

Behaviors

Execution

Monitoring

World

Model
Reasoner

TLPlan-C

(Temporal Planner)

Communication

plan

plan
move-to-obj

(robot,obj)

pick (robot,

obj)

move-to-loc

(robot, target)

drop (robot,

obj)

Fig. 1. Dynamic Temporal Planning Framework

disabling the failed actions, (2) suspending the failed actions,

(3) incremental or subgoal planning. Disabling the failed

actions may prevent their use in the constructed plan

permanently. The second method overcomes this problem by

just suspending the selection of the failed action for a certain

time period. In this case, since the duration of suspension is

domain-dependent and unpredictable, a complicated

reasoning process is needed to estimate the realistic duration

for the suspension. Incremental or subgoal planning is

another method, however, in this case, suboptimal solutions

may be observed or the planner may fail to find a subplan to

achieve subgoals if there is missing domain information.

Our solution to the presented problem involves a dynamic

temporal planning framework (Fig. 1) to handle temporary

action failures. The overall framework employs four

interleaved processes, namely, planning, execution,

monitoring and updating the knowledge base and recovering

from failures if any. The framework constructs plans to

achieve given goals, executes the actions in the constructed

plan, updates the domain representation appropriately on a

failure, reasons about the failure and, then replans

continually. After appropriate domain representation updates

are performed, a new executable plan can be constructed if

any, even when there is not a valid plan with the given

operator representations. Domain representation updates

include causes of a failure and conclusions from reasoning,

R, that includes the attributes which the failed action intends

to change. These updates are used in the replaning phase. R is

initially an empty set, and in this situation, planner constructs

new plans without any reasoning. However, after telling the

cause of the failure in the knowledge base and updating the

reasoning set, more relevant actions could be selected by the

planner in the replanning phase. Depending on the quality of

the reasoning about the failure cause, the results of the update

procedure can be more specific when semantic attachments

can be made. For example, if an obstacle-related cause is

detected by the path planner, only the attributes of cause

which are related to the location of the object should be

considered for replanning. However, if no such reasoning is

available, irrelevant preconditions including attributes such as

the color of the obstacle may also be considered.

3.1. Planning and Execution

The framework includes a temporal planner which is

continually called whenever replanning is needed. The entire

procedures for robust continual mission execution are given

in Algorithm 1. There are four execution states: start,

executing, suspended and failed. In state start, a new plan is

constructed and the robots start executing this renewed plan.

State executing is active whenever robots are in execution of

the plan. State failed is activated when the monitoring

process detects an action failure, and state suspended is

activated after state failed until the execution is ceased.

The algorithm starts with state start for planning (line 22)

using the existing domain representation. When a plan is

constructed, it is sent to the robots. In state executing, the

algorithm is suspended on WAITMESSAGE subroutine waiting

for any interruption from the monitoring process (at line 7).

Robots communicate with each other and each message

contains the state of action execution for a specified action,

perceptual information about the domain and the cause of

failure if any. Receiving a message, Algorithm 1 resumes and

calls the MONITOR subroutine (Algorithm 2). Algorithm 1

remains in state executing until a failure message is received

from a robot in the domain or VALID subroutine

returns false when the corresponding plan becomes invalid.

In this case, a stop-execution message is sent to all robots.

Receiving a stop message, each robot stops the execution of

its action.

Whenever the plan is no longer executable by the robots, the

cause of the failure is encoded in the domain representation

and state failed is activated. Then, the validity of the failed

plan is checked for the updated state information. If the failed

plan is still treated as valid from the planner’s perspective,

Algorithm 1 DYNAMICTEMPORALPLANNING

Input: current state , goal state

Output: returns success or failure: messages to robots are sent

 1:

 2: ,

 3:

 4: for do

 5: if then

 6: if VALID

 7: WAITMESSAGE

 8: MONITOR

 9: else

10: SENDALLROBOTSSTOPEXECUTION

11:

12: else if then

13: if VALID then

14: UPDATEDOMAINDESCRIPTION

15:

16: else if then

17: for all robots stop execution do

18: WAITMESSAGE

19: MONITOR

20:

21: else

22: PLANNER

23: if then

24: return NOPLAN

25:

26: SENDPLANTOROBOTS

27: return SUCCESS

replanning cannot handle this failure case. In this case,

UPDATEDOMAINDESCRIPTION subroutine is called to make

the required domain representation updates, reason about the

failure and handle it. The body of this subroutine is described

in the following subsection given in Algorithm 3. After the

domain representation is updated, Algorithm 1 waits for

execution-stopped messages from all robots. After then, the

state is changed to start and a new plan is constructed.

3.2. Execution Monitoring and Failure Recovery

Algorithm 2 is used to monitor the status of the existing plan

and to parse messages coming from robots. Monitoring of the

existing plan is performed by simulating the plan from the

current world state. The plan is simulated by applying the

start and end effects of the actions to the fact base. The

perceptions are applied on the current state, when finished,

started and stopped messages are received, the status is set to

executing. However, when a failed message is received, the

status is set to failed which activates replanning. When

failures are detected, the required domain updates are applied

in the knowledge base.

Algorithm 3 implements the appropriate domain updates. At

lines (5) to (9), the failed action is locked by defining a new

predicate () with the name of the operator

(concatenated with string “_locked”) and its parameters in the

domain. This predicate is added to the preconditions of the

Algorithm 2 MONITOR

Input: message , currrent state

Output: status of planning, current state

 1:

 2:

 3:

 4:

 5: if then

 6: APPLYSTARTEFFECTS

 7: else if then

 8: APPLYENDEFFECTS

 9: MERGE

10: else if then

11: MERGE

12:

13: else if then

14: MERGE

15: return

failed operator. Then, a corresponding fact () is

included in the domain description. At line (14), reasoning set

is updated by adding the attributes which exist in the effects

of the failed action in the domain description. This update

makes the planner to primarily choose the actions that

suppress the failure cause. At lines (15) to (19), a new pseudo

operator () is created for the failed action-cause pairs

, if not created before (for avoiding from loops).

Line (21) assigns the pseudo operator to the corresponding

failed action and cause pair. This pseudo operator diverges

from the original domain operators by its specific

preconditions, effects and parameters for representing the

failure cause. It has additional preconditions for restricting its

selection (for preventing cycling plans) only when the

corresponding failed action is locked and the related cause is

given as an argument. It has also additional effects for

unlocking the failed action.

The appropriate preconditions are generated by

MAKEFAILUREPRECONDITIONS subroutine (Algorithm 4).

This subroutine first searches for the domain operators which

possess the related effects to the attributes of cause. Then, it

creates a precondition list as a disjunction of the inequality

statements between the attributes of cause and their values in

the failed state Sfailed. In addition to this operation, the

attributes that do not exist in the reasoning set R are

eliminated to manipulate the planner to choose relevant

actions to overcome the failure in its first attempt. Therefore,

these inequality statements ensure reactivating the failed

actions when the status of cause is changed in a desired way.

If the pseudo operator is created earlier, and the plan is still

non-executable, that means the alternative action does not

produce the desired effect for resolving the failure. In this

case, lines (23) to (30) in Algorithm 3 remove the related

effects of this alternative action from the list of the

preconditions of the pseudo operator. Therefore, it is not

considered as an alternative action in future plans. An

inappropriate alternative action is not considered in a future

plan for the resolution of the related failure.

Algorithm 3 UPDATEDOMAINDESCRIPTION (msg, S,)

Input: message , planning domain ,

 current state , current failed plan , reasoning set R

Output: updated planning domain and reasoning set R

 1:

 2:

 3:

 4:

 5: CONCAT

 6:

 7:

 8: GENERATEFACT

 9:

10:

11:

12:

13: GETPSEUDOOPERATOR()

14:

15: if then

16:

17:

18:

19: MAKEFAILUREPRECONDITIONS()

20:

21:

22: SETPSEUDOOPERATOR()

23: else

24: GETPREDECESSORACTION(, ,)

25:

26: GETEXECUTEDOPERATORS()

27:

28: SETEXECUTEDOPERATORS()

29:

30:

31: MAKEFAILUREPRECONDITIONS()

Algorithm 4 MAKEFAILUREPRECONDITIONS (, ,)

Input: failure cause , planning domain , reasoning set R

 current state , executed operator list

Output: disjunctive precondition list

 1:

 2: for each in but not in do

 3: for each effect in do

 4: for each attribute in do

 5: if affects and R then

 6:

 7:

 8: return

4. SIMULATION RESULTS

A failure resolution scenario is analyzed for presenting the

solution in the realistic Webots simulator with two mobile

robots. This scenario includes a temporary action execution

failure case to test and validate the success of the proposed

method. There are 6 operators available in the planning

domain: operator (move-to-loc ?robot ?loc) is to forward

robots to a destination, operator (move-to-obj ?robot ?obj) is

to forward robots to a position nearby an object to act on it,

operators (pick ?robot ?smallObj) and (drop ?robot

?smallObj) are for picking/dropping a small object by the

grippers of the robots, operator (push ?robot ?largeObj) is

used to change the position of a large object by dragging, and

operator (paint ?robot ?obj ?color) to paint an object.

The overall goal in the planning problem is transferring the

small red cylindrical objects to a target location behind the

obstacle (Fig. 4). However, the robots are not informed about

the existence of the obstacle which blocks the passageway.

During the execution of the move-to-loc action, one of the

robots detects the obstacle and its path planner returns a

failure since it is impossible to generate a path from the

current position to the destination. The failure cause of the

action move-to-loc is reported as obstacle with its estimated

location. This new information is encoded in the knowledge

base (). If there is a valid solution at this step, replanning is

performed. At this moment, it is assumed that there is no

knowledge of how to resolve this failure (i.e., operator push

would not be selected by the planner since it does not have an

effect “clear the pathway to reach at the target”). Even when

replanning is not possible, the proposed generic domain

representation update method enables creating an alternative

plan by means of the UPDATEDOMAINDESCRIPTION

subroutine. This subroutine adds a pseudo operator for the

reported cause to the domain to transform to a new planning

problem .

(def-adl-operator (move-to-loc ?loc)

 (pre

 …

 (not (move-to-loc_locked ?loc))

)

 …

)
(def-adl-operator (pseudo1 ?obj ?loc)

 (pre

 …

 (and

 (= ?obj obstacle)

 (move-to-loc_locked ?loc)

 (or

 (not (xcoord ?obj obs_x))

 (not (ycoord ?obj obs_y))

)

)

)

 (del (move-to-loc_locked ?loc))

)

Fig. 2. Domain updates for the resolution of the failure. The

color attribute of the object is not included in the pseudo

operator since reasoning set R excludes it.

MAKEFAILUREPRECONDITIONS subroutine searches for the

operators in the domain representation and finds operators

push and paint as the related operators to the cause (obstacle)

since they have the effects to change the attributes of an

object. A new pseudo operator pseudo1 is created with the

preconditions related to both the failed action (move-to-loc)

and the effects x and y coordinates. Note that the color

attribute of the object is not included in the pseudo operator

since reasoning set R excludes it. The domain representation

is updated with the inclusion of a disabling fact (move-to-

loc_locked obstacle) of the failed action and the new pseudo

pseudo1 (obstacle, target)

initial plan

new plan

Fig. 3. The plans that are generated by the planner before (initial plan) and after (new plan) the failure

operator. All domain representation updates including the

change made on the disabled action are illustrated in Fig. 2.

The robots’ plans for the given scenario are also illustrated in

Fig. 3. The top row of the Fig. 3 shows the original plans of

the robots. After detecting a failure, robots update their

beliefs and the planner generates a new plan including the

pseudo operator which enables the operator push to be

included in the first robot’s updated plan. Action paint is not

included in the final plan since the color attribute of the

object does not exist in the reasoning set R. Therefore, the

planner chooses push action to overcome the failure. Since

TLPlan generates makespan optimal plans, the durations of

the actions, illustrated in Fig. 3, are also taken into

consideration. Overall plan execution is illustrated in Fig. 4.

(a) (b) (c)

(d) (e) (f)

Fig. 4. The overall plan execution of moving the red objects

to their destinations. (a-b) The initial plan is executed. (b)

After detecting an obstacle, the necessary domain

representation updates are applied and a new plan is

generated. (c-f) The new plan involves pushing the obstacle

to an appropriate location before the red objects are moved.

5. CONCLUSIONS

In this paper, we present a framework which successfully

recovers from failures against environmental issues. The

proposed method can efficiently handle temporary action

execution failures by updating the robot’s domain

representation, and reasoning about the cause of failures.

Different from our earlier study (Usug and Sariel-Talay

2011), the planner can generate alternative plans that recover

from an encountered failure in a shorter time by an intuitive

reasoning approach. The new plans are generated after

appropriate domain representation updates. An example

failure scenario is given in the Webots simulator; and the

failure is successfully handled by applying our proposed

method. As simulation results show, new valid plans are

generated by replanning with the addition of new pseudo

operators into the knowledge base and by reasoning to enable

the planner choose actions that recover from the failure

cause. The proposed method provides a new and efficient

way to detect and recover from failures in dynamic

environments. Our future work includes more advanced

reasoning strategies to be included in the framework.

ACKNOWLEDGEMENT

This research is funded by a grant from the Scientific and

Technological Research Council of Turkey (TUBITAK),

Grant No. 111E-286.

REFERENCES

Bacchus, F., and Ady, M. 2001. Planning with resources and
concurrency: A forward chaining approach. In Proceedings of
IJCAI, 417-424.

Brenner, M., and Nebel, B. 2009. Continual planning and acting in
dynamic multiagent environments. In AAMAS, 19(3):297-331

Cushing W., and Kambhampati S. 2005. Replanning: A new
perspective. In Proceedings of ICAPS.

Cushing, W.; Benton, J.; and Kambhampati, S. 2008. Replanning as
a deliberative re-selection of objectives. Arizona State
University, Tech. Rep.

de Jonge, F.; Roos, N.; Witteveen, C. 2009. Primary and secondary
diagnosis of multi-agent plan. In AAMAS, 18(2): 267-294.

Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan stability:
Replanning versus plan repair. In Proceedings of ICAPS, 212-
221.

Göbelbecker, M.; Keller, T.; Eyerich, P.; Brenner, M.; Nebel, B.
2010. Coming up with good excuses: What to do when no plan
can be found. In Proceedings of The International Conference
on Automated Planning and Scheduling (ICAPS), 81-88.

Karapinar S., Altan D. and Sariel-Talay S. 2012. A Robust Planning
Framework for Cognitive Robots. The AAAI-12 Workshop on
Cognitive Robots (CogRob).

Micalizio, R. 2009. A distributed control loop for autonomous
recovery in a multiagent plan. In Proceedings of IJCAI, 1760-
1765.

Usug, U.C., and Sariel-Talay, S. 2011. Dynamic temporal planning
for multirobot systems. In Proceedings of the AAAI-11
Workshop on Automated Action Planning for Autonomous
Mobile Robots (PAMR).

van der Krogt, R., and de Weerdt, M. 2005. Plan repair as an
extension of planning. In Proceedings of The International
Conference on Automated Planning and Scheduling (ICAPS),
161-170.

