
Ed.

An Integrated Planning and Learning Framework for
Autonomous Mobile Robots

C. Ugur Usug, Dogan Altan, Sertac Karapinar, Mustafa Ersen and Sanem Sariel-Talay

Artificial Intelligence and Robotics Laboratory

Istanbul Technical University, TURKEY

When the real outcomes of actions are not completely represented in the planning domain, a planner

may not be able to construct a valid plan even if there exists one. This research focuses on generic

domain update and reasoning methods to construct alternative plans against real-time execution

failures that are detected either during runtime or earlier by a plan simulation process. Based on the

updated domain representations, a new executable plan is constructed even when the outcomes of

existing operators are not completely known in advance or valid plans are not possible with the

existing representation of the domain.

Introduction
Handling Temporary Execution Failures

The Scope

TLPlan Temporal Planner

Experimental Results

Initial plan is executed.

The overall plan execution of moving red objects to their destinations: (top) plan

execution in Webots (bottom) map updates for the first robot.

The required domain updates are made due to the failure and a new plan is generated.

The new plan involves pushing the obstacle to an appropriate location before the red

objects are moved to their destinations.

Integrated Planning and Learning Framework

Dynamic Temporal

Planning System

(Server)

Robot 1

Robot n

TCP/IP Socket

Communication

Layer

Problem File

TLPlan

(Temporal

Planner)

WEBOTS

(Client)

TLPlan Output File
Domain File

TLPlan Manager

Problem &

Domain Parser

Method - 2 Method - 3 Method - 1
(def-adl-operator (move-to-loc ?loc)

 (pre

 …

 (not (move-to-loc_locked ?loc))

)

 …

)

(def-adl-operator (pseudo1 ?obj ?loc)

 (pre

 (and

 (= ?obj obstacle)

 (move-to-loc_locked ?loc)

 (or

 (not (xcoord ?obj obj_x))

 (not (ycoord ?obj obj_y))

)

)

)

 (del (move-to-loc_locked ?loc))

)

The System

http://air.cs.itu.edu.tr

R1

R2

B2

Wall

Wall

B1

B2

Target

GN: Number of nodes generated

EN: Number of nodes expanded

2,53 GHz / 4GB RAM

Max Time: 500s

Memory limitation: 20000 nodes

(move-to-loc ?robot ?location)

(move-to-obj ?robot ? location)

(pick ?robot ?smallObject)

(drop ?robot ?smallObject)

(push ?robot ?largeObject)

We propose a dynamic temporal planning

framework to handle temporary action execution

failures at runtime. Some temporary failures may

not be resolved by replanning. This research

focuses on developing methods for enabling

replanning to resolve temporary failures.

(def-adl-operator (move-to-loc ?loc)

 (pre

 …

 (not (move-to-loc_locked ?loc))

)

 …

)

(def-adl-operator (push-2 ?obj ?loc)

 (pre

 …

 (and

 (= ?obj obstacle)

 (move-to-loc_locked ?loc)

 (or

 (not (xcoord ?obj obj_x))

 (not (ycoord ?obj obj_y))

)

)

)

 ...

 (del (move-to-loc_locked ?loc))

)

(def-adl-operator (move-to-loc ?loc)

 (pre

 …

 (not (move-to-loc_locked ?loc))

)

 …

)

(def-adl-operator (move-to-loc-2 ?loc ?obj)

 (pre

 …

 (and

 (= ?obj obstacle)

 (move-to-loc_locked ?loc)

 (or

 (not (xcoord ?obj obj_x))

 (not (ycoord ?obj obj_y))

)

)

)

 …

)

The operator

related to

the failed

action

Properties of the

cause of the failure

are represented in

the preconditions of

the operator.

A pseudo

operator is

added to the

domain

Copies of the

operators that may

change the state of

the cause of failure

are added to the

domain.

A copy of the

operator related

to the failed

action is added

to the domain.

(move-to-loc ?robot ?location)

(move-to-obj ?robot ? location)

(pick ?robot ?smallObject)

(drop ?robot ?smallObject)

(push ?robot ?largeObject)

•Webots Simulator with ODE support

•Simulated Khepera II Robots with

grippers

•TCP/IP Communication with the

Simulator and the Planner

Domain Operators Domain Operators Settings

Planning Domain Experiments Simulation Experiments

TLPlan, is a forward chaining temporal planner originally proposed by

Bacchus and Ady (2001). A search node in TLPlan includes the world

state and the action applied along with the world clock that defines

the start time of that action. Applying an action at a state means that

this action is scheduled for the world clock of that state. The search

proceeds by applying new actions or advancing the world clock toward

finding a complete temporal plan. TLPlan is used as the temporal

planner in this system since it can construct plans for

durative and concurrent multirobot actions.

Additional

preconditions are

set for these

operators.

Additional

preconditions are

set for this

operator.

new

plan

initial

plan

Future Work
Our ongoing work includes an extended set of

experiments on several scenarios with Pioneer 3DX

robots. The future work includes extending the

approach to handle permanent execution failures.

Conclusion
The proposed approach can efficiently handle temporary failures. Appropriate domain

updates are made to replan and generate alternative executable plans even when

advanced reasoning tools are not available. An example failure resolution scenario in

the Webots simulator is given to validate the proposed approach.

Methods 1–3 ensure that alternative plans are

constructed to resolve temporary failures. These

plans are constructed by considering actions that

may change the properties of the cause of failure.

Integrating a reasoner is a crucial part of the

ongoing work to provide a more systematic way

to handle failures. Reasoning is useful to

eliminate irrelevant actions that are selected by

the replanning process. Furthermore, the

knowledge-base is incrementally expanded.

Reasoning on Failures

Learning Action Schema
When the planning agent lacks complete

information about the planning domain, the agent

needs to learn these representations from

observations. In an ongoing work, we develop a

method for learning action schema through

observations of a given sequence of actions. We

have selected the Incredible Machine as a

domain for analyzing these interactions because

this domain allows the use of various objects and

relations to achieve a given goal.

Topological map

is updated.

Problem

Instance
Method

Best-first Search A*

#GN #EN
Plan Time

(s)

Makespan

(s)
#GN #EN

Plan Time

(s)

Makespan

(s)

1 robot 1

box

M1 46 23 0,038 46,97 103 54 0,088 46,97

M2 N/A 123 68 0,116 46,97

M3 44 22 0,04 46,97 79 45 0,078 46,97

1 robot 2

box

M1 105 45 0,11 96,77 1148 550 0,78 81,01

M2 N/A 1050 558 0,8 81,01

M3 100 44 0,106 96,77 782 421 0,868 81,01

1 robot 3

box

M1 177 70 0,194 143,38 21586 9720 59,25 118,4

M2 N/A 19569 9779 50,55 118,4

M3 175 69 0,194 143,38 14794 7425 25,3 118,4

2 robot 2

box

M1 128 48 0,136 76,08 35193 12202 170,1 45,13

M2 N/A 38128 14376 195,13 45,13

M3 133 50 0,144 76,08 26793 10328 75,58 45,13

2 robot 3

box

M1 319 101 0,323 151,19 N/A

M2 N/A N/A

M3 296 97 0,31 151,19 N/A

2 robot 4

box

M1 609 172 0,586 240,43 N/A

M2 N/A N/A

M3 618 174 0,634 240,43 N/A

