
A Robust Planning Framework for Cognitive Robots

Sertac Karapinar and Dogan Altan and Sanem Sariel-Talay
Artificial Intelligence and Robotics Laboratory

Computer Engineering Department
Istanbul Technical University, Istanbul, Turkey
{karapinarse,daltan,sariel}@itu.edu.tr

Abstract

A cognitive robot should construct a plan to attain its goals.
While it executes the actions in its plan, it may face several
failures due to both internal and external issues. We present
a taxonomy to classify these failures that may be encoun-
tered during the execution of cognitive tasks. The taxonomy
presents a wide range of failure types. To recover from most
of these failures presented in this taxonomy, we propose a
Robust Planning Framework for cognitive robots. Our frame-
work combines planning, reasoning and learning procedures
into each other for robust execution of cognitive tasks. Fail-
ures can be detected and handled by reasoning and replan-
ning, respectively. The framework also facilitates learning
new hypotheses incrementally based on experience. It can
successfully detect and recover from temporary failures on
a selected set of actions executed by a Pioneer3DX robot. It
has been shown that our preliminary results for hypothesis
learning in failure scenarios are promising.

Introduction
A cognitive robot should possess abilities to solve problems
and plan to attain its goals, reason about dynamic cases and
learn from experience as intelligent systems in nature. Prob-
lem solving and planning is crucial for achieving the given
objectives. Automated planners are commonly used for find-
ing a coarse of actions for a robot to achieve its goals. These
planners usually take the domain information (initial/goal
states and operators corresponding to real-world actions) to
construct a plan. During the execution of actions in the con-
structed plan, a robot may face several types of failures some
of which may be recovered by replanning. However, there
may be gaps between the real-world representation of the
domain and its symbolic counterpart. Especially when the
real outcomes of actions are not completely represented, a
planner may not be able to construct a valid plan in case of
failures. Belief revision and reasoning tools are necessary to
deal with these type of issues. Furthermore, the robot should
be equipped with learning capabilities for the efficiency of
its future decisions.

Our research focuses on developing a robust planning
framework against real-world failures. The framework inte-
grates planning/replanning, generic belief revision, reason-

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ing and learning processes together to enable robust execu-
tion of tasks that require cognition. We investigate several
different types of failures that may occur during the execu-
tion of a plan and propose a taxonomy for robot failures in
cognitive tasks.

Detecting failures and recovering from them are studied in
a previous work (Jonge, Roos, and Witteveen 2009). Some
existing methods address failure handling through repairing
plans (van der Krogt and de Weerdt 2005; Micalizio 2009;
Gianni et al. 2011). A classification of failures is given in a
previous work to detect inconsistencies between the theory
and the model of the real world, plan execution and actual
observations (Steinbauer and Wotawa 2009). Metacognitive
loop (MCL) has been proposed to deal with failures with a
graph structure that represent solutions to failures (Schmill
et al. 2007). A recent work (Hermans, Rehg, and Bobick
2011) investigates robot learning for predicting the effects of
actions. Visual attributes of objects are used for affordance
prediction to utilize planning and action selection. The same
idea may be applied for failure handling.

Action execution failures have also been addressed in
planning frameworks (Gobelbecker et al. 2010). Some ex-
planations for failures may be found and the robot may be
forced to replan with the help of excuses. Excuses could be
extracted by changing the initial state such that a valid plan
can be constructed from there on. Beetz et al. (2010) propose
a system to cope with plan execution flaws. Their system in-
volves plan projection and transformation processes in order
to detect behavior flaws. Plan projection is achieved by sim-
ulating the plan execution in a physics-based simulator. In
case of a behavior flaw in the plan projection, transforma-
tion rules are applied to find a valid plan.

In our previous study (Usug and Sariel-Talay 2011), fail-
ures are handled by considering all actions that can manipu-
late the cause of the failure. This means that the robot tries
to perform each of these actions until it handles the failures
and succeeds in achieving the goal. This might lead the robot
to execute irrelevant actions, causing degradation in perfor-
mance.

Our approach differs from earlier work in the way the fail-
ures are handled. Domain knowledge, if available, is used to
reason about failures and recover from them; otherwise, an
intuitive approach could be applied to construct alternative
plans (Usug and Sariel-Talay 2011). We use TLPlan tempo-

102

Cognitive Robotics
AAAI Technical Report WS-12-06

Figure 1: A Taxonomy of Robot Failures in Cognitive Tasks.

ral planner to plan and replan when failures are detected.
ProbCog reasoning tool (ProbCog 2012) is used to rea-
son about failures. An Inductive Logic Programming (ILP)
based approach is used for belief revision for further deci-
sions.

This paper is organized as follows. First, we present the
overall problem of the planning task for a cognitive robot
and a taxonomy of robot failures for cognitive tasks. Then,
we describe the details of our proposed planning framework
to solve the stated problem. The preliminary results of our
framework are presented in the following section. Finally,
we conclude the paper with discussions and future work.

Robust Planning for Cognitive Robots
A cognitive robot is expected to solve a complex cognitive
problem that is usually presented as a planning task. The
robot takes the given planning problem and domain knowl-
edge to solve its problem and attain its goals by using an
automated planner. The planner generates a sequence of ac-
tions as a plan. While executing its planned actions, the robot
may encounter several failures. The robot can handle a fail-
ure by generating a new plan. However, in some cases re-
planning does not adequately solve the problem. The robot
should reason about these cases and learn from experience.

We formulate the planning task for a cognitive robot, then
present a taxonomy of different types of failures that may
occur during the execution of a plan. Finally, we state the
main robust planning and execution problem that we would
like to solve.

Planning Task for a Cognitive Robot A planning task is
represented by a tuple Π = (∆, s0, s∗) where ∆ is a plan-
ning domain, s0 is the initial state, and s∗ is the goal state.
Planning domain is a tuple ∆ = (T, C, S, O) where T is the
set of types, C is the set of domain constants, S is the set of
predicates and O are the planning operators.

A planning operator o ⊆ O can be formalized as a triple
o = {pre(o), add(o), del(o)}. Planning task is achieved by a
planner to reach a goal state s∗ from the initial state s0 by
applying the selected operators O at consecutive states in the
given order. An operator o can be selected by the planner at
a state s ⊆ S only if pre(o) ⊆ s. After applying o at state s, a
new state s’ = add(o) ∪ (s \ del(o)) is observed.

The robot should maintain a knowledge base KB = (F, R)
where F is the set of facts and R is the set of rules. The aim
of the robot is to make new conclusions if KB |= α where α
is a new query and update the KB according to this inference
result.

If all goes well for the planning task, the robot success-
fully attains its goal. However, since robotic environments
are highly dynamic and uncertain, the robot may not suc-
ceed in executing its plan due to different types of failures.
The following subsection presents our taxonomy of failures
that may occur during runtime.

A Taxonomy of Robot Failures in Cognitive Tasks We
propose a taxonomy of robot failures in cognitive tasks
(Figure 1). The taxonomy presents two main categories,
namely, external and internal failures. External failures are
related to environmental issues whereas internal failures are
more about the robot’s internal state. Internal failures are di-
vided into two subcategories as hardware and software fail-
ures. Hardware issues are about component failures of the
robot. This branch includes five sub-branches: (1) Actua-
tor/effector failures (2) Sensor failures (3) Power supply fail-
ures (4) Lack of hardware resources. The actuators or the
effectors of the robot may fail due to mechanical or electri-
cal issues. Sensor failures may represent a state where sen-
sory information is partially or completely lost. A robot may
also fail to perform any tasks due to its dead battery. When
the robot lacks the required hardware resources to execute
an action, it may fail to achieve it. Assume that the robot
is assigned a pick up action. If the object is too heavy for
the robot to lift, the robot may fail to achieve this task. The
other branch of internal failures -software failures- include
three main categories, namely, localization, sensor and gen-
eral failures. Localization failures are about errors in local-
ization. While sensor failures are about incomplete sensor
model, general failures are about other failures which occur
due to the other software issues of the robot.

The second main category of failures includes external
failures. A similar classification for external failures is given
in an earlier work (Beetz 2000). Our taxonomy presents five
sub-branches for external failures: (1) Communication fail-
ures (2) Misbeliefs on the facts and the rules in the KB
(3) Lack of knowledge (4) Conflicting goals (5) Impossi-

103

ble goals. Communication failures occur when the robot is
not able to communicate with other robots or with an opera-
tion center in the environment. The same instance may occur
when robots collaborate with each other through communi-
cation. The robot may also have misbeliefs in its KB of the
pre/post conditions of actions or events. That may result in
failures in achieving tasks. Action-related failures may occur
due to incomplete representation of actions in the KB. For
instance, actions may lead to unexpected outcomes in the
environment. Similarly, the robot may not be aware of some
events and their effects in the environment. Object-related
failures arise from false beliefs about an object’s existence,
location or its attributes. These types of failures may arise
from visual features (e.g., SIFT, VPFH etc.) as well as the
mobility-related features such as weight, grasp position and
center of mass (COM). For example, when the robot tries
to pick up an object, it may detect that the object is wider
than the size of its gripper. However, if the robot detects that
the object has a handler, it may recover from the failure by
grasping it from its handler. Misbeliefs about other robots
may cause timing problems and this leads to failures espe-
cially in cooperation. In such a case, when the other robot
delays or somehow fails, the robot may probably fail. The
robot may also fail if it has misbeliefs about humans in the
environment. When a domestic service robot has erroneous
preference model for its companion, the robot may fail in
achieving the desired goal. Lack of knowledge about ob-
jects, actions and events may also result in failures. Robots
may also fail in achieving their tasks when their goals con-
flict with each other. Finally, when the robot detects that its
goal is impossible to achieve, there is no way to attain the
given objective. For instance, if the goal of the robot is go-
ing outside of a room without a door, the robot will not be
able to reach its goal under this circumstance.

Note that failures in path planning are not presented in
this taxonomy since we address failures in higher level cog-
nitive tasks. Although there seems that failure types are dis-
tinct from each other, simultaneous failure causes or chain
of events may result in failures.

These failure modes can also be classified under two main
categories: complete and partial failures. Complete failures
model the situations where the robot is not able to execute
any actions. Assume that the software system of the robot
completely crashes. In this case, the robot may not even be
able to find out the reason of the failure. On the other hand,
whenever a partial failure occur (e.g., a sensor failure) the
robot may find a way to handle the failure.

Robustness in Planning and Execution During the exe-
cution of a plan, the robot may face different failure situa-
tions presented in our taxonomy (Figure 1). After detecting a
failure, it should recover from the failure. Considering their
recovery processes, the failure types can be grouped under
two categories, namely, temporary and permanent failures.

Definition 1 (Temporary failures). A temporary failure
occurs during the execution of a plan. These types of failures
can be resolved by replanning. Temporarily failed actions
may become available whenever replanning is possible.

Definition 2 (Permanent failures). A permanent failure

cannot be resolved by replanning. Therefore, there is no way
to execute a permanently failed action.

The problem that we investigate asks for finding the rea-
sons of failures during the execution of a plan and recov-
ering from them if they are temporary failures. Therefore,
the robot should be able to determine the type of a failure
as whether temporary or permanent. A belief revision and
learning mechanisms are needed for this purpose. Our main
objective is to handle failures that are included in the cate-
gory of external failures for single robot cases, partial hard-
ware failures and lack of hardware resources.

A Running Example
As a motivating example to illustrate the above mentioned
problem, a scenario can be given with several objects to be
moved from their starting positions to the given goal posi-
tions. The robot is able to execute several actions such as
pick up/put down objects by its gripper, move from one lo-
cation to another. However, the robot might drop an object
while trying to pick it up. This failure might occur because
of several reasons such as the weight of the object or wrong
grasp position. The robot can handle this temporary failure
by executing pick up action from different orientations if the
reason of the failure is its wrong grasp position. This type
of failure occurs due to a ”misbelief” on the pick up action
for the related object. If the robot fails in executing pick up
action because of its weight, there is no way to achieve this
action due to a permanent failure. Replanning may lead the
robot keep dropping the object repeatedly. In this case, the
cause of the failure is ”lack of a hardware resource”. On the
other hand, another action (e.g., push) which does not di-
rectly contribute to the robot’s goal can handle this type of
failure. To resolve the failure, this action should be added
into the plan. A reasoning mechanism can figure out the
cause of the failure in such cases and updates the KB so
that the necessary actions are included in the plan (Usug and
Sariel-Talay 2011).

Robust Planning Framework
We propose a robust planning framework for cognitive
robots. The framework combines six modules, namely, Plan-
ning module, Scene/Object understanding module, Execu-
tion module, Execution & Plan Monitoring module, Geo-
metric Reasoning module and Learning module, all of which
are connected to a Knowledge Base (KB). KB maintains the
domain knowledge, the world state and goals (i.e., planning
problem), the plan and the gained experience. The modules
that embody the framework and information flow among
them are illustrated in Figure 2. These modules are to be
connected to sensor and motor interfaces of a robot system.
Note that mapping and path planning modules are not illus-
trated in the figure for clarity.

Planning module constructs high-level plans for the given
goals. It uses the domain knowledge (i.e., operators and
facts) and the current world state to generate a valid plan.
TLPlan (Bacchus and Ady 2001), a forward chaining tem-
poral planner, is used as the core of the Planning module. It
can construct plans for durative and concurrent single/multi

104

Figure 2: Robust Planning Framework for Cognitive Robots.

robot actions. When a complete plan for a given state is
found, it is maintained in the KB so that the Execution mod-
ule can execute the actions in the order.

Scene/Object understanding module is responsible for up-
dating the domain knowledge in KB based on the gathered
data from the environment. Execution module executes each
action in the plan by considering the incoming perceptual in-
formation. This module is connected to the actuators and the
effectors of the robot. Execution & Plan Monitoring module
gets information from the Execution module, monitors the
execution of the plan and detects failures if any. Upon de-
tecting failures, it invokes the planner to force it replan for
the updated world knowledge.

Geometric Reasoning module reasons about the failure
and alters the parameters of the failed actions when needed.
This module uses ProbCog as a first-order probabilistic rea-
soner (ProbCog 2012). The observed data are processed by
the reasoner and the KB is updated based on the results of
the reasoning process so that Execution module uses this in-
formation.

Learning module is responsible for the robot to adapt it-
self based on the gained experience about actions, their pa-
rameters and everything in the environment affected by these
actions.

Detecting Failures
Detecting failures is crucial for efficiently recovering from
them. Similar to human-level failure detection (Wolpert and
Ghahramani 2000), our framework detects failures by con-
fronting sensory predictor with the actual sensor inputs. For
instance, the robot may fail during the execution of a pick up
action due to several reasons. The Scene/Object understand-
ing module uses both camera and tactile sensor data to infer
the state of the object in interest and register the state in-

formation in the KB. Execution & Plan Monitoring module
continuously monitors the execution of the plan. If the ob-
served state is different than the intended outcome, a failure
is assumed and the corresponding replanning and reasoning
methods are activated.

Integrating Reasoning into Planning
The Geometric Reasoning module uses the KB and the in-
coming information from the Execution & Plan Monitoring
module and updates the KB when new conclusions can be
made. Two types of conclusions can be made: (1) the pa-
rameters of a failed action are updated to handle failures,
(2) a permanent failure is detected when the robot gives up
executing an action that fails after several trials. The conclu-
sions are also told the KB as a part of the planning problem.
The updated world state is fed into the Planning module
to replan for the given situation. In this process, the robot
tries to update the low level representation of an action if
the Execution & Plan Monitoring module detects a failure.
The robot insists on executing a failed action by changing
its parameters (i.e., different grasp positions or different tra-
jectories). These trials continue until either the action is suc-
cessfully executed or the robot reaches at the limits of its
patience (i.e., a patience threshold as in (Parker 1998)). If
the threshold is exceeded, the robot stops trying alternatives,
and abandons the execution of that action. All the updated
actions and the information related to these actions are main-
tained in the robot’s experience so that the Learning module
can either build up a new hypothesis or update an existing
one about these actions.

The main procedures for robust planning, execution and
geometric reasoning are shown in Algorithms 1-3, respec-
tively. The main algorithm keeps running until the goal state
is achieved or no plan can be found. Whenever a valid plan

105

Algorithm 1 Robust Planning(∆, s0, s∗)
Input: Planning domain ∆, initial state s0, goal state s∗
Output: returns success or failure

S = s0
while s∗ * S do
P = Planner(∆, S, s∗)
if P = ∅ then

return failure
end if
S = Execution(S, P)

end while

return success

is found, each action in the plan is executed in the order
by Algorithm 2 while monitoring the execution at the same
time. This algorithm checks whether actions are successfully
executed or permanent failures are detected by the Geomet-
ricReasoning algorithm. For both success and failure cases,
KB is updated. Based on these updates, hypotheses are con-
structed or updated by applying the ILP learning method.

GeometricReasoning algorithm generates new execution
modes by using the ProbCog reasoner. These execution
modes correspond to alternative execution scenarios of a
temporarily failed action. Note that a failure is assumed to
be a temporary failure initially. However, after several trials,
if the patience of the robot for the failed action is exceeded,
a permanent failure assumption is made and the algorithm
returns failure. In a temporary failure case, the updated ac-
tion with an alternative execution mode is sent back to the
Algorithm 2.

The following update from our example scenario shows
how our reasoning module works. The robot tries to pick up
a red cubical object. When it fails in its first attempt, a new
execution mode is proposed by ProbCog for pick up action
so that the robot changes its initial orientation (α) with re-
spect to the object and tries to pick up the object again from
a different angle (β). If it fails in its second attempt, the ori-
entation is updated again. At the end of the third attempt, the
experience includes the following facts:

Red(x)ΛCube(x)ΛOrientation(α, x)ΛPickUpFailed(x)
Red(x)ΛCube(x)ΛOrientation(β, x)ΛPickUpFailed(x)
Red(x)ΛCube(x)ΛOrientation(γ, x)ΛPickUpFailed(x)

During these trials, if the patience threshold of the robot is
exceeded, it stops trying alternative execution modes for pick
up action on the corresponding object. If the above facts are
observed, about pick up action, a permanent failure assump-
tion is made when the patience threshold is exceeded, and
the learning module constructs the following hypothesis:

[Red(x) Λ Cube(x)]⇒ PickUpFailed(x)

After trying to pick up other red cubical objects and mak-
ing new observations, this hypothesis might be strengthened
or rejected. Note that the patience threshold could be deter-
mined based on the action type. We leave a detailed discus-
sion of this parameter as a future work.

Algorithm 2 Execution(S, P)
Input: Current state S, plan P
Output: Current state S

while P ! = ∅ do
action = POP(P)
action.patience = action.threshold
while (execMonitor = Execute(action, S)) = failure
//Temporary failure is assumed
do
KB.Add([action, execMonitor])
[action,geoResult] = GeometricReasoning(action)
//Permanent failure is assumed
if geoResult != success then
H = ILP-Learning(KB, action)
KB.Update([H , action]) //Update the hypothesis
return S

end if
end while
KB.Add([action, execMonitor])
H = ILP-Learning(KB, action)
KB.Update([H ,action]) //Update the hypothesis

end while

return S

Algorithm 3 GeometricReasoning(af)
Input: Failed action af
Output: updated action a′f and success or failure

p = af .patience
Decrease(af .patience)
if p >= 0 then

return [af , failure]
end if
a′f = ProbCog(af)

return [a′f , success]

Interleaving Learning with Planning
Our learning method is based on Inductive Logic Program-
ming (ILP). In ILP, the main purpose is finding a hypothesis
that is consistent with the observed data. The hypothesis is
expressed by a set of logical sentences. ILP tries to take ad-
vantage of inductive methods. We have implemented Top-
down approach for the robot to learn hypotheses based on
evidences.

ILP helps to build, update or abandon hypotheses as the
robot acquires new observations. In this framework, hy-
potheses express relations between failed actions and their
parameters.

Top-down Approach The logic-based learning algorithm
employed in the Learning module is the top-down induc-
tive learning approach. It starts with generating a general hy-
pothesis, then, it tries to narrow down the expression of the
hypothesis such that it agrees with the observed data. The

106

top-down learning algorithm is divided into two parts which
are given in Algorithm 4 and Algorithm 5. Inputs of the Al-
gorithm 4 are the observations and the target (i.e., failed ac-
tion, af). Target is the predicate that we want to construct a
hypothesis for, and observations are the evidences that the
robot collects from the environment. Algorithm 4 repeat-
edly constructs hypotheses until all positive examples (in our
case, all observations that lead to action failures) are cov-
ered. In each iteration, Algorithm 5 is invoked which finds
the action parameter that leads to action failures most. Natu-
rally, that parameter might also be the parameter of success-
ful actions. Therefore, we need to eliminate negative exam-
ples (successful actions). In this step, the algorithm finds the
parameter that covers the negative examples most, and ap-
pends the negation of this parameter to the previous clause.
Algorithm 5 stops when all the negative examples are cov-
ered completely.

Algorithm 4 ILP-Learning(O, T)
Input: observations O, target T
Output: hypothesis H

H ← NULL
while O has positive examples do
L← ChooseLiterals(O, T)
H ← H + L
O ← O − positive examples covered by L

end while

return H

Algorithm 5 ChooseLiterals(O, T)
Input: observations O, target T
Output: literal L

L← literal that covers the positive examples most
O′ ← examples covered by L
while O′ has negative examples do
L′ ← literal that covers the negative examples
most and does not appear in the positive examples
together with L
L← L+ ¬L′
O ← O − negative examples covered by L′

end while

return L

As an example, suppose we have the following hypothesis
at an intermediate step:

[Red(x) Λ Cube(x)]⇒ PickUpFailed(x)

which means that whenever the robot tries to pick up red
cubical objects, it always drops the object. After collecting
some inconsistent evidences, this hypothesis should be up-
dated. If this is the final hypothesis, the robot should avoid
executing picking up the red cubical objects at its first sight.
However, if the robot observes the following world state:

Figure 3: A sample set of successful and failed pick up ac-
tions by a Pioneer3DX robot. Successful and failed scenar-
ios are presented in the top and bottom rows, respectively.

Red(y)ΛCube(y)ΛOrientation(β, y)Λ¬PickUpFailed(y)

then, it has to reject the previous hypothesis. Its future deci-
sions about the pick up action for different types of objects is
made according to the Left Hand Side (LHS) of the hypothe-
sis. When any of the predicates in the LHS are changed, the
decision of the robot will also change accordingly.

Preliminary Results
To evaluate the success rate of our learning system, we have
used a training set with 30 different pick up actions. These
training data are used to construct a hypothesis for the failed
actions. A sample set of successful and failed pick up actions
are illustrated in Figure 3. Success and failure scenarios are
presented in the top and bottom rows, respectively.

We have considered five different attributes during clas-
sification: the color, shape, size, the orientation of the ob-
ject and the distance between the robot and the object dur-
ing the execution of the action. We have compared the ILP
algorithm with the Bayes Network classification. Five dif-
ferent measurements are considered: true positive rate (TP),
false positive rate (FP), precision, recall and F-score. The
result for ILP can be seen in Table 1 where Pick-S and Pick-
F are for successful and failed pick up actions, respectively.
The results for the Bayes Network classification are given
in Table 2. The hypothesis constructed by ILP can correctly
classifies 24 of the pick up actions out of 30, while the hy-
pothesis by the Bayes Network classification can correctly
classifies 22 of them. As can be seen from these results, ILP
gives better results than the Bayes Network classification.

TP FP Precision Recall Class F-score
0.87 0.27 0.77 0.87 Pick-S 0.81
0.73 0.13 0.85 0.73 Pick-F 0.79

Table 1: The overall results of ILP

107

TP FP Precision Recall Class F-score
0.87 0.40 0.68 0.87 Pick-S 0.76
0.60 0.13 0.82 0.60 Pick-F 0.69

Table 2: The overall results of Bayes Network Classification

Conclusion
In this paper, we investigate the reasons of failures that may
occur during the life time of a cognitive robot, and propose
a taxonomy for these failures. The ultimate goal is to de-
termine whether an encountered action failure is a tempo-
rary failure or a permanent failure and to recover from this
failure. In our framework, planning is continually performed
and the necessary precautions are taken to cope with tempo-
rary failures. The framework integrates reasoning tools into
planning processes to update actions that temporarily fail.
The framework also includes ILP learning processes to gen-
eralize hypotheses about the failed actions according to the
robot’s experience. Our results are promising in the sense
that hypothesis learning is successful to a great extent. Our
future work includes a detailed analysis of the performance
of the framework on different scenarios, investigation of the
patience thresholds and failure detection procedures for dif-
ferent types of actions.

Acknowledgements
This research is funded by a grant from the Scientific and
Technological Research Council of Turkey (TUBITAK),
Grant No. 111E-286. TUBITAK’s support is gratefully ac-
knowledged. Authors also would like to thank Dr. Hulya
Yalcin for helpful discussions and Burak Sarigul for his con-
tributions in the robot experiments.

References
Bacchus, F., and Ady, M. 2001. Planning with resources
and concurrency a forward chaining approach. In Proceed-
ings of the 17th international joint conference on Artificial
intelligence - Volume 1, IJCAI’01, 417–424. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.
Beetz, M.; Jain, D.; Msenlechner, L.; and Tenorth, M.
2010. Towards performing everyday manipulation activities.
Robotics and Autonomous Systems 58(9):1085 – 1095.
Beetz, M. 2000. Concurrent Reactive Plans: Anticipating
and Forestalling Execution Failures. Number 1772. no. in
Lecture Notes in Computer Science. Springer.
Gianni, M.; Papadakis, P.; Pirri, F.; Liu, M.; Pomerleau, F.;
Colas, F.; Zimmermann, K.; Svoboda, T.; Petricek, T.; Krui-
jff, G.-J.; Khambhaita, H.; and Zender, H. 2011. A unified
framework for planning and execution-monitoring of mo-
bile robots. In Proceedings of the AAAI-11 Workshop on
Automated Action Planning for Autonomous Mobile Robots
(PAMR). AAAI.
Gobelbecker, M.; Keller, T.; Eyerich, P.; Brenner, M.; and
Nebel, B. 2010. Coming up with good excuses: What to do
when no plan can be found. In Proceedings of the Interna-

tional Conference on Automated Planning and Scheduling
(ICAPS).
Hermans, T.; Rehg, J. M.; and Bobick, A. 2011. Affordance
prediction via learned object attributes. In Proceedings of
the IEEE International Conference on Robotics and Au-
tomation (ICRA): Workshop on Semantic Perception, Map-
ping, and Exploration.
Jonge, F.; Roos, N.; and Witteveen, C. 2009. Primary
and secondary diagnosis of multi-agent plan execution. Au-
tonomous Agents and Multi-Agent Systems 18(2):267–294.
Micalizio, R. 2009. A distributed control loop for au-
tonomous recovery in a multiagent plan. In Proceedings of
the International Joint Conference on Artificial Intelligence
(IJCAI), 1760–1765.
Parker, L. 1998. Alliance: an architecture for fault toler-
ant multirobot cooperation. Robotics and Automation, IEEE
Transactions on 14(2):220 –240.
ProbCog. 2012. Probcog tool box. http:
//wwwbeetz.informatik.tu-muenchen.de/probcog-
wiki/index.php/Main Page.
Schmill, M. D.; Josyula, D.; Anderson, M. L.; Wilson, S.;
Oates, T.; Perlis, D.; Wright, D.; and Fults, S. 2007. On-
tologies for reasoning about failures in ai systems. In Pro-
ceedings of the Workshop on Metareasoning in Agent Based
Systems at the Sixth International Joint Conference on Au-
tonomous Agents and Multiagent Sytems.
Steinbauer, G., and Wotawa, F. 2009. Robust plan ex-
ecution using model-based reasoning. Advanced Robotics
23(10):1315–1326.
Usug, U. C., and Sariel-Talay, S. 2011. Dynamic tempo-
ral planning for multirobot systems. In Proceedings of the
AAAI-11 Workshop on Automated Action Planning for Au-
tonomous Mobile Robots (PAMR).
van der Krogt, R., and de Weerdt, M. 2005. Plan repair as an
extension of planning. In Proceedings of the Fifteenth Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS-05), 161–170.
Wolpert, D. M., and Ghahramani, Z. 2000. Computational
principles of movement neuroscience. Nature Neuroscience
3 Suppl:1212–1217.

108

