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Abstract— When the tasks of a mission are interrelated
and subject to several resource constraints, more efforts are
needed to coordinate robots towards achieving the mission than
independent tasks. In this work, we formulate the Coordinated
Task Selection Problem (CTSP) to form the basis of an efficient
dynamic task selection scheme for allocation of interrelated
tasks of a complex mission to the members of a multi-robot
team. Since processing times of tasks are not exactly known in
advance, the incremental task selection scheme for the eligible
tasks prevents redundant efforts as, instead of schedulingall of
the tasks, they are allocated to robots as needed. This approach
results in globally efficient solutions through mechanismsthat
form priority based rough schedules and select the most suitable
tasks from these schedules. Since our method is targeted at real
world task execution, communication requirements are kept
limited. Empirical evaluations of the proposed approach are
performed on the Webots simulator and the real robots. The
results validate that the proposed approach is scalable, efficient
and suitable to the real world safe mission achievement.

I. I NTRODUCTION

Multi-robot task allocation problem is better viewed as a
scheduling problem if there are interrelations among tasks,
suggesting the use of Operation Research (OR) methods.
However, when the problem solving time is limited and/or
reallocations are frequently required at runtime, OR meth-
ods may not be directly applicable. Our research focuses
on distributed task execution to ensure robustness against
failures and make the system suitable for environments where
reliable teleoperating is not continually possible. Besides the
base difficulties, finding a solution with the OR methods in
a decentralized setting may need considerably high effortsin
both computation and communication. In this case, heuristic
methods are preferred to find good solutions in reasonable
time.

In this research, our focus is on complex missions with
interrelated tasks (project tasks) whose requirements on task
execution may vary. These interrelations may correspond
to shared resources, producer/consumer, simultaneity and
task-subtask dependencies [1]. The Pick-Up/Delivery domain
tasks can be classified in this class because of the pro-
ducer/consumer type of dependency relation for the pick-
up and the delivery tasks. More complicated interrelations
may be involved in mission representations. Simultaneous
execution requirements imply tightly coupled task execution
where the actions implemented by each robot are highly
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dependent on the actions of others. According to the classi-
fication of multi-agent organizations given in [2], coalitions
(agent groups) are formed to perform tasks in cooperation.
From our perspective, coalitions are suitable to meet the
simultaneous resource requirements on executing tasks with
sub-teams of robots.

Our earlier experiments on different domains have re-
vealed that incremental assignments eliminate redundant
considerations for environments in which the best solution
is highly probable to change, and efficient bidding strategies
ensure solutions to be efficient with a time-extended view of
the problem in a computationally tractable way [3]. In this
research, we extend this approach for interrelated complex
tasks with resource constraints.

II. RELATED WORK

Task dependency has been analyzed in some earlier multi-
robot cooperation schemes. One of the earliest studies on
multi-robot coordination presents a generic scheme based
on a distributed plan-merging process [4]. M+ scheme [5]
combines local planning and negotiations on task allocation
for robots having their own local world knowledge. [6] intro-
duces the mechanism concept in the framework M+CTA for
the resources used for multi-robot cooperation. Each robot
has an individual plan and tasks are initially decomposed
and, then, allocated. After this planning step, robots negotiate
with each other in order to adapt their plans in the multi-robot
context.

One of the earlier algorithms for coalition formation
of cooperative multi agent systems to handle multi-agent
(resource) requirements is presented in [7]. Another work
on multi-robot coalition formation states the differences
of multi-robot and multi-agent coalition formation issues
from sensor possessive point of view [8]. Locational sensor
capabilities are considered in their work on top of the
coalition evaluation step suggested in [7]. Their approach
assumes that capabilities are known apriori and coalitions
are formed accordingly. ASyMTRe [9], uses reconfigurable
schema abstraction for collaborative task execution providing
sensor sharing among robots, and connections among the
schemas are dynamically formed at runtime. The information
labels provide a method for automating the interconnections
of schemas, enabling robots to share sensory and perceptual
information as needed. Their approach provides a way to
form low level coalitions to share robot capabilities.

Given the real-time limitations, instantaneous task assign-
ment becomes profitable as it provides a dynamic solution,
allocating tasks to robots whenever resources are available



([10], [11]). However, in this case, the global solution quality
may be degraded if the decisions are made by just using the
up-to-date knowledge available, ignoring the global solution
quality. [12] models the multi-agent task assignment problem
as a scheduling problem for the RoboCupRescue simulation
domain. In their approach, each agent locally chooses its
best task to accomplish using a scheduling algorithm. Then,
the best local task information is exchanged among agents to
find the global best task to perform. Earliest Due Date (EDD)
algorithm, not taking into account the future considerations
and interrelations, is used to schedule the tasks.

Our approach differs from earlier work in that incremental
task selection and distributed single item allocation provides
cooperation on the global plan to achieve the overall complex
mission with interrelated tasks. Coordinated task selection
backed up with a realistic world and mission representation
meets execution constraints simultaneously. We evaluate our
approach on both a realistic simulator and real robots.

III. PROBLEM STATEMENT

Multi-robot task allocation problem may be formulated based
on the well known OR problem, Resource Constrained
Project Scheduling Problem (RCPSP), which is known to be
NP-Hard ([13], [14]). The adapted version of the formulation
for our multi-robot task allocation problem on project tasks
is given as follows. A complex mission consists of a set
of tasksT = {t1, ...,tn} which have to be performed by a
team of robotsR = {r1, ..., rm}. The tasks are interrelated
by two types of constraints. First, precedence constraints
are defined between activities. These are given by relations
ti ≺ t j , whereti ≺ t j means that taskt j cannot start before
taskti is completed. Second, a taskti requires a certain set of
capabilitiesreqcapi and certain number of robots (resources)
reqnoi to be performed. We relax the limitation constraint
on reqnoi by allowing it to change during task execution
according to new requirements. Consequently, alternative
solutions may be found to allocate tasks to robots based on
dynamic environmental factors.

Difficulty of the task allocation problem arises when
communication is limited and robots should autonomously
perform task allocation at the same time with execution. Si-
multaneous execution requirements make the problem more
challenging because each robot should be in its most suitable
execution in a future formation and estimate it correctly
before making a decision.

Since schedules are subject to change, we propose an
approach in which tasks are allocated to robots incrementally,
without ignoring the overall global solution quality instead of
initially scheduling all of the tasks. Therefore, the main ob-
jective becomes determining a particular task to be assigned
whenever it is convenient in a precedence and resource feasi-
ble manner, instead of scheduling all the tasks from scratch.
Although not a concern during assignments, preemption (i.e.
yielding) is possible to maintain the solution quality and to
handle failures during the execution. Therefore, the allocation
problem turns into a selection problem and may be stated as
follows: The Coordinated Task Selection Problem (CTSP)

for each robot in a team is determining the next action to be
selected in such a way that:

• task ti is not achieved yet,
• total reqnoi for taskti is less than or equal to the number

of available robots(RS j = ∪r j ) with reqcapi ⊆ capj

(Condition-1,C1),
• the given precedence conditions (Condition-2,C2) are

fulfilled,
• and the selected objective (O) is minimized.

Including theCTSP, the Cooperative Mission Achieve-
ment problem (CMAP) for each robot is formulated as
follows:

1) Select the task in such a way that theCTSPis satisfied,
2) Determine the most appropriate robot (coalition) ac-

cording to communication or beliefs to execute the
task; resolve conflicts, if any,

3) Execute the selected task efficiently, if itself is appro-
priate to execute, and

4) Simultaneously respond to contingencies and return to
Step 1, when necessary, until the mission is achieved.

IV. PROPOSEDAPPROACH

We propose a distributed, incremental task selection ap-
proach as a part of our framework, DEMiR-CF [15], for
robots in a multi-robot team where they need to cooper-
ate/coordinate to achieve complex missions including tightly
coupled tasks that require diverse capabilities and collective
work. Coalitions (Ci) are formed to meet simultaneous exe-
cution requirements of tasks (Ti) synchronously by a group of
robots. An example of such a task that needs to be executed
by a coalition of robots is pushing a heavy object requiring
more than one robot. Sizes of coalitions vary according to the
minimum number of robots required (reqnoi) to execute the
tasks. Robots can detect and recover from different types of
contingencies by keeping representative models of the system
tasks and the states of other robots, details of which are given
in [15]. A sample flow of the operations in our approach is
summarized as:

1) Mission task definitions are given to the robots (time-
extended representation of tasks with precedence con-
straints to achieve overall mission).

2) Each robot selects the most suitable candidate task to
execute by global cost consideration among mission
tasks (dynamic task selection/switching).

3) Robots offer execution intentions for the tasks they
have selected. During these declarations, inconsisten-
cies and conflicts are resolved.

4) Coalitions are formed for the announced tasks, making
sure that each robot is in the most suitable coalition
considering the global solution quality.

5) Dynamic task selecting/switching proceeds simultane-
ously with task execution. This allows switching be-
tween tasks if it is more profitable, handling real time
contingencies at the same time. Then, corresponding
auction and coalition formation procedures (2-4) are
applied continually.



A. Mission Representation

A mission, in our approach, is represented by a directed
acyclic graph (DAG) where each node represents a task
and the directed arcs (conjunctive arcs) represent the prece-
dence constraints among tasks. Tasks are represented as
septuples containing information regarding task execution
requirements and task status:< id, type, reqcap, deplist,
reqno, relin f o, precin f o>.

1) id: Each task is assigned a unique task id.
2) type: Each task is associated with a description of task

type and corresponding action definitions.
3) reqcap: Requirements define special sensors and capa-

bilities required to execute the task.
4) deplist: Interrelations represent the precedence con-

straints.
5) reqno: Minimum number of robots required to execute

the task, either determined before mission execution or
during runtime.

6) relin f o: Descriptive information regarding task type
such as, the latest location, the target location, etc.

7) precin f o: Precaution information is used for con-
tingency handling: the task state, the estimated task
achievement time and the current execution cost.

Information in a task representation can dynamically be
modified during execution. In particular,relin f o, precin f o
and reqno are subject to change during execution. Sample
mission representations are given in [15].

B. Dynamic Priority-based Task Selection Scheme

In our approach, robots make instantaneous decisions
(from their local perspectives) which are both precedence and
resource feasible in the context of the global time extended
view of the problem. While the completion of the mission is
the highest priority objective, performance related objectives
can additionally be targeted. Each robot initially forms a
rough schedule of its activities for an overall time extended
resolution of the mission. Since these schedules are highly
probable to change in dynamic environments and robots also
have the real time burdens of path planning, mapping etc.,
the formed rough schedules are tentative and constructed
by computationally cheap methods (explained in the next
subsection). Therefore, robots in our framework come up
with their rough schedules and refine their plans during actual
fast execution when information available in the current
context enables them to make specific, detailed decisions.

Instead of scheduling all tasks in one step, we propose a
Dynamic Priority-based Task Selection Scheme (DPTSS) to
allocate tasks to robots incrementally, considering the global
solution quality. The main objective of the proposed scheme
is the incremental allocation of tasks by taking into account
the precedence and resource constraints whenever a new task
needs to be assigned, instead of scheduling all tasks from
scratch.

The following definitions are needed to present our for-
mulation to the solution of theCMAP. ti is a suitable task
for robot r j , if reqcapi ⊆ capj andr j is a suitable robotfor

ti . ti is an executable task, if at least reqnoi robots can be
assigned for its execution.tie j is a task in executionby robot
r j or coalitionCj . Tie is a union of tasks in execution.tE j is
an eligible task, if it is an executable taskand is neither in
execution (tie) nor achieved.TE j is a union ofeligible tasks
for robot r j . tφ is an ineligible task; if it is not anexecutable
task, if it is already achieved or if it is not asuitable task.
Tφ is the union ofineligible tasks. P(ti) is defined as the set
of all predecessor tasks of the taskti . tA j is anactive taskif
it is suitable, executableand tasks inP(tA j) are completed.
TA j(⊆ TE j) is the union of theactive tasks for robotr j . An
inactive task set TI j = TE j \TA j contains the tasks that are
suitablebut not executableyet for robot r j . A critical task
tC is a task that has inflexibility from the point of view of
resources and the robot is suitable for that task.LC j is a
prioritized list ofcritical tasksfor robotr j . A rough schedule
SR j for robot r j is a priority queue of mission tasks thatr j

assumes it will execute.
1) Rough Schedule Generation Scheme:Each robotr j

generates its rough schedule as a dynamic priority queue
similar to runqueues by considering its critical task list
(LC j), the eligible task set(TE j), the conjunctive arcs (if
any) and the requirements. Since each robotr j has different
capabilities, the eligible task sets (TE j) and the priority
queue entries may be different. The critical tasks may be
determined either by negotiations or by beliefs. To eliminate
intractable communication overhead, we use a rough belief
update approach to form the critical tasks. Each critical
task is assigned a probability value to indicate its criticality.
Critical task information is used for determining the task
requirements such as power, fuel etc.

Algorithm 1 GeneratePriorityList for robotr j

input: Eligible task set (TE j), active task set (TA j)
output: Topologically ordered and prioritized schedule list:SR j

SR j = φ , STemp= φ
STemp = DFS(TE j ) /*List generated by a depth-first search,
the tasks are ordered by ascending order of estimated task
completion times*/
for all ti ∈ STemp do

if ti ∈ TA j then
insert ti in SR j as ordered by the cost value and the
precedence

else
insert ti to the front ofSR j

end if
end for

Intuitively, robots do not deal with the ineligible tasks
(Tφ ), while forming the rough schedules. The eligible tasks
(TE j = T \Tφ ) for robot r j consists of active and inactive
tasks. The rough schedule of a robot constitutes a topological
order of the directed acyclic graph of the eligible mission
tasks. While generating the rough schedules, both precedence
constraints and cost values are considered. Basically each
rough schedule is a priority list (To, topological order)
determined by Algorithm 1. While forming the topologically
ordered prioritized schedule list, a depth first search (DFS)



is performed to topologically order the tasks by using the
estimated task completion times. Next, the tasks are inserted
into the list according to their completion times. If a task is
an active task, its priority key is computed as a combination
of the precedence and the cost value. Tasks with equal
precedence are ordered according to their cost values.

The rough schedule of a robot is generated by execution of
Algorithm 2 wherecurcsj represents the remaining capacity
of robot r j andreqcs(ti) represents the required capacity for
task ti in terms of the consumable resources (e.g fuel).

Algorithm 2 GenerateRoughSchedule for robotr j

input: Eligible task set (TE j), active task set (TA j), critical task
list (LC j), remaining capacity (curcsj ) of robot r j
output: Rough schedule (SR j) of tasks, the top most suitable
active taskts

ts = φ ; R= curcsj ; achievable= true;
SR j = GeneratePriorityList(TE j, TA j)
/*Determines if the mission is achievable*/
for eachti ∈ LC j do

R= R− reqcs(ti)
if R< 0 then

achievable= f alse
R= curcsj
break

end if
end for
if SR j 6= φ and (top(SR j)∈ LC j ‖ R− reqcs(top(SR j))≥ 0) then

ts = top(SR j)
end if

In the rough schedule generation algorithm, while forming
the rough schedule, the remaining capacity of the robot is
also monitored. If the capacity of the robot is not sufficient
for executing all of its critical tasks and the mission is
believed to be unachievable accordingly, then the robot may
select an active task to execute even if it is not a critical task
for itself in case new robots can be deployed. However, if the
mission is believed to be achievable, the robot may select to
stay idle until its critical tasks become active. This selection
is done after forming the rough schedule. The active task on
top of the rough schedule that can be executable is the most
suitable task to be executed for the robot.

2) DPTSS Algorithm:In our incremental allocation ap-
proach, the fundamental decision that each robot must make
is the selection of the most suitable task from the active task
set (TA) by considering the eligible task set (TE). Algorithm 3
presents the DPTSS in which a rough schedule is generated
before making a decision. The four different decisions made
by robots after performing DPTSS are: (1) to continue
executing the current task (if any), (2) to join a coalition,(3)
to form a new coalition to perform a free task, or (4) to stay
idle. DPTSS process is repeated whenever a robot completes
its current task execution or detects a change in its world
knowledge. Instead of regenerating the rough schedule at
each call of the DPTSS, the rough schedule may be repaired
whenever it is desirable.

Algorithm 3 DPTSS Algorithm for robotr j

input: Mission (M) task descriptions
output: Action to be performed depending on the selected task

Determine theTE j, TA j ⊆ TE j andLC j ⊆ TE j
/*GenerateListOfCriticalTasks*/
LC j = φ
for eachti ∈ TE j do

Pct(ti) = reqno
#o fsuitablerobots

if Pct(ti) ≥ 0.5 then
insert ti in LC j prioritized by thePct(ti)

end if
end for
[SR j, ts] = GenerateRoughSchedule (TE j, TA j, LC j, curcsj )
if ts 6= φ then

if ts is the current taskthen
Continue with the current execution

else
Offer an auction to form a new coalition or directly begin
execution

end if
else

if ts ∈ Tie and it is profitable to join the coalitionthen
Join the coalition

else
Stay idle

end if
end if

C. Distributed Task Allocation Scheme

In our distributed allocation approach, standard auction
procedures of CNP [16] are applied to announce thein-
tentionsof robots on task execution and select thereqno
number of robots for a coalition in a cost-profitable, scal-
able and tractable way. Additionally, precaution routines
are added to check validity, consistency and coherence in
these negotiation steps [15]. Each robot intending to execute
a task announces an auction after determining its rough
schedule and performing the DPTSS. Basically, auction
announcements are ways to illustrate intentions to execute
tasks for whichreqno= 1 or to select members of coalitions
to execute tasks for whichreqno> 1. Therefore, if more than
one robot declares intentions to execute the same task, the
more suitable one(s) is selected in the auction by considering
the cost values. Auction negotiations and the selection of
the suitable robots are performed in a completely distributed
fashion by the auctioneers. Single task items are auctioned
and allocated in auctions. The framework allows multiple
auctions to be carried out simultaneously. Validity controls
are performed to ensure the system consistency, the details
of which are given in [15].

D. Cost/Bid Evaluation and the Tie Breaking Rules

The cost evaluation has a tremendous impact on the
solution quality. Each task type as a part of the mission
requires a different cost evaluation to efficiently solve the
problem. For now, we perform the simplest evaluations for
the cost and bid determination and leave a more extended
analysis on the cost function design for future work. Cost
evaluation is performed by using the corresponding functions



TABLE I

COST EVALUATIONS FOR DIFFERENTTASKS

Task Type(s) Cost Function

Locate/Pick-up Estimated time to reach at the location of the object.
Deliver/Push Estimated time to carry/push the object from the

initial location to the final destination.
Clean Estimated time to cover the whole environment.

given in Table I. If a robot is executing a task when it receives
an auction message, it sends the bid value by considering the
final destination of the current task as the location of itself.
A common situation appears when the auctions are offered
at the same time by different robots either for the same task
or for different tasks. In our approach, if there are conflicting
auctions for the same task, only the one with the smallest cost
value continues with the auction negotiation process. In the
case of the conflicting auctions for different tasks, a resource-
based rule (related to thereqnoof the tasks) borrowed from
OR, Greatest Resource Requirements (GPR), is used [14].

E. Analysis of the Approach

Our approach offers a polynomial time solution. The
critical task list generation takesO(nlog(n)) time for all n
number of tasks. Achievability of the mission is determined
in O(n). The complexity of the rough schedule generation is
bounded by the topological list generation algorithm whichis
in the order ofO(n+e) (wheree is the number of conjunctive
arcs,i.e., hard dependencies). Therefore, the total complexity
becomesO(n(e+ log(n))). If (e<< n), the complexity of the
proposed approach reduces toO(n2log(n)).

V. EXPERIMENTS

We have conducted real world experiments and real-time
dynamic simulation experiments on Webots, the professional
mobile robot simulation software [17]. In our simulation
experiments, each environment is represented as a 5m by
5m 3D virtual world where 70mm-size simulated Khepera
II robots and objects are located. The environments are
randomly generated VRML files containing the robots and
the objects. Each Khepera II robot is mainly equipped with
a 25MHz MC68331 micro-controller, 512K Flash and 512K
RAM memories and 8 infra-red sensors with limited obstacle
detection range as it is simulated in Webots. Communication
is achieved through wireless links in both simulations and
in the real world experiments. Real Kheperas have standard
radio turrets mounted on them to communicate through the
selected radio frequency.

The first set of experiments is targeted to analyze the
scalability of the proposed approach on the pick-up/delivery
mission in which the tasks are interrelated by picking up
and delivery constraints. All picked up items are collected
in the center of the environment. The items are distributed
in the environment at fixed locations for each run. The robot
locations are randomly determined. Figure 1 illustrates the
mission completion times and the total path length traversed
by the robots for sets with different numbers of robots. As

expected from the approach, time to complete the overall
mission overly reduces with increasing numbers of robots,
validating the scalability of the approach. Since the items
are delivered to the center of the environment, an extreme
variation for the expected utility in the total path length
traversed by robots is not expected as illustrated in the
corresponding graph.
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Fig. 1. Left: mission completion time (s); right: total pathlength (mm)
results for the pick-up/delivery mission, with task numberfixed at 20.

A sample scenario for a complex mission which includes
tasks for pushing boxes and picking-up and delivering items
to a desired location is given in Figure 2 with five partici-
pating robots. In the first scenario, two items are picked up
and delivered to the destinations by the robots possessing
grippers. The two robots simultaneously and independently
push the two boxes. One of the robots stays idle during
the mission execution. In the second scenario, since the
minimum required number of robots to push one of the boxes
is two, the two robots form a coalition and push the heavy
box synchronously.

Another complex mission allocation scenario which in-
cludes tasks for pushing a box, carrying a cylindrical object
to a final destination and then inspecting the environment is
implemented by three Khepera II robots and the execution
scenario is illustrated as overlapped video images in Figure
3 (Web-site reference for the corresponding videos: [18]).
There are interrelations between push, carry and inspect
tasks respectively as in the graph depicted in Figure 4.
While the objects can only be carried by the robots with
grippers, the inspection task requires possessing a camera.
The box can be pushed with all three robots. However, due

Fig. 2. Scenario 1-2: Robots push and carry boxes to the final destinations.
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Fig. 3. Khepera II robots achieve the overall mission of pushing/carrying the objects to the final locations and inspecting the area.

to the cost evaluations and the critical task list consideration,
allocations are implemented accordingly. Robots obey the
interrelation constraints and each robot involves in a suitable
task execution for itself on which the decision is made in a
distributed manner.

Fig. 4. Real scenario mission graph with interrelated tasks

VI. CONCLUSION

We have described the details of a new approach that
enables the efficient achievement of interrelated, resource
constrained tasks of a mission by a multi-robot team. The
proposed approach relies on the distribution of the decision
mechanism by introducing the CTSP and solves this problem
through a scheme that involves the incremental selection
and allocation of tasks dynamically deriving the mission
execution. The main contributions of this approach are the
elimination of the redundant efforts for dealing with the
changing structure of the mission due to the uncertain
information or the dynamism of the environment, and on
the other hand ensuring the time extended consideration of
the problem through forming computationally efficient rough
schedules, and the applicability of the approach efficiently on
real robots with limited computational capacities.
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