
Learning Interactions Among Objects, Tools and Machines for Planning

Mustafa Ersen and Sanem Sariel Talay
Department of Computer Engineering

Istanbul Technical University

Istanbul, Turkey

{ersenm,sariel}@itu.edu.tr

Abstract— We propose a method for learning interactions

among objects when intermediate state information is not

available. Learning is accomplished by observing a given

sequence of actions on objects. We have selected the Incredible

Machine game as a suitable domain for analyzing and learning

object interactions. We first present how behaviors are

represented by finite state machines using the given input.

Then, we analyze the impact of the input type corresponding to

relations on the overall performance. Our analysis includes

four different types of input: a knowledge base including part

relations; spatial information; temporal information; and

spatio-temporal information. We show that if a knowledge

base about relations is provided, learning is accomplished to

the desired extent. Our analysis also indicates that spatio-

temporal analysis is superior to spatial and temporal analyses

and gives similar results to that of the knowledge-based

approach.

Keywords- agent-based systems; automated planning;

learning; knowledge representation

I. INTRODUCTION

Automated action planning is the process of finding a

sequence of actions to achieve a given goal. Whenever the

planning problem (i.e., initial and goal states) and operators

corresponding to domain actions are defined properly, a

planner may easily find a solution. However, the problem is

complicated if the planning agent has not complete

information about preconditions and effects of the domain

operators. In this case, the problem turns into a learning task

where relations of actions and objects (in parameters of

actions) are learned through observation of behaviors.

The main goal of this research is to develop a method for

learning object interactions through actions. Learning is to

be performed by observing a given sequence of actions. We

also analyze the performance of the learner based on the

completeness of the knowledge base about relations. We

believe the outcomes of this study are also useful for robot

learning tasks. Our future work includes implementation of

this approach on real robots for learning affordances.

We have selected the Incredible Machine [1] as a

domain for analyzing these interactions because this domain

allows the use of various objects and relations to achieve a

given goal. The Incredible Machine is a series of computer

games in which the player tries to solve given puzzles by

constructing contraptions in cartoonist Rube Goldberg's

style [2]. In a typical scenario of this game, the player is

given a limited number of objects, tools and machines and a

goal to accomplish by using these resources. An example

screenshot is provided in Fig. 1 to illustrate the environment

of the game. In this example, the aim is opening the can,

starting the mixer and heating up some coffee. To complete

the given structure to reach the goal state, the player is

provided with some objects in the parts bin on the right side,

and these parts must be used without changing the position

of already installed objects in the environment. The puzzles

in the game are interesting as they require building complex

systems by considering various interactions among the

objects to achieve the given goals.

This problem fits into planning framework as it involves

actions to transform a given initial state into a goal state.

Both progression and regression planning is applicable if

domain actions are perfectly defined. A planner needs to

consider the game in two aspects to be able to devise a

consistent plan. First, considering interactions among

objects, tools and machines are crucial for making decisions

while connecting given parts altogether to reach the goal

state. Second, physics models of objects (e.g., the effect of

the gravity on the motion of a ball) should be taken into

account to estimate interactions through motions.

In this work, we focus on solving the stated learning

problem considering object interactions given in a tutorial to

understand the rationale behind the Incredible Machine

puzzles. We assume that the tutorial presents object

interactions in the form of chain reactions (e.g., starting a

mixer, running a motor, lighting a lamp, etc.) by

connections among each other. No further background

information is available about the types of objects and their

Figure 1. An example puzzle from the Incredible Machine 3.

semantics, nor intermediate state information. Particularly,

in this work, tutorials are presented as text-based action

sequences. Extension of the work by processing visual

observations (as in the actual game) is left as a future work.

The problem is investigated from four perspectives and an

integrated solution is provided. If relations of parts are

provided to the agent, a logic-based reasoning mechanism

could be used. Otherwise, we show that considering spatial,

temporal and spatio-temporal aspects of the problem makes

it feasible to reason about interactions for further planning

tasks. These four perspectives may correspond to different

learning problems. The Incredible Machine domain provides

a common framework to integrate these approaches.

The rest of the paper is organized as follows. First, we

discuss some related works in the field of learning action

schema. Next, we give an overview of our approach and

show the details step by step on a running example. Third,

we show how to use resulting finite state machines (FSM)

and connections among them on a planning example.

Finally, we discuss the results of four different perspectives

and conclude the paper.

II. BACKGROUND

In recent years, efficient approaches have been

developed to learn planning operators from example plans

[3-12]. From these, SLAF (Simultaneous Learning and

Filtering) [4-6] is a tractable system for identifying

preconditions and effects of actions in partially observable

domains. It builds exact action schema efficiently by using a

relational logical representation and uses partial

observations between executed actions to identify consistent

action models. However, this approach requires the use of

observations on the states of objects between actions.

Unlike SLAF, ARMS (Action-Relation Modeling

System) [7,8] can learn action models without using

intermediate state information. ARMS is based on solving a

weighted MAX-SAT problem on the statistical distribution

of related action and predicate sets having some common

parameters. It is an effective approach to find approximate

STRIPS action schema by using only actions and predicates

in the plan trace. However, this approach cannot learn

actions with conditional effects for identifying interactions

among objects, tools and machines in our problem.

The LAMP (Learning Action Models from Plan traces)

[9] system, learns more expressive action schema having

quantifiers and logical implications in accordance with

PDDL standards. This approach is based on enumerating six

different patterns of candidate formulas and their quantified

cases on training data to be able to learn preconditions,

effects and conditional effects. Then, weights are assigned

to generated formulas by using a Markov Logic Network. In

LAMP, partial observations between action executions are

important to be able to decrease error rate in the results.

LOCM (Learning Object-Centred Models) [10,11] is an

object-centered approach for learning action models from

plan traces. It's unique in its input as it only requires the

action sequence to be given to learn action schema.

Moreover, LOCM outputs FSMs showing behaviors of

different type of objects in the domain, as well as planning

operators. Thus, for our work, LOCM is the most suitable

system to use for determining behaviors of objects. This

approach is discussed in detail in the following sections.

LOCM2 [12] is proposed to solve the state generalization

problem of LOCM for objects showing behaviors in

separate aspects. By analyzing example plans in a transition-

based representation, LOCM2 weakens the assumptions of

LOCM and produces additional state machines to capture

behaviors that cannot be modeled by LOCM.

We extend LOCM in two ways. First, we include

different orientations of the same object in the input to be

able to distinguish change of behavior due to changing

orientations. Second, we propose an approach to determine

interactions among objects when relational information is

given. To be able to produce conditional effects in a chain

reaction, our approach uses a forward chaining mechanism.

Furthermore, we analyze the use of spatial and temporal

information when a knowledge base of relations is not

available.

III. LEARNING INTERACTIONS FROM EXAMPLES

Learning is essential for an agent with limited

knowledge about its environment. The problem that we

investigate in this work asks for learning interactions of

actions and objects for the Incredible Machine game, given

some tutorials about this game. Tutorials include sequential

actions on various objects represented in a text-based

format. Aside from these tutorials, there exists no prior

knowledge about actions, objects and their interactions.

A tutorial is a tuple where is an action

sequence with actions in their order of occurrence

where concurrent actions affect different objects

 and is a list of predicates showing different

geometric features of objects (e.g., or

) in the environment. Each action has

arguments where each argument is an object in the domain

.

The main objective is to model behaviors of different

type of objects represented as FSMs (per object type). Each

FSM involves a state set and a state-transition function .

Furthermore, conditional relations among these FSMs

should be established to capture interactions among

different type of objects and determine preconditions of

actions given in . Eventually, these preconditions together

with behavior models are to be used for generating new

plans.

IV. PROPOSED APPROACH

A. Overview and a Running Example

Our approach consists of two phases. In the first phase,

objects are grouped into sets with respect to their type; and a

finite state machine is generated for each set to model

behaviors of objects belonging to that set. State machines

are created using the steps of LOCM. We propose a

modification to address interactions based on different

geometric features of objects.

In the second phase, interactions among objects from

different sets are determined by establishing conditional

links between related states. Connections and relations

among objects, tools and machines are used while

generating these conditional structures to model

interactions.

Throughout the paper we illustrate our approach on an

example tutorial whose initial state is visualized in Fig. 2.

This example tutorial includes various objects and

interactions. The objects presented in the tutorial (except the

balls) are not affected by the gravity and motion laws. In

this scenario, after dropped from a certain height,

turns on , and this initiates two concurrent chains of

reactions. The action sequence given below represents this

tutorial in a text-based format.

Figure 2. An example scenario including interactions among various
objects. , , and require electricity to work.

 and are plugged to which is controlled by .
 and are plugged to which can generate

electricity from light. is directed at . To make
toast, on needs to be pushed. drives

 by a belt and similarly drives .
 is remotely controlled by .

dissolves when explodes. The monkey runs
if the shade covering bananas is pulled by a rope.

B. Phase-1: Creating FSMs Reflecting Behaviors

In the first phase of our approach, objects are grouped

with respect to their type; and behaviors are modeled by

using a unique finite state machine for each group of

objects. As our system initially applies the steps given in

LOCM, we first repeat the existing underlying assumptions

here, for convenience. Then, we present our extension to

model different features of objects.

LOCM groups objects into sets called sorts; and the

behavior of each sort is modeled by using a single state

machine per sort. FSMs are created based on the following

assumptions made by LOCM:

1. Each argument of the same type of action is

restricted to contain objects of the same sort.

2. Each action causes a transition on each object in its

arguments. Some transitions may not change the

state of an object.

3. The same transition cannot appear more than once in

a FSM belonging to the sort it affects.

By using Assumption 1, LOCM divides objects

appearing in action parameters into a set structure called

sorts where each sort is a disjoint subset of all the objects in

the domain. If an action name with parameters

appears in both and entries in the action sequence

, the corresponding objects and for each

parameter of actions and share the same

sort. In this work, we use this assumption to determine the

type of each object.

When we consider , , and

objects in Fig. 2, after pushes of down,

both and start running. This is given in the

action sequence as actions . In this sequence

, thus the objects in

 and are grouped into the

same sort as . Grouping is done similarly

for the other related objects in the domain.

After grouping objects into sorts, LOCM uses the input

action sequence to generate finite state machines that

model the behavior of each sort. Each action is

assumed to cause a transition for each object k in its

arguments where (Assumption 2). Each

transition has a start and an end state, namely

 and . The end state of a transition

could be the same as its start state. All transitions are

assumed to be one-to-one, thus

and for each occurrence of the same

action in . .

After assigning a start and an end state for each

transition in the action sequence, LOCM utilizes the

continuity of transitions on the same object instance to

determine equivalent states in the FSM of each sort.

Transitions and are said to be consecutive with

respect to an object iff , and does not

occur in the parameters of action instances between and .

To illustrate how this assumption is used, consider

object in the example action sequence. This object is

included in the first parameter of both

and . In the beginning, the corresponding

transitions are initialized as,

By using the continuity of transitions, end state of

 and start state of are unified as

where means the state of the sort in the

training set and is assigned 1 as its sort identifier

because it is the first object in the action sequence.

The basic steps of LOCM are useful to create

corresponding state machines. However, it is not capable of

modeling geometric features of an object defined in . For

example, and are instances from the same

sort, but they are placed in opposite directions. As a result,

 and (which are connected

to and by using belts, respectively) rotate in

opposite directions. For the motor sort, LOCM produces the

FSM given in Fig. 3(a). This FSM does not capture the

difference between these rotations. Neither LOCM2 features

this property as action names are the same in both cases.

We have extended LOCM to deal with these issues.

When objects are placed in opposite directions, their effects

may be different as for the two motors given in Fig. 2. If

their features are stated as reflecting a change in their

orientations, our proposed extension can detect the

difference in effects. When the input includes the following

facts: and ,

the desired output is formed as in Fig. 3(b). This is achieved

by considering the difference in features in the FSMs. We

assume that each different feature of the same object causes

a change in the effects of transitions on this object. Thus, in

our approach, transitions on objects in changing forms are

assigned different start and end states. Therefore, two FSMs

are created for the motor sort. state1 and state3 are different

from each other as the same motor object cannot change its

form runtime between and .

Similarly, the end states are different.

(a) FSM produced by LOCM (b) FSMs produced by our system

Figure 3. Resulting finite state machines for the motor sort.

C. Phase-2: Modeling Interactions through Relations

In the second phase of our system, connections among

objects from different sorts are used to determine and model

interactions among objects through actions. We analyze four

different input types. First, we investigate the case where

background knowledge on relations is given. In this case, a

forward chaining approach could exploit these relations to

make conclusions. In the second and third analyses, we

investigate how the results change if spatial locality of

objects or temporal locality of actions is taken into account

without prior domain knowledge. Finally, we analyze the

use of spatial and temporal information together to infer

interactions among objects, tools and machines.

1) Using a Knowledge-Based Representation

To capture interactions among different state machines,

first we encoded a knowledge base consisting of predicates

showing directly observable connections among objects for

the given tutorial. Our system uses these predicates to

reason about interactions among objects. These predicates

are shown in Table 1 along with their direction of

connection and some related examples. Note that, the

knowledge base does not contain semantic information

about the types of objects.

TABLE 1: TYPE OF CONNECTIONS AMONG OBJECTS

Predicate Examples from Fig. 2 Direction

has(obj1,obj2)

has(plug1,switch1)

has(toaster1,switch2)

has(flashlight1,switch3)

plugged(obj1,obj2)

plugged(motor1,plug1)

plugged(motor2,plug1)

plugged(mixer1,solarpanel1)

plugged(toaster1,solarpanel1)

belt(obj1,obj2)
belt(conveyorbelt1,motor1)

belt(conveyorbelt2,motor2)

on(obj1,obj2)

on(ball2,conveyorbelt1)

on(ball3,conveyorbelt2)

on(bucket1,logfloor1)

facing(obj1,obj2) facing(flashlight1,solarpanel1)

rope(obj1,obj2) rope(mandrillmotor1,bucket1)

near(obj1,obj2) near(dynamite1,logfloor1)

When these facts are provided, our system applies a

forward chaining mechanism to create a list of connections

for each object in the domain. For example, there are two

applicable connections for in Fig. 2:

, .

Thus, the forward chaining system creates two subsets of

connections for as in

the first iteration. The future iterations of forward chaining

uses transitivity of these connections to determine chains of

relations. Considering new relations in the chain, the

connection set for is extended to

.

As some of the objects are not available in the action

sequence , they are removed from the list of connections.

For example, objects , and are

removed from final connection sets because there is not any

information on these objects. The final connection set for

 becomes after

these eliminations.

Finalized connection sets for all objects are used in a

process to determine interactions among objects through

actions given in . It is important to determine the

preconditions as a complete set of facts to execute an action

given a chain of reactions. However, this is not completely

possible because state information (i.e., states of objects) is

not available as an input. The intuitive idea that we apply

here includes the use of the last effect for each subset of the

resulting connection set. Therefore, consecutive transitions

among connected objects are extracted from the action

sequence by using this intuition. For example, the

preconditions of can be

finalized by using this approach on the resulting connection

set . The last observed

action on is and the

last observed action on the second subset is

. Hence, the preconditions of action

 include both and actions under the

following conditions: ,

, .

2) Using Spatial Locality of Objects

When a knowledge base presenting connection types is

not provided, the only input to the system is the action

sequence. Human players are given the visual scene of

objects from which interactions should be determined. An

automated agent should also extract the relevant location

information of objects to reason correctly. Computer vision

techniques are useful for this purpose. The approach that we

consider here is using 2D template matching techniques [13]

followed by fitting Minimum Bounding Rectangles (MBR)

for each object to capture spatial information [14]. We

assume that location information for each object is provided

including its horizontal and vertical dimensions in pixels

and the coordinate of the left-top corner. By using this

information, two kinds of predicates are extracted: and

. As shown in Fig. 4, this is done by reasoning as,

where and are used for the minimum bounding

rectangles of and respectively.

Figure 4. MBRs for (1), (2) and (3).

The following conclusions can be made for a threshold pixels:

 and .

Using spatial locality information is useful because

some connections could be extracted. However, using just

this information for reasoning has the following drawbacks:

· False positives due to close proximity of unrelated

objects. For example, relation

causes appear as a precondition for

 which is irrelevant.

· Some relationships cannot be extracted as they do

not require the related objects to be close to each

other (e.g., belt, rope, remote controlled dynamite).

· This approach does not consider the direction of

objects (e.g., a flashlight only affects a solar panel if

it is directed at that solar panel). Advanced vision

techniques are needed to overcome this problem.

3) Using Temporal Locality of Actions

As spatial reasoning does not cover all type of relations

and has some drawbacks, we also analyze the results using

temporal locality. In this analysis, there is no knowledge

base representing relations and spatial information. Instead,

timing (start time) of each action is included in the

input action sequence . If an action occurs after another

action in a small interval, we assume that there is a

relation between the objects and This is

similar to meets relation in Allen’s Interval Algebra [15].

Actions and in our running

example, form a chain reaction as illustrated in Fig. 5.

0 1 2 3

t

04.12.2011

push_down(ball1,switch1) 19.12.2011

sec 2

06.12.2011

spin_clockwise(conveyorbelt1)

10.12.2011

blow_up(dynamite1)

12.12.2011

lower(bucket1)

14.12.2011

start_running(mandrillmotor1)

09.12.2011

activate(ball2,remotecontroller1)

05.12.2011

start(motor1)

sec 1

07.12.2011 13.12.2011

sec 2

07.12.2011

slide_right(ball2)

Figure 5: Start time of actions in a chain reaction. An example

related action pair: meets

Temporal analysis can find several useful relationships

(e.g., belt and rope) for remote objects when there is a

temporal relation. Particularly, remote controlled objects

(e.g., and) are also captured.

However, this approach suffers from the following

problems:

· False positives due to concurrent independent chain

reactions.

· Choosing the related parameter among all parameters

for an action. For example, when the relationship

between actions and is considered,

there is no clue on whether the ball or the switch is

responsible to activate .

· Objects that are activated by more than one event

cannot be modeled (e.g., runs when both

electricity is provided and is pushed.).

4) Spatio-Temporal Reasoning

Integration of spatial and temporal analysis takes

advantages of both approaches. Usually temporal analysis

gives better results, although for certain cases using spatial

information is superior. These cases are listed below:

· If any action satisfying meets pattern in Allen’s

Interval Algebra has more than one argument (e.g.,

) and spatial analysis

generates a connection (e.g.,) including one

of these arguments.

· If more than one spatial connection is detected for an

object (e.g.,).

This procedure gives similar results as using knowledge

base for connections. However, concurrent independent

chain reactions cannot be captured by using the integrated

reasoner.

V. GENERATING A PLAN USING LEARNED INTERACTIONS

To show the applicability of the learning results for

planning, we use the example scenario illustrated in Fig.

6(a). In this example, the aim is positioning and connecting

given objects in an appropriate way to make a chain reaction

which will cause to fall into the basket. Our system

can devise a plan to solve this puzzle when the goal is given

as . The chain of possible actions

involving given objects (parts) and necessary relations are

shown in the resulting plan given in Fig. 7. These relations

must be satisfied as in Fig. 6(b) in order to reach the goal

state. Here, is a general relation between two

objects. Depending on the input type (knowledge base,

temporal/spatial information), it could be represented as a

corresponding relation (e.g., , , etc.).

VI. CONCLUSION

We have presented how interactions among objects are

learned by using a given sequence of actions without

semantic information on objects, tools and machines. These

interactions are later to be used by a planner for solving new

puzzles in the Incredible Machine domain. Our analysis

shows that when a knowledge base about relations is

provided, the interactions to devise new plans are learned.

Our analysis also indicates that spatial and temporal analysis

has some drawbacks when applied separately. An integrated

approach outperforms these two approaches. We have

shown that the integrated approach gives similar results as

the knowledge-based approach when simultaneous chain

reactions are not involved in the tutorials. This is promising

because the spatio-temporal analysis does not require great

amount of knowledge on relations. Furthermore, the

approach could be applicable for the original version of the

game where only a visual input is provided to the user.

Currently, inputs are provided in a text-based action format.

Integrating computer vision techniques is left as a future

work.

(a) (b)

Figure 6. (a) A sample puzzle (b) The solution of the puzzle

slide_left(ball1)
spin_counterclockwise

(conveyorbelt1)
start(motor1)push_down(ball2,switch1)

related(ball1,conveyorbelt1)facing_right(motor1),

related(conveyorbelt1,motor1)related(motor1,plug1)

related(plug1,switch1),

 Figure 7. The plan for the given puzzle in Fig. 6 by using the learned

interactions

REFERENCES

[1] The Incredible Machine 3, [CD-ROM], Dynamix Inc., 1995.

[2] The official Rube Goldberg website. [Online]. Available:
www.rubegoldberg.com. [Accessed: Jan. 12, 2012].

[3] Y. Gil, “Learning by experimentation: Incremental refinement of
incomplete planning domains”, in Proc. 11th Int. Conf. on Machine
Learning (ICML’94), Jul. 1994, pp. 87-95.

[4] D. Shahaf and E. Amir, "Learning partially observable action
schemas", in Proc. 21st Conf. on Artificial Intelligence (AAAI’06),
Jul. 2006, pp. 913-919.

[5] D. Shahaf, A. Chang, and E. Amir, "Learning partially observable
action models: Efficient algorithms", in Proc. 21st Conf. on Artificial
Intelligence (AAAI’06), Jul. 2006, pp. 920-926.

[6] E. Amir and A. Chang, “Learning partially observable deterministic
action models”, Journal of Artificial Intelligence Research, vol. 33,
pp. 349-402, Nov. 2008.

[7] Q. Yang, K. Wu, and Y. Jiang, "Learning actions models from plan
examples with incomplete knowledge", in Proc. 15th Int. Conf. on
Automated Planning and Scheduling (ICAPS’05), Jun. 2005, pp.241-
250.

[8] K. Wu, Q. Yang, and Y. Jiang, "ARMS: an automatic knowledge
engineering tool for learning action models for AI planning",
Knowledge Engineering Review, vol. 22, pp.135-152, Jun. 2007.

[9] H. H. Zhuo, Q. Yang, D. H. Hu, and L. Li, "Learning complex action
models with quantifiers and logical implications", Artificial
Intelligence, vol. 174, pp.1540-1569, Dec. 2010.

[10] S. Cresswell, T. L. McCluskey, and M. M. West, "Acquisition of
object-centred domain models from planning examples”, in Proc.
19th Int. Conf. on Automated Planning and Scheduling (ICAPS’09),
Sep. 2009, pp. 338-341.

[11] S. Cresswell, T. L. McCluskey, and M. M. West, "Acquiring planning
domain models using LOCM", Knowledge Engineering Review,
2010, in press.

[12] S. Cresswell and P. Gregory, "Generalised domain model acquisition
from action traces", in Proc. 21st Int. Conf. on Automated Planning
and Scheduling (ICAPS’11), Jun. 2011, pp. 42-49.

[13] R. Brunelli, Template Matching Techniques in Computer Vision:
Theory and Practice. Wiley, 2009.

[14] D. Chaudhuri and A. Samal, "A simple method for fitting of
bounding rectangle to closed regions", Pattern Recognition, vol. 40,
pp. 1981-1989, Jul. 2007.

[15] J. F. Allen, "Maintaining knowledge about temporal intervals",
Commun. ACM (CACM), vol. 26, pp. 832-843, Nov. 1983.

