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Abstract— We propose a method for learning interactions 

among objects when intermediate state information is not 

available. Learning is accomplished by observing a given 

sequence of actions on objects. We have selected the Incredible 

Machine game as a suitable domain for analyzing and learning 

object interactions. We first present how behaviors are 

represented by finite state machines using the given input. 

Then, we analyze the impact of the input type corresponding to 

relations on the overall performance. Our analysis includes 

four different types of input: a knowledge base including part 

relations; spatial information; temporal information; and 

spatio-temporal information. We show that if a knowledge 

base about relations is provided, learning is accomplished to 

the desired extent.  Our analysis also indicates that spatio-

temporal analysis is superior to spatial and temporal analyses 

and gives similar results to that of the knowledge-based 

approach. 

Keywords- agent-based systems; automated planning; 

learning; knowledge representation  

I. INTRODUCTION 

Automated action planning is the process of finding a 

sequence of actions to achieve a given goal. Whenever the 

planning problem (i.e., initial and goal states) and operators 

corresponding to domain actions are defined properly, a 

planner may easily find a solution. However, the problem is 

complicated if the planning agent has not complete 

information about preconditions and effects of the domain 

operators. In this case, the problem turns into a learning task 

where relations of actions and objects (in parameters of 

actions) are learned through observation of behaviors. 

The main goal of this research is to develop a method for 

learning object interactions through actions. Learning is to 

be performed by observing a given sequence of actions. We 

also analyze the performance of the learner based on the 

completeness of the knowledge base about relations. We 

believe the outcomes of this study are also useful for robot 

learning tasks. Our future work includes implementation of 

this approach on real robots for learning affordances. 

We have selected the Incredible Machine [1] as a 

domain for analyzing these interactions because this domain 

allows the use of various objects and relations to achieve a 

given goal. The Incredible Machine is a series of computer 

games in which the player tries to solve given puzzles by 

constructing contraptions in cartoonist Rube Goldberg's 

style [2]. In a typical scenario of this game, the player is 

given a limited number of objects, tools and machines and a 

goal to accomplish by using these resources. An example 

screenshot is provided in Fig. 1 to illustrate the environment 

of the game. In this example, the aim is opening the can, 

starting the mixer and heating up some coffee. To complete 

the given structure to reach the goal state, the player is 

provided with some objects in the parts bin on the right side, 

and these parts must be used without changing the position 

of already installed objects in the environment. The puzzles 

in the game are interesting as they require building complex 

systems by considering various interactions among the 

objects to achieve the given goals. 

This problem fits into planning framework as it involves 

actions to transform a given initial state into a goal state. 

Both progression and regression planning is applicable if 

domain actions are perfectly defined. A planner needs to 

consider the game in two aspects to be able to devise a 

consistent plan. First, considering interactions among 

objects, tools and machines are crucial for making decisions 

while connecting given parts altogether to reach the goal 

state. Second, physics models of objects (e.g., the effect of 

the gravity on the motion of a ball) should be taken into 

account to estimate interactions through motions. 

In this work, we focus on solving the stated learning 

problem considering object interactions given in a tutorial to 

understand the rationale behind the Incredible Machine 

puzzles. We assume that the tutorial presents object 

interactions in the form of chain reactions (e.g., starting a 

mixer, running a motor, lighting a lamp, etc.) by 

connections among each other. No further background 

information is available about the types of objects and their 

 
Figure 1. An example puzzle from the Incredible Machine 3. 



semantics, nor intermediate state information. Particularly, 

in this work, tutorials are presented as text-based action 

sequences. Extension of the work by processing visual 

observations (as in the actual game) is left as a future work. 

The problem is investigated from four perspectives and an 

integrated solution is provided. If relations of parts are 

provided to the agent, a logic-based reasoning mechanism 

could be used. Otherwise, we show that considering spatial, 

temporal and spatio-temporal aspects of the problem makes 

it feasible to reason about interactions for further planning 

tasks. These four perspectives may correspond to different 

learning problems. The Incredible Machine domain provides 

a common framework to integrate these approaches. 

The rest of the paper is organized as follows. First, we 

discuss some related works in the field of learning action 

schema. Next, we give an overview of our approach and 

show the details step by step on a running example. Third, 

we show how to use resulting finite state machines (FSM) 

and connections among them on a planning example. 

Finally, we discuss the results of four different perspectives 

and conclude the paper. 

II. BACKGROUND 

In recent years, efficient approaches have been 

developed to learn planning operators from example plans 

[3-12]. From these, SLAF (Simultaneous Learning and 

Filtering) [4-6] is a tractable system for identifying 

preconditions and effects of actions in partially observable 

domains. It builds exact action schema efficiently by using a 

relational logical representation and uses partial 

observations between executed actions to identify consistent 

action models. However, this approach requires the use of 

observations on the states of objects between actions. 

Unlike SLAF, ARMS (Action-Relation Modeling 

System) [7,8] can learn action models without using 

intermediate state information. ARMS is based on solving a 

weighted MAX-SAT problem on the statistical distribution 

of related action and predicate sets having some common 

parameters. It is an effective approach to find approximate 

STRIPS action schema by using only actions and predicates 

in the plan trace. However, this approach cannot learn 

actions with conditional effects for identifying interactions 

among objects, tools and machines in our problem.  

The LAMP (Learning Action Models from Plan traces) 

[9] system, learns more expressive action schema having 

quantifiers and logical implications in accordance with 

PDDL standards. This approach is based on enumerating six 

different patterns of candidate formulas and their quantified 

cases on training data to be able to learn preconditions, 

effects and conditional effects. Then, weights are assigned 

to generated formulas by using a Markov Logic Network. In 

LAMP, partial observations between action executions are 

important to be able to decrease error rate in the results. 

LOCM (Learning Object-Centred Models) [10,11] is an 

object-centered approach for learning action models from 

plan traces. It's unique in its input as it only requires the 

action sequence to be given to learn action schema. 

Moreover, LOCM outputs FSMs showing behaviors of 

different type of objects in the domain, as well as planning 

operators. Thus, for our work, LOCM is the most suitable 

system to use for determining behaviors of objects. This 

approach is discussed in detail in the following sections. 

LOCM2 [12] is proposed to solve the state generalization 

problem of LOCM for objects showing behaviors in 

separate aspects. By analyzing example plans in a transition-

based representation, LOCM2 weakens the assumptions of 

LOCM and produces additional state machines to capture 

behaviors that cannot be modeled by LOCM. 

We extend LOCM in two ways. First, we include 

different orientations of the same object in the input to be 

able to distinguish change of behavior due to changing 

orientations. Second, we propose an approach to determine 

interactions among objects when relational information is 

given. To be able to produce conditional effects in a chain 

reaction, our approach uses a forward chaining mechanism. 

Furthermore, we analyze the use of spatial and temporal 

information when a knowledge base of relations is not 

available. 

III. LEARNING INTERACTIONS FROM EXAMPLES 

Learning is essential for an agent with limited 

knowledge about its environment. The problem that we 

investigate in this work asks for learning interactions of 

actions and objects for the Incredible Machine game, given 

some tutorials about this game. Tutorials include sequential 

actions on various objects represented in a text-based 

format. Aside from these tutorials, there exists no prior 

knowledge about actions, objects and their interactions.  

A tutorial is a tuple  where  is an action 

sequence with  actions  in their order of occurrence 

where concurrent actions affect different objects 

 and  is a list of predicates showing different 

geometric features of objects (e.g.,  or 

) in the environment. Each action  has  

arguments where each argument is an object in the domain 

. 

The main objective is to model behaviors of different 

type of objects represented as FSMs (per object type). Each 

FSM involves a state set  and a state-transition function . 

Furthermore, conditional relations among these FSMs 

should be established to capture interactions among 

different type of objects and determine preconditions of 

actions given in . Eventually, these preconditions together 

with behavior models are to be used for generating new 

plans.  

IV. PROPOSED APPROACH 

A. Overview and a Running Example 

Our approach consists of two phases. In the first phase, 

objects are grouped into sets with respect to their type; and a 

finite state machine is generated for each set to model 



behaviors of objects belonging to that set. State machines 

are created using the steps of LOCM. We propose a 

modification to address interactions based on different 

geometric features of objects. 

In the second phase, interactions among objects from 

different sets are determined by establishing conditional 

links between related states. Connections and relations 

among objects, tools and machines are used while 

generating these conditional structures to model 

interactions. 

Throughout the paper we illustrate our approach on an 

example tutorial whose initial state is visualized in Fig. 2. 

This example tutorial includes various objects and 

interactions. The objects presented in the tutorial (except the 

balls) are not affected by the gravity and motion laws. In 

this scenario, after dropped from a certain height,  

turns on , and this initiates two concurrent chains of 

reactions. The action sequence given below represents this 

tutorial in a text-based format. 

 

 
Figure 2. An example scenario including interactions among various 
objects. , ,  and  require electricity to work. 

 and  are plugged to  which is controlled by . 
 and  are plugged to  which can generate 

electricity from light.  is directed at . To make 
toast,  on  needs to be pushed.  drives 

 by a belt and similarly  drives . 
 is remotely controlled by .  

dissolves when  explodes. The monkey runs  
if the shade covering bananas is pulled by a rope. 

B. Phase-1: Creating FSMs Reflecting Behaviors  

In the first phase of our approach, objects are grouped 

with respect to their type; and behaviors are modeled by 

using a unique finite state machine for each group of 

objects. As our system initially applies the steps given in 

LOCM, we first repeat the existing underlying assumptions 

here, for convenience. Then, we present our extension to 

model different features of objects. 

LOCM groups objects into sets called sorts; and the 

behavior of each sort is modeled by using a single state 

machine per sort. FSMs are created based on the following 

assumptions made by LOCM: 

1. Each argument of the same type of action is 

restricted to contain objects of the same sort. 

2. Each action causes a transition on each object in its 

arguments. Some transitions may not change the 

state of an object. 

3. The same transition cannot appear more than once in 

a FSM belonging to the sort it affects. 

By using Assumption 1, LOCM divides objects 

appearing in action parameters into a set structure called 

sorts where each sort is a disjoint subset of all the objects in 

the domain. If an action name   with  parameters 

appears in both  and   entries in the action sequence 

, the corresponding objects  and  for each 

parameter  of actions  and  share the same 

sort. In this work, we use this assumption to determine the 

type of each object.  

When we consider , ,  and  

objects in Fig. 2, after  pushes  of  down, 

both  and  start running. This is given in the 

action sequence  as actions . In this sequence 

, thus the objects in 

  and  are grouped into the 

same sort as . Grouping is done similarly 

for the other related objects in the domain.  

After grouping objects into sorts, LOCM uses the input 

action sequence  to generate finite state machines that 

model the behavior of each sort. Each action  is 

assumed to cause a transition for each object k in its 

arguments where  (Assumption 2). Each 

transition  has a start and an end state, namely 

 and . The end state of a transition 

could be the same as its start state. All transitions are 

assumed to be one-to-one, thus  

and  for each occurrence of the same 

action  in . .  

After assigning a start and an end state for each 

transition in the action sequence, LOCM utilizes the 

continuity of transitions on the same object instance to 

determine equivalent states in the FSM of each sort. 

Transitions  and  are said to be consecutive with 



respect to an object  iff , and  does not 

occur in the parameters of action instances between and . 

To illustrate how this assumption is used, consider  

object in the example action sequence. This object is 

included in the first parameter of both  

and . In the beginning, the corresponding 

transitions are initialized as, 

 

 

By using the continuity of transitions, end state of 

 and start state of  are unified as 

 

 

where  means the  state of the  sort in the 

training set and  is assigned 1 as its sort identifier 

because it is the first object in the action sequence. 

The basic steps of LOCM are useful to create 

corresponding state machines. However, it is not capable of 

modeling geometric features of an object defined in . For 

example,  and  are instances from the same 

sort, but they are placed in opposite directions. As a result, 

 and  (which are connected 

to  and  by using belts, respectively) rotate in 

opposite directions. For the motor sort, LOCM produces the 

FSM given in Fig. 3(a). This FSM does not capture the 

difference between these rotations. Neither LOCM2 features 

this property as action names are the same in both cases.  

We have extended LOCM to deal with these issues. 

When objects are placed in opposite directions, their effects 

may be different as for the two motors given in Fig. 2. If 

their features are stated as reflecting a change in their 

orientations, our proposed extension can detect the 

difference in effects. When the input includes the following 

facts:  and , 

the desired output is formed as in Fig. 3(b). This is achieved 

by considering the difference in features in the FSMs. We 

assume that each different feature of the same object causes 

a change in the effects of transitions on this object. Thus, in 

our approach, transitions on objects in changing forms are 

assigned different start and end states. Therefore, two FSMs 

are created for the motor sort. state1 and state3 are different 

from each other as the same motor object cannot change its 

form runtime between  and . 

Similarly, the end states are different. 

 

 
(a) FSM produced by LOCM (b) FSMs produced by our system 

Figure 3. Resulting finite state machines for the motor sort. 

C. Phase-2: Modeling Interactions through Relations 

In the second phase of our system, connections among 

objects from different sorts are used to determine and model 

interactions among objects through actions. We analyze four 

different input types. First, we investigate the case where 

background knowledge on relations is given. In this case, a 

forward chaining approach could exploit these relations to 

make conclusions. In the second and third analyses, we 

investigate how the results change if spatial locality of 

objects or temporal locality of actions is taken into account 

without prior domain knowledge. Finally, we analyze the 

use of spatial and temporal information together to infer 

interactions among objects, tools and machines. 

1) Using a Knowledge-Based Representation  

To capture interactions among different state machines, 

first we encoded a knowledge base consisting of predicates 

showing directly observable connections among objects for 

the given tutorial. Our system uses these predicates to 

reason about interactions among objects. These predicates 

are shown in Table 1 along with their direction of 

connection and some related examples. Note that, the 

knowledge base does not contain semantic information 

about the types of objects. 

TABLE 1: TYPE OF CONNECTIONS AMONG OBJECTS 

Predicate Examples from Fig. 2 Direction 

has(obj1,obj2) 

has(plug1,switch1) 

has(toaster1,switch2) 

has(flashlight1,switch3) 

 

plugged(obj1,obj2) 

plugged(motor1,plug1) 

plugged(motor2,plug1) 

plugged(mixer1,solarpanel1) 

plugged(toaster1,solarpanel1) 

belt(obj1,obj2) 
belt(conveyorbelt1,motor1) 

belt(conveyorbelt2,motor2) 

on(obj1,obj2) 

on(ball2,conveyorbelt1) 

on(ball3,conveyorbelt2) 

on(bucket1,logfloor1) 

facing(obj1,obj2) facing(flashlight1,solarpanel1)  

rope(obj1,obj2) rope(mandrillmotor1,bucket1) 
 

near(obj1,obj2) near(dynamite1,logfloor1) 

 

When these facts are provided, our system applies a 

forward chaining mechanism to create a list of connections 

for each object in the domain. For example, there are two 

applicable connections for  in Fig. 2: 

, . 

Thus, the forward chaining system creates two subsets of 

connections for  as  in 

the first iteration. The future iterations of forward chaining 

uses transitivity of these connections to determine chains of 

relations. Considering new relations in the chain, the 

connection set for  is extended to 

. 



As some of the objects are not available in the action 

sequence , they are removed from the list of connections. 

For example, objects , and  are 

removed from final connection sets because there is not any 

information on these objects. The final connection set for 

 becomes  after 

these eliminations.  

Finalized connection sets for all objects are used in a 

process to determine interactions among objects through 

actions given in . It is important to determine the 

preconditions as a complete set of facts to execute an action 

given a chain of reactions. However, this is not completely 

possible because state information (i.e., states of objects) is 

not available as an input. The intuitive idea that we apply 

here includes the use of the last effect for each subset of the 

resulting connection set. Therefore, consecutive transitions 

among connected objects are extracted from the action 

sequence  by using this intuition. For example, the 

preconditions of  can be 

finalized by using this approach on the resulting connection 

set . The last observed 

action on  is  and the 

last observed action on the second subset is 

. Hence, the preconditions of action 

 include both  and actions under the 

following conditions: , 

, . 

2) Using Spatial Locality of Objects 

When a knowledge base presenting connection types is 

not provided, the only input to the system is the action 

sequence.  Human players are given the visual scene of 

objects from which interactions should be determined. An 

automated agent should also extract the relevant location 

information of objects to reason correctly. Computer vision 

techniques are useful for this purpose. The approach that we 

consider here is using 2D template matching techniques [13] 

followed by fitting Minimum Bounding Rectangles (MBR) 

for each object to capture spatial information [14]. We 

assume that location information for each object is provided 

including its horizontal and vertical dimensions in pixels 

and the coordinate of the left-top corner. By using this 

information, two kinds of predicates are extracted:  and 

. As shown in Fig. 4, this is done by reasoning as, 

 

 

where  and  are used for the minimum bounding 

rectangles of  and  respectively. 

 
Figure 4. MBRs for  (1),  (2) and  (3). 

The following conclusions can be made for a threshold  pixels:  

 and . 

Using spatial locality information is useful because 

some connections could be extracted. However, using just 

this information for reasoning has the following drawbacks: 

· False positives due to close proximity of unrelated 

objects. For example,  relation 

causes  appear as a precondition for 

 which is irrelevant. 

· Some relationships cannot be extracted as they do 

not require the related objects to be close to each 

other (e.g., belt, rope, remote controlled dynamite).  

· This approach does not consider the direction of 

objects (e.g., a flashlight only affects a solar panel if 

it is directed at that solar panel). Advanced vision 

techniques are needed to overcome this problem. 

3) Using Temporal Locality of Actions 

As spatial reasoning does not cover all type of relations 

and has some drawbacks, we also analyze the results using 

temporal locality. In this analysis, there is no knowledge 

base representing relations and spatial information. Instead, 

timing (start time) of each action    is included in the 

input action sequence . If an action  occurs after another 

action  in a small interval, we assume that there is a 

relation between the objects and  This is 

similar to meets relation in Allen’s Interval Algebra [15]. 

Actions  and  in our running 

example, form a chain reaction as illustrated in Fig. 5. 

0 1 2 3

t

04.12.2011

push_down(ball1,switch1) 19.12.2011

sec 2

06.12.2011

spin_clockwise(conveyorbelt1)

10.12.2011

blow_up(dynamite1)

12.12.2011

lower(bucket1)

14.12.2011

start_running(mandrillmotor1)

09.12.2011

activate(ball2,remotecontroller1)

05.12.2011

start(motor1)

sec 1

07.12.2011 13.12.2011

sec 2

07.12.2011

slide_right(ball2)

 
Figure 5: Start time of actions in a chain reaction. An example  

related action pair:  meets 

 

Temporal analysis can find several useful relationships 

(e.g., belt and rope) for remote objects when there is a 

temporal relation. Particularly, remote controlled objects 

(e.g.,  and ) are also captured. 

However, this approach suffers from the following 

problems: 

· False positives due to concurrent independent chain 

reactions.  

· Choosing the related parameter among all parameters 

for an action. For example, when the relationship 

between actions  and  is considered, 

there is no clue on whether the ball or the switch is 

responsible to activate . 

· Objects that are activated by more than one event 

cannot be modeled (e.g.,  runs when both 

electricity is provided and  is pushed.). 



4) Spatio-Temporal Reasoning 

Integration of spatial and temporal analysis takes 

advantages of both approaches. Usually temporal analysis 

gives better results, although for certain cases using spatial 

information is superior. These cases are listed below:  

· If any action satisfying meets pattern in Allen’s 

Interval Algebra has more than one argument (e.g., 

) and spatial analysis 

generates a connection (e.g., ) including one 

of these arguments. 

· If more than one spatial connection is detected for an 

object (e.g., ). 

This procedure gives similar results as using knowledge 

base for connections. However, concurrent independent 

chain reactions cannot be captured by using the integrated 

reasoner. 

V. GENERATING A PLAN USING LEARNED INTERACTIONS 

To show the applicability of the learning results for 

planning, we use the example scenario illustrated in Fig. 

6(a). In this example, the aim is positioning and connecting 

given objects in an appropriate way to make a chain reaction 

which will cause  to fall into the basket. Our system 

can devise a plan to solve this puzzle when the goal is given 

as . The chain of possible actions 

involving given objects (parts) and necessary relations are 

shown in the resulting plan given in Fig. 7. These relations 

must be satisfied as in Fig. 6(b) in order to reach the goal 

state. Here,  is a general relation between two 

objects. Depending on the input type (knowledge base, 

temporal/spatial information), it could be represented as a 

corresponding relation (e.g., , , etc.). 

VI. CONCLUSION 

We have presented how interactions among objects are 

learned by using a given sequence of actions without 

semantic information on objects, tools and machines. These 

interactions are later to be used by a planner for solving new 

puzzles in the Incredible Machine domain. Our analysis 

shows that when a knowledge base about relations is 

provided, the interactions to devise new plans are learned. 

Our analysis also indicates that spatial and temporal analysis 

has some drawbacks when applied separately. An integrated 

approach outperforms these two approaches. We have 

shown that the integrated approach gives similar results as 

the knowledge-based approach when simultaneous chain 

reactions are not involved in the tutorials. This is promising 

because the spatio-temporal analysis does not require great 

amount of knowledge on relations. Furthermore, the 

approach could be applicable for the original version of the 

game where only a visual input is provided to the user. 

Currently, inputs are provided in a text-based action format. 

Integrating computer vision techniques is left as a future 

work.  

  
(a) (b) 

Figure 6.   (a) A sample puzzle   (b) The solution of the puzzle 

slide_left(ball1)
spin_counterclockwise

(conveyorbelt1)
start(motor1)push_down(ball2,switch1)

related(ball1,conveyorbelt1)facing_right(motor1),

related(conveyorbelt1,motor1)related(motor1,plug1)

related(plug1,switch1),

 Figure 7. The plan for the given puzzle in Fig. 6 by using the learned 

interactions 
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