Problem Solving Using Classical Planners
AAAI Technical Report WS-12-12

Learning Interactions Among Objects
Through Spatio-Temporal Reasoning

Mustafa Ersen and Sanem Sariel-Talay
Artificial Intelligence and Robotics Laboratory
Computer Engineering Department
Istanbul Technical University, Istanbul, Turkey
{ersenm,sariel } @itu.edu.tr

Abstract

In this study, we propose a method for learning inter-
actions among different types of objects to devise new
plans using these objects. Learning is accomplished by
observing a given sequence of events with their times-
tamps and using spatial information on the initial state
of the objects in the environment. We assume that no in-
termediate state information is available about the states
of objects. We have used the Incredible Machine game
as a suitable domain for analyzing and learning ob-
ject interactions. When a knowledge base about rela-
tions among objects is provided, interactions to devise
new plans are learned to a desired extent. Moreover,
using spatial information of objects or temporal infor-
mation of events makes it feasible to learn the condi-
tional effects of objects on each other. Our analyses
show that, integrating spatial and temporal data in a
spatio-temporal learning approach gives closer results
to that of the knowledge-based approach by providing
applicable event models for planning. This is promising
because gathering spatio-temporal information does not
require great amount of knowledge.

Introduction

Automated action planning is the process of finding a se-
quence of actions to achieve a given goal. Whenever the
planning problem (i.e., initial and goal states) and operators
corresponding to domain actions are defined properly, a plan
to solve the problem can be devised by a planner. However,
the problem gets complicated when the planning agent has
incomplete information about the preconditions and the ef-
fects of the domain operators. In this case, the problem turns
into a learning task where the relations among actions and
objects are learned through the observations.

The main goal of this research is to develop a method
for learning object interactions through observation of a
given sequence of events. We analyze the performance of
the learner against the level of completeness of the knowl-
edge base about relations. We believe the outcomes of this
study are also useful for robot learning tasks. Our future
work includes implementation of this system on real robots
for learning affordances.

Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

23

Playfield | All Parts

- The Food Machine

Open the can, start the mixer, and heat up some coffee.

Figure 1: An example puzzle from TIM v3.

We have selected the Incredible Machine (TIM) as a
domain for analyzing these interactions because this do-
main allows the use of various objects and their interac-
tions to build complex systems to solve given puzzles. TIM
is a series of computer games in which the player tries to
solve given puzzles by constructing contraptions in cartoon-
ist Rube Goldberg’s style (Wolfe 2011). In a typical scenario
of this game, the player is given a limited number of objects,
tools and machines and a goal to accomplish by using these
resources. An example screenshot is provided in Fig. 1 to
illustrate the game environment. In this example, the aim is
opening the can, starting the mixer and heating up some cof-
fee. To complete the given structure to reach the goal state,
the player is provided with some objects in the parts bin on
the right side, and these parts must be used without changing
the positions of existing objects in the environment.

This problem fits into planning framework as it involves
events to transform a given initial state into a goal state. Both
progression and regression planning is applicable if domain
events are perfectly defined. A planner needs to consider
the game in two aspects to be able to devise a consistent
plan. First, considering interactions among objects, tools
and machines is crucial for making decisions while connect-
ing given parts altogether to reach the goal state. Second,
physics models of objects (e.g., the effect of the gravity on
the motion of a ball) should be taken into account to estimate
interactions through motions.

In this work, we focus on solving the stated learning prob-
lem where preconditions and effects of events in the domain
are not known but interactions of objects are given in a tu-
torial to understand the rationale behind TIM puzzles. We
assume that a given tutorial presents object interactions in
the form of chain reactions (e.g., starting a mixer, running
a motor, lighting a lamp, etc.). No further background in-
formation is available about the types of objects and their
semantics, nor intermediate state information. Particularly
in this work, tutorials are presented as text-based event se-
quences. Extension of the work by processing visual obser-
vations as in the actual game is left as a future work. We in-
vestigate the problem from four perspectives and propose an
integrated solution. If relations of parts are provided to the
agent, a logic-based reasoning mechanism could be used.
Otherwise, we show that considering spatial and temporal
aspects of the problem makes it possible to reason about in-
teractions for further planning tasks. These perspectives may
correspond to different learning problems. TIM domain pro-
vides a suitable framework to integrate these approaches.

The rest of the paper is organized as follows. First, we
review earlier work in the field of learning action schema.
Next, we give an overview of our system and show the de-
tails step by step on a running example. Third, we show how
to use learned information on a planning example. Finally,
we present experiments on the proposed system, discuss the
results and conclude the paper.

Background

In recent years, efficient approaches have been developed to
learn planning operators from example plans. Among these,
SLAF (Simultaneous Learning and Filtering) is a tractable
system for identifying preconditions and effects of actions
(Shahaf 2007). It builds exact action schema efficiently by
using a relational logical representation and uses partial ob-
servations to identify consistent action models. However,
this approach requires the use of observations on the states
of objects between actions.

Unlike SLAF, ARMS (Action-Relation Modelling Sys-
tem) can learn action models without intermediate state in-
formation (Wu, Yang, and Jiang 2007). ARMS is based
on solving a weighted MAX-SAT problem on the statis-
tical distribution of related action and predicate sets. It is
an efficient approach to find approximate STRIPS action
schema by using only actions and predicates in the plan
trace. However, this approach cannot learn actions with con-
ditional effects for identifying interactions among objects,
tools and machines as in our problem. LAMP (Learning Ac-
tion Models from Plan traces), learns more expressive action
schema having quantifiers and logical implications (Zhuo et
al. 2010). This approach is based on enumerating six differ-
ent patterns of candidate formulas and their quantified cases
on training data to learn preconditions, effects and condi-
tional effects. In LAMP, partial observations between action
executions are crucial for efficiency.

OPMAKER (Richardson 2008) is another operator induc-
tion tool which can learn domain operators from plan traces.
In addition to plan traces, to learn the preconditions and
effects of actions, OPMAKER requires the information on

24

initial and intermediate states of the environment and a par-
tial domain model to be provided. OPMAKER?2 (Richardson
2008) is an extension which can induce action schema from
training examples without using intermediate state informa-
tion. However, this method also requires a partial domain
model including information on the object types.

LOCM (Learning Object-Centred Models) is an object-
centered approach for learning action models from plan
traces (Cresswell, McCluskey, and West 2009). It’s unique
in its input as it only requires the action sequence to learn ac-
tion schema. Moreover, LOCM outputs finite state machines
(FSM) showing behaviors of different types of objects in the
domain, as well as planning operators. LOCM2 (Cresswell
and Gregory 2011) is proposed to solve the state general-
ization problem of LOCM for objects showing behaviors in
separate aspects. By analyzing example plans in a transition-
based representation, LOCM?2 weakens the assumptions of
LOCM and produces additional state machines to capture
behaviors that cannot be modeled by LOCM. For our work,
LOCM is the most suitable base system to determine the be-
haviors of the objects as it generates FSMs in a state-based
representation. We extend LOCM in two ways. First, we in-
clude different orientations of the same object in input to
distinguish the change of behaviors due to the changes in
orientations. Second, we propose an approach to determine
interactions among objects when relational information is
given. Our approach uses a forward chaining mechanism to
produce conditional effects in a chain reaction. Furthermore,
we analyze the use of spatial and temporal information in
case a knowledge base of relations is not available.

Learning Interactions from Examples

Learning is essential for an agent with limited knowledge
about its environment. The problem that we investigate in
this work asks for learning interactions of events and objects
for TIM game, given some tutorials about this game. Tuto-
rials, represented in a text-based format, include sequential
events on various objects. Aside from these tutorials, there
exists no prior knowledge about events, their preconditions
and effects, objects and their interactions.

A tutorial is a tuple 7' = (€, F, R) where £ is an event
sequence with n events E., in their order of occurrence
where concurrent events (Vi,j ¢ < j = E; < Ej) affect
different objects, F is a list of predicates showing differ-
ent orientational features of objects (e.g., facing_left or
facing_right) in the environment and R is a list of relations
among objects (i.e., a knowledge base of directly observable
relations or an automatically constructed list by using spa-
tial locality of objects or temporal locality of events). Each
event F; has m; arguments where each argument is an object
in the domain (Argi.m, (E;) = Oi 5, 1 < k <my).

The main objective is to model behaviors of different
types of objects represented as FSMs. Each FSM involves
a state set S and a state-transition function ¢. Furthermore,
conditional relations among these FSMs should be estab-
lished by using R to capture interactions among different
types of objects and determine preconditions of events given
in £. Eventually, these preconditions together with behavior
models are to be used for generating new plans.

The Proposed System

We propose a two-phase solution to the learning problem.
In the first phase, objects are grouped into sets with respect
to their type; and a FSM is generated for each set to model
behaviors of objects belonging to that set. State machines
are created using the steps of LOCM. We propose a mod-
ification to address interactions based on different orienta-
tional features of objects. In the second phase, interactions
among objects from different sets are determined by estab-
lishing conditional links between related states. Connections
and relations among objects are used while generating these
conditional structures to model interactions.

Throughout the paper we illustrate our system on an ex-
ample tutorial whose initial state is visualized in Fig. 2. This
example tutorial includes various objects and interactions.
The objects presented in the tutorial (except the balls) are
not affected by the gravity and motion laws. In this scenario,
after dropped from a certain height, ball; turns on switch
which initiates two concurrent chains of reactions. The event
sequence given on the right side represents this tutorial in a
text-based format.

: push_down(ball ,switch,)

: start(motor,)

: start(motor,)

: spin_cw(conveyorbelt,)

: spin_cew(conveyorbelt,)

: slide_right(ball,)

: slide_left(bally)

: press(ball,switch;)

: light(flashlight,)

: start_mixing(mixer,)

: push(bally,switch,)

: hit(ball,,handle,)

: activate(remotecontroller,)
: blow_up(dynamite,)

: make_toast(toaster,)

: lower(bucket,)

: start_running(mandrillmotor,)

Figure 2: An example scenario including interactions among
various objects. motory, motors, mizer, and toaster; re-
quire electricity to work. motor; and motor;, are plugged to
plugy which is controlled by switchy. toaster; and mixery
are plugged to solarpanel; which can generate electricity
from light. flashlight; is directed at solarpanel;. To make
toast, switchy on toaster; needs to be pushed. motor;
drives conveyorbelt; by a belt and similarly motors
drives conveyorbelts. dynamite; is remotely controlled by
remotecontrollery. log floor; dissolves when dynamite;
explodes. The monkey runs mandrillmotor; if the shade
covering bananas is pulled by a rope.

Phase-1: Creating FSMs Reflecting Behaviors

In the first phase, objects are grouped with respect to their
type; and behaviors are modeled by using a unique FSM for
each group of objects. As our system initially applies the
steps given in LOCM, we first repeat the existing underly-
ing assumptions here, for convenience. Then, we present our
extension to model different features of objects.

LOCM groups objects into sets called sorts; and the be-
havior of each sort is modeled by using a single state ma-
chine per sort. FSMs are created based on the following as-
sumptions made by LOCM.

25

1. Each argument of the same type of action is restricted to
contain objects of the same sort.

2. Each action causes a transition on each object in its argu-
ments. Some transitions may not change the state of an
object.

3. The same transition cannot appear more than once in a
FSM belonging to the sort it affects.

By using Assumption 1, LOCM divides objects appearing
in action parameters (or event parameters) into a set struc-
ture called sorts where each sort is a disjoint subset of all the
objects in the domain. If an event name name(FE) with pa-
rameters p appears in both i*" and j*" entries in the event se-
quence &, the corresponding objects O; . and O, for each
parameter 1 < k < p of events F; and F; are considered to
share the same sort. In this work, we use this assumption to
determine the type of each object. When we consider bally,
motory, motory and plug, objects in Fig. 2, after bally
pushes switchy of plug; down, both motor; and motors
start running. This is given in the event sequence £ as events
E;.3. In this sequence name(FE2) = name(E3) = start,
thus the objects in Arg;(E2) = Oz and Arg,(E3) =
03,1 are grouped into the same sort as {motory, motors}.
Grouping is done similarly for the other related objects in
the domain.

After grouping objects into sorts, LOCM uses the input
action sequence to generate FSMs that model the behavior
of each sort. Similarly in our problem, each event F; € &£
is assumed to cause a transition for each object k in its ar-
guments where 1 < k < p (Assumption 2). Each transi-
tion F; ;, has a start and an end state, namely start(E; j)
and end(E; j). The end state of a transition could be the
same as its start state. All transitions are assumed to be one-
to-one, thus start(E; ;) = start(E;) and end(E;) =
end(Ej ;) for each occurrence of the same event E in £
(E = name(E;) = name(E;)). After assigning a start
and an end state for each transition in the action sequence,
LOCM utilizes the continuity of transitions on the same ob-
ject instance to determine equivalent states in the FSM of
each sort. Transitions F; ;. and E;; are said to be consecu-
tive with respect to an object O iff O = O; ;, = O;;, and O
does not occur in the parameters of event instances between
¢ and j. To illustrate how this assumption is used, consider
ball, object in the example event sequence. This object is in-
cluded in the first parameter of both F; = push_down and
Es = press. In the beginning, the corresponding transitions
are initialized as,

push_downy
stateq 1 states 1
pressi

states q statey

By using the continuity of transitions, the end state of
push_down, and the start state of press; are unified as

push_downy

stateq 1 states

pressi

states 1 _— statey

where state; ; means the i*" state of the 5" sort in the train-
ing set and the sort identifier of ball; is assigned 1 as it is
the first object in the event sequence.

The basic steps of LOCM are useful to create correspond-
ing state machines. However, modeling behavior changes
due to different orientations defined in F is not available. For
example, motor; and motory are instances from the same
sort, but they are placed in opposite directions. As a result,
conveyorbelt; and conveyorbelt, (which are connected to
motor, and motory by using belts, respectively) rotate in
opposite directions. For the motor sort, LOCM produces
the FSM given in Fig. 3 (a). This FSM does not present
the difference between these rotations. Neither LOCM?2 fea-
tures this property because event names are the same in both

cases.
start, : facing_right
S @ stop; : facing_right
start; : facing_left
stop; : facing_left
(a) FSM produced by LOCM (b) FSMs produced by our system

Figure 3: Resulting FSMs for the motor sort.

We have extended LOCM to deal with these issues. When
the objects are placed in opposite directions, their effects
may be different as for the two motors given in Fig. 2.
If their features are stated as reflecting a change in their
orientations, our proposed extension can detect the differ-
ence in effects. When the input includes the following facts:
facing_left(motory) and facing_right(motors), the de-
sired output is formed as in Fig. 3 (b). This is achieved by
considering feature differences in the FSMs. We assume that
each different feature of the same object causes a change in
the effects of transitions on this object. For that reason, in
our approach, transitions on objects in changing forms are
assigned different start and end states. Therefore, two FSMs
are created for the motor sort. state; and states are differ-
ent from each other as the same motor object cannot change
its orientation between facing_right and facing_left dur-
ing runtime. Similarly, the end states are different.

Phase-2: Modeling Interactions through Relations

In the second phase of our system, connections among ob-
jects from different sorts are used to determine and model
interactions among objects through events. We analyze four
different input types. First, we investigate the case where
background knowledge on relations is given. In this case, a
forward chaining approach could exploit these relations to
make conclusions. In the second and third analyses, we in-
vestigate how the results change if spatial locality of objects
or temporal locality of events is taken into account without
prior domain knowledge. Finally, we analyze the use of spa-
tial and temporal information together to infer interactions
among objects, tools and machines.

Using a Knowledge-Based Representation To capture
interactions among different state machines, first we en-
coded a knowledge base consisting of predicates repre-

26

senting directly observable connections among objects for
a given tutorial. Our system uses these predicates to rea-
son about interactions among objects. These predicates are
shown in Table 1 along with their direction of connection
and some examples. Note that the knowledge base does not
contain semantic information about the types of objects.

Predicate Examples from Fig. 2 Direction

plugged(motory, plugy)

. X plugged(motors, plug:)
plugged(obji, obja) .
plugged(mizery, solarpanely)

plugged(toastery, solarpanely) obja — obj1

on(ballz, conveyorbelty)
on(obj1, objz) on(balls, conveyorbelts)

on(buckety, log floory)

belt t s belt
belt(objr, objz) elt(motori, conveyorbelty)

belt(motorsa, conveyorbelts) obj1 — obja

facing(obji, obj2) | facing(flashlighty, solarpanel;)

has(plugi, switchy)

has(obja, objz) has(toastery, switcha)
raslotdn, 08Iz has(flashlighty, switchs) i s obi

o obj:
has(remotecontrollery, handley) 1 72

rope(obji, objz) rope(mandrillmotory , buckety)

near(obji, obja)

near(dynamitey, log floory)

Table 1: Types of Connections Among Objects

When these facts are provided, our system applies a
forward chaining mechanism to create a list of connec-
tions for each object in the domain. For example, there
are two applicable connections for toaster; in Fig. 2:
has(toastery, switchs), plugged(toastery, solarpanely).
Thus, the forward chaining mechanism creates two subsets
of connections for toastery as {[switchs], [solarpanel;]}
in the first iteration. The future iterations of forward
chaining use transitivity of these connections to deter-
mine chains of relations. Considering new relations in
the chain, the connection set for toaster; is extended to
{[switchs)], [solarpanely, flashlight;, switchs]}. The ob-
jects that are not represented in the event sequence £ are
removed from the list of connections. For example, objects
solarpanely, plugy, and log floor; are removed from the fi-
nal connection sets. Therefore, the final connection set for
toaster; becomes {[switchs], [flashlight;, switchg]} af-
ter these eliminations.

Finalized connection sets for all objects are used in a pro-
cess to determine interactions among objects through events
given in £. It is important to determine the preconditions as
a complete set of facts to execute an action given a chain of
reactions. However, this is not completely possible because
state information (i.e., states of objects) is not available as an
input. The intuitive idea that we apply here includes the use
of the last effect for each subset of the resulting connection
set. Therefore, consecutive transitions among connected
objects are extracted from £ by using this intuition. For
example, the preconditions of E15 : make_toast(toastery)
can be finalized by using this approach on the resulting con-
nection set {[switchs], [flashlighty, switchs]}. The last
observed event on switchs is E11 : push(balls, switchs)
and the last observed event on the second subset is
Ey light(flashlight,). Hence, the preconditions of

make_toast include both push and light events un-

der the conditions plugged(toastery, solarpanely),
facing(flashlighty, solarpanel;) and has(toastery,
switchs).

Using Spatial Locality of Objects When a knowledge
base presenting connection types is not provided, the only
input to the system is the event sequence. Human players
are given the visual scene of objects from which interac-
tions should be determined. An automated agent should also
extract the relevant location information of objects to rea-
son correctly. Computer vision techniques are useful for this
purpose. The approach that we consider here is using 2D
template matching techniques (Brunelli 2009) followed by
fitting Minimum Bounding Rectangles (MBR) for objects to
capture spatial information (Wood 2008). We assume that
location information for each object is provided including
its horizontal and vertical dimensions in pixels and the coor-
dinate of the left-top corner. By using this information, three
kinds of predicates are extracted: near, tangent and has.
As shown in Fig. 4 (a), this is done by reasoning as,

0 < distance(rec;, recj) < € = near(object;, object;)
distance(rec;, rec;) = 0 = tangent(object;, object;)
rec; C rec; = has(object;, object;)

where rec; and rec; are used for the minimum bounding
rectangles of object; and object;, respectively.

In this model, tangent predicate is similar to exter-
nally connected relation in RCC8 (Randell, Cui, and Cohn
1992) and has predicate is similar to proper part rela-
tion in RCC8. Apart from these, near is a quantitative re-
lation based on distance. In addition to these mereotopo-
logical relations, cardinal directions (Frank 1991) are used
in spatial reasoning as shown in Fig. 4 (b). Specifying
relative object positions makes sense for some of the in-
teractions (e.g., for on(balls, conveyorbelt,), but not for
plugged(motory, plugy)). The effect of relative positions
can be learned by considering cardinal directions.

near(object;, object;):

<€
e M

tangent(object;, object;):

MBR; MBR;
SW S SE

has(object;, object;):
MBR; N :north
3\/ : south
MBR; : west

MBR; E :east
(a) (b)

Figure 4: (a) Spatial relation types between MBRs of objects
(b) Cardinal directions around MBR of canopener object.

Spatial locality information is useful for extracting spa-

27

tial relations. However, connections among remotely located
objects cannot be captured (e.g., belt, rope and remote con-
trolled dynamite).

Using Temporal Locality of Events As spatial reasoning
does not cover all type of relations and has some drawbacks,
we also analyze the results using temporal locality. In this
analysis, there is no knowledge base representing relations
and spatial information. Instead, timing (start time) of each
event F; € £ is included in the input event sequence £. If an
event I; occurs after another event £; in a small interval, we
assume that there is a relation between objects O; 1.,,, and
Oj,l,mj. This is similar to begins relation in Vilain’s Point-
Interval Algebra (Vilain 1982). Events E1, Fs, FEy, Eg, F1o,
FE5 and Ey4 in our example, form a chain reaction as illus-
trated in Fig. 5.

|

E, : push_down(ball, switch,)

E, : start(motor,)

E, : spin_cw(conveyorbelt,)

E, : slide_right(ball,)
E,,: hit(ball,,handle,)
E,;: activate(remotecontroller,)

E, : blow_up(dynamite,)

[F -

Figure 5: Start time of events in a chain reaction. An exam-
ple related event pair: begins(E13, E14).

0

time [s]

The temporal analysis can find several useful relation-
ships for remotely located objects (e.g., remotecontrollery
and dynamite;) when there is a temporal relation.
However, this approach suffers mainly from credit as-
signment problem of choosing the related parame-
ters in an event pair satisfying begins relation (e.g.,
begins(push_down(bally, switchy), start(motory)). Fur-
thermore, objects activated by more than one event cannot
be modeled. For example, toaster; runs when both electric-
ity is provided and switchs is pushed.

Spatio-Temporal Reasoning Integration of spatial and
temporal information takes advantages of both approaches.
Usually the temporal analysis gives better results, although
for certain cases using spatial information is superior. These
cases are listed below:

e If any event satisfying begins pattern has more than one
argument (e.g., push_down(bally, switchy)) and the spa-
tial analysis generates a connection (e.g., switch;) in-
cluding one of these arguments.

e If more than one spatial connection is detected for an ob-
ject (e.g., toastery).

In this approach, cardinal direction calculus is used for
modeling relative positions of interacting objects. This pro-
cedure gives close results as using knowledge base for con-
nections. However, concurrent independent chain reactions
cannot be captured by using the integrated reasoner.

Planning Using Learned Interactions

To show the applicability of the learning results for planning,
we use the example scenario illustrated in Fig. 6 (a). In this
example, the aim is positioning and connecting given objects
in an appropriate way to make a chain reaction which will
cause ball; to fall into the basket (get_in(bally, baskety)).
The chain of possible events involving the given objects and
necessary relations are shown in the resulting plan given in
Fig. 6 (c). These relations must be satisfied as in Fig. 6 (b)
in order to reach the goal state. Here, related is a general
relation between two objects. Depending on the input type
(knowledge base, temporal/spatial information), it could be
represented as a corresponding relation (e.g., has, tangent,
plugged, etc.). When applicable domain actions (i.e., place
an object to a position, flip the orientation of an object, con-
nect_with_belt and connect_with_rope to connect two appli-
cable objects using belt or rope, respectively) for a human
player is provided, our system can devise a plan to construct
the solution in Fig. 6 (b).

(b)

’ spin_ccw 18 ’ q ’
> start(motor;) CoEmy) | slide_left(ball;) —»{ get_in(ball, basket,)

& § F’ §

related(plug;,switch;), facing_right(motor,), related(ball;,conveyorbelt;) related(basket;,conveyorbelt,)

push_down
(bally,switch,)

related(motor).,plug;) related(conveyorbelt;,motor;)

(©)

Figure 6: (a) A sample puzzle (b) The solution of the puzzle
(c) The plan constructed by using the learned interactions.

Experimental Evaluation

To evaluate our system, we have created 25 tutorials in
TIM domain involving interactions among 40 different ob-
ject types. In our experiments, we analyze the results from
the presented four approaches to learn interactions. Four per-
formance metrics are considered: accuracy, precision, recall
and F-score. For each object O; in each tutorial, interactions
are classified as true positives, true negatives, false positives
and false negatives in the following way:

e True positive: an existing valid interaction affecting O; is
found correctly.

o True negative: no nonexistent interaction is found for O;.
e Fulse positive: an invalid interaction is found for O;.

e Fulse negative: an existing valid interaction affecting O;
cannot be found.

The results are shown in Table 2. As expected, the
knowledge-based approach is superior to all the other ap-

28

proaches, although it is inaccurate in some tutorials involv-
ing non-directly observable connections (e.g., dynamite;
and remotecontrollery). The spatial approach suffers from
false positives due to close proximity of unrelated objects
and false negatives due to remotely interacting objects. The
temporal approach has false positives mostly because of
choosing related event parameters incorrectly. The spatio-
temporal approach is more successful at choosing related
event parameters than the temporal approach. Some of the
false positives in both approaches are due to concurrent in-
dependent chain reactions. In addition to the results in Table
2, it has been observed that, using orientational features (F)
improves the overall performance in 23.75% of examples.
When both accuracy and F-score values are considered, the
spatio-temporal approach is shown to give close results to
the knowledge-based approach. These results prove that in-
teractions in the environment can be learned to a great extent
by using only spatial and temporal information without any
prior knowledge on the part relations.

Input Type Accuracy | Precision Recall F-Score
knowledge base 98.75% 100% 98.10% | 99.04%
spatial info. 71.25% 76.19% 71.11% 73.56%
temporal info. 78.13% 69.30% 100% 81.87%
spatio-temporal info. 91.88% 88.29% 100% 93.78%

Table 2: Overall Results

We have also analyzed the plans generated by using the
learned interactions. In this analysis, the generated plans
for 12 TIM puzzles were evaluated with respect to the
number of correctly chosen domain actions: place, flip,
connect_with_belt and connect_with_rope. 91.80% of se-
lected actions by considering learned object models in the
knowledge-based approach are correct while the spatio-
temporal approach gives close results with 83.61% accuracy.

Conclusion

We have presented how interactions among objects are
learned by using a given sequence of events without se-
mantic information on objects, tools and machines. These
learned interactions can later be used by a planner for solv-
ing new puzzles in the Incredible Machine domain. Our
analysis shows that when a knowledge base about relations
is provided, interactions are learned to devise new plans. Our
analysis also indicates that the spatial and the temporal ap-
proaches have some drawbacks when applied separately. An
integrated approach outperforms these two approaches. We
have shown that the integrated approach gives close results
to that of the knowledge-based approach. This is promising
because the spatio-temporal analysis does not require great
amount of knowledge on relations. Furthermore, the system
can solve puzzles created in the game where only a visual in-
put is provided to the user. Currently, inputs are provided in
a text-based event format. Integrating computer vision tech-
niques is left as a future work.

References

Brunelli, R. 2009. Template Matching Techniques in Com-
puter Vision: Theory and Practice. Wiley.

Cresswell, S., and Gregory, P. 2011. Generalised domain
model acquisition from action traces. In Proceedings of the
21st International Conference on Automated Planning and
Scheduling (ICAPS’11), 42—49.

Cresswell, S.; McCluskey, T. L.; and West, M. M. 2009.
Acquisition of object-centred domain models from planning
examples. In Proceedings of the 19th International Confer-
ence on Automated Planning and Scheduling (ICAPS’09),
338-341.

Frank, A. U. 1991. Qualitative spatial reasoning with car-
dinal directions. In Proceedings of the 7th Austrian Confer-
ence on Artificial Intelligence, 157-167.

Randell, D. A.; Cui, Z.; and Cohn, A. G. 1992. A spatial
logic based on regions and connection. In Proceedings of the
3rd International Conference on Principles of Knowledge
Representation and Reasoning (KR’S82), 165-176.
Richardson, N. E. 2008. An Operator Induction Tool Sup-
porting Knowledge Engineering in Planning. Dissertation,
University of Huddersfield.

Shahaf, D. 2007. Logical filtering and learning in partially
observable worlds. Master’s thesis, University of Illinois,
Urbana-Champaign.

Sierra. 1995. The incredible machine 3. [CD-ROM].

Vilain, M. B. 1982. A system for reasoning about time.
In Proceedings of the 2nd National Conference on Artificial
Intelligence (AAAI’82), 197-201.

Wolfe, M. F. 2011. Rube Goldberg: Inventions. Simon &
Schuster.

Wood, J. 2008. Minimum bounding rectangle. In Encyclo-
pedia of GIS. Springer. 660-661.

Wu, K.; Yang, Q.; and Jiang, Y. 2007. ARMS: an automatic
knowledge engineering tool for learning action models for
Al planning. Knowledge Engineering Review 22:135-152.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. Artificial Intelligence 174:1540-1569.

29

