Supplementary data for

Structure-property relationships of poly(2-acrylamido-2-methyl-1-propanesulfonic acid) cryogels

Esra SU, and Oguz OKAY*

Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey

Table of Contents

Figure S1. Gel fraction W_g shown as functions of C_o wt % (triangles) and BAAm mol % (circles). Gelation temperature = -18 °C.

Figure S2. DSC scans of frozen AMPS + BAAm solutions at various concentrations C_o as indicated. The melting temperatures T_m shown in Figure 6a were calculated from the onset temperatures.

Figure S3. Instantaneous modulus E_i of the cryogels formed at various BAAm (upper panel) and monomer concentrations (bottom panel) plotted against the strain ε. The data are before (solid curves) and after the smoothing procedure (blue curves).

Figure S4. Swelling and deswelling of PAMPS hydrogels in water and acetone, respectively. Weight $q_{w,t}$ (a) and volume swelling ratios $q_{v,t}$ (b) are shown as a function of time t. BAAm concentration is indicated. $C_o = 10$ wt %.
Figure S1 (left). Gel fraction W_g shown as functions of C_o wt % (triangles) and BAAsM mol % (circles). Gelation temperature = -18 °C.

Figure S2 (right). DSC scans of frozen AMPS + BAAsM solutions at various monomer concentrations C_o as indicated. The melting temperatures T_m shown in Figure 6a were calculated from the onset temperatures.

Figure S3: Instantaneous modulus E_i of the cryogels formed at various BAAsM (upper panel) and monomer concentrations C_o (bottom panel) plotted against the strain ε. The data are before (solid curves) and after the smoothing procedure (blue curves).
Figure S4. Swelling and deswelling of PAMPS hydrogels in water and acetone, respectively. Weight $q_{w,t}$ (a) and volume swelling ratios $q_{v,t}$ (b) are shown as a function of time t. BAAm concentration is indicated. $C_0 = 10$ wt %.