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ABSTRACT 

 

Hippocampus is a brain region that is important for the 

encoding and retrieval of episodic memories. The spiking 

activity of hippocampal place cells depends strongly on 

spatial location. Their position-dependent firing rate is 

usually modeled as a parametric function of 2-D or 3-D 

space. Yet, no study to date has optimized such functions 

using a rigorous statistical model selection procedure. Here, 

we model the position-dependent firing rate of hippocampal 

place cells using two different series expansion models and 

determine the optimal model type and order. Our results 

indicate that the optimal order is much higher than those used 

in earlier studies. We have observed that the models of some 

cells are reminiscent of the firing patterns of grid cells. These 

findings are important for elucidating the origins of place cell 

activity, for accurate assessments of the amount of position 

information encoded in this activity, and for the inference of 

position using neural decoding algorithms. 

 

Index Terms— Point Process Likelihood Models, Spike 

Train Decoding, Computational Neuroscience, Generalized 

Linear Models, Grid Cells 

 

1. INTRODUCTION 

 

Hippocampal place cells were discovered by O’Keefe and 

Dostrovsky while they were recording single units (neurons) 

from the CA1 region of a rat’s hippocampus [1]. These single 

units seemed to increase their firing rate when the rat was in 

a particular location of the experimental environment and its 

head was pointing toward a particular direction. Subsequent 

studies strongly supported these earlier observations and 

revealed that some hippocampal neurons fired predominantly 

when the subject was located in a particular subregion of the 

environment [2], [3]. Such neurons were called ‘place cells’ 

and the subregion of the environment where they fired was 

called their ‘place field’ or ‘firing field’ [2]. 

Early studies characterized the position-dependent firing 

of the place cells using 2-D ‘firing rate maps’ [3]. These firing 

rate models were obtained as the ratio of 2-D histograms, 

where a spike histogram was divided by a time-in-location 

histogram. The number of pixels in the map represented the 

number of model parameters. Subsequent studies showed that 

it was possible to infer the position of the subject just by 

comparing the ensemble firing rate vector of a group of place 

cells to the average firing rate vectors derived from the cells’ 

firing rate maps [4]. Later studies pointed out that this “spike 

train decoding” could be performed recursively using 

Bayesian statistical methods [5], [6]. In these methods, the 

position-dependent firing rate model was formulated as a 

parametric function of the position coordinates using much 

fewer parameters than the firing rate maps [5]–[7]. While 

these studies demonstrated the success of the Bayesian spike 

train decoding paradigm, the optimality of the firing rate 

models remained unaddressed. The fact that those models 

used as few as five to 10 parameters, compared to the tens to 

hundreds of pixels used in firing rate maps, suggests that they 

may have been content with substantially fewer parameters 

than what would be optimally required. It is therefore the goal 

of the present study to determine the optimal order of those 

parametric firing rate models within a likelihood-based 

neural modeling framework. 

 

2. METHODS 

 

This section starts by explaining the data used in the present 

analysis. Then, the conditional intensity function models of 

place cell spike trains are presented. The log-likelihood 

function of the model parameters and its maximization using 

the Generalized Linear Models are explained. The section 

ends with the presentation of model selection using Akaike’s 

Information Criterion (𝐴𝐼𝐶𝑐). 

 

2.1. Data 

 

Studies that explore the position-dependent spiking of 

hippocampal place cells record the place cell spike trains and 

the position coordinates of the subject’s head simultaneously, 

while the subject exhibits spatial behavior. The spike trains 

are recorded using microelectrode arrays that are chronically 

implanted into the brain. The microwires of the 



microelectrodes are attached to a connector (head stage) that 

interfaces them with the recording system. The position of the 

subject’s head is measured using a video camera [3]. 

The data used here were downloaded from Cajigas [8]. 

These data were collected from a Long-Evans rat that was 

freely foraging for randomly delivered food pellets in an open 

circular environment of 70 cm diameter with 30 cm high walls 

and a fixed visual cue [5], [9], [10]. The rat was well 

familiarized with the environment prior to data collection, 

which implies that place fields were formed and stabilized to 

a large extent. Simultaneous activity of 37 place cells was 

recorded for 23 min using a microelectrode array that was 

implanted into the CA1 region of the hippocampus. The 

sampling rate was 31.25 kHz per electrode. The position of the 

rat’s head was measured at 30 Hz by a camera tracking the 

location of two infrared diodes mounted on the head stage. 

 

2.2. Conditional intensity function models 

 

For a spike train that is recorded between times 𝑡 = 0 and 𝑡 =
𝑇, let 𝜏𝑖, 1 ≤ 𝑖 ≤ 𝑛, denote the spike times, such that 0 <
𝜏1 < 𝜏2 < ⋯ < 𝜏𝑛−1 < 𝜏𝑛 ≤ 𝑇. For 𝑡 ∈ (0, 𝑇], define 𝑁(𝑡) 

as a right-continuous function that jumps 1 at the spike times 

and is constant otherwise [11]. It follows that 𝑁(𝑡 + Δ𝑡) −
𝑁(𝑡) reports the number of spikes observed in the time 

interval [𝑡, 𝑡 + Δ𝑡). By choosing Δ𝑡 sufficiently small, such 

that 𝑁(𝑡 + Δ𝑡) − 𝑁(𝑡) ≤ 1 for all 𝑡 ∈ (0, 𝑇], the conditional 

intensity function (CIF) of the spike train is defined as in Eq. 

1 [12]: 

 

𝜆(𝑡|𝐻𝑡) = 𝑙𝑖𝑚
𝛥𝑡→0

𝑃𝑟(𝑁(𝑡 + 𝛥𝑡) − 𝑁(𝑡) = 1|𝐻𝑡)

𝛥𝑡
. (1) 

 

Here, 𝐻𝑡 = {0 < 𝜏1 < 𝜏2 < ⋯ < 𝜏𝑘 < 𝑡} is the history 

of the spike train up to time 𝑡. The specification of 𝜆(𝑡|𝐻𝑡) 

completely characterizes the stochastic structure of the point 

process [12]. It is assumed that the probability of observing a 

spike in an interval can be arbitrarily small but non-zero. Since 

𝜆(𝑡|𝐻𝑡) is a probability divided by a time interval, 𝜆(𝑡|𝐻𝑡) >
0 at all times. 

 

2.2.1. Bivariate Gaussian and Zernike Polynomials 

 

To model the position-dependent firing of the hippocampal 

place cells, parametric models have been proposed for the 

CIF as a function of the position coordinates 𝑥(𝑡) =
[𝑥1(𝑡), 𝑥2(𝑡)]′ of the rat’s head, without considering the 

activity history [5], [6]. One of these models is the bivariate 

Gaussian function [5]: 

 
𝜆𝐺(𝑡|𝑥(𝑡), 𝜉) 

= 𝑒𝑥𝑝 (𝛼 −
1

2
(�̃�1(𝑡) − 𝜇1)′𝑊−1(�̃�2(𝑡) − 𝜇2)), 

(2) 

 

where, 𝑊 = [
𝜎1

2 0

0 𝜎2
2] is a scale matrix, 𝜇 = [𝜇1, 𝜇2]′ is the 

place field center, 𝛼 determines the firing rate at the place 

field center, 𝜉 = [𝛼, 𝜇, 𝑊] is the parameter vector, �̃�1(𝑡) =
(𝑥1(𝑡) − 𝑐1)/𝑅, �̃�2(𝑡) = (𝑥2(𝑡) − 𝑐2)/𝑅, 𝑅 is the radius of 

the circular environment and 𝑐1 = 𝑐2 = 𝑅. 

Another model is an exponentiated linear combination of 

Zernike polynomials [6], [7]: 

 
𝜆𝑍(𝑡|𝑥(𝑡), 𝑛𝑚𝑎𝑥 , 𝛽) 

= 𝑒𝑥𝑝 ( ∑ ∑ 𝛽𝑛,𝑚𝑍𝑛
𝑚(𝑟(𝑡), 𝜙(𝑡))

𝑛

𝑚=−𝑛

𝑛𝑚𝑎𝑥

𝑛=0

), 
(3) 

 

where, 𝑛𝑚𝑎𝑥 is the order of the polynomial, 𝛽 = {𝛽𝑛,𝑚} is the 

parameter vector and 𝑍𝑛
𝑚(𝑟(𝑡), 𝜙(𝑡)) is given by [13] 

 

𝑍𝑛
𝑚(𝑟(𝑡), 𝜙(𝑡)) = {

𝑅𝑛
𝑚(𝑟(𝑡))𝑐𝑜𝑠(𝑚𝜙(𝑡))   𝑚 ≥ 0

𝑅𝑛
𝑚(𝑟(𝑡))𝑠𝑖𝑛(|𝑚|𝜙(𝑡))   𝑚 < 0,

 (4) 

 

where, 0 ≤ 𝑟(𝑡) ≤ 1, 0 ≤ 𝜙(𝑡) ≤ 2𝜋 and, for (𝑛 − 𝑚) 

even, 

 

𝑅𝑛
𝑚(𝑟(𝑡)) = ∑

(−1)𝑙(𝑛 − 𝑙)!

𝑙! (
𝑛 + 𝑚

2
− 𝑙) ! (

𝑛 − 𝑚
2

− 𝑙) !
𝑟𝑛−2𝑙

(𝑛−|𝑚|)/2

𝑙=0

, (5) 

 

whereas for (𝑛 − 𝑚) odd 𝑅𝑛
𝑚(𝑟(𝑡)) is zero, with m=0, ±1, 

..., ±n, 𝑟(𝑡) = √�̃�1
2(𝑡) + �̃�2

2(𝑡) and  𝜙(𝑡) = 𝑡𝑎𝑛−1(�̃�2(𝑡)/

�̃�1(𝑡)). 

In previous studies the Zernike polynomials model was 

used with 𝑛𝑚𝑎𝑥=3 to keep the model complexity low [6], [7], 

[9], therefore this value was not optimized using a model 

selection criterion in those studies. 

In these models, exponentiation serves a dual purpose: 

first, it ensures that the CIF is always strictly positive 

regardless of the values of the position coordinates or the 

model parameters, second, exponentiation makes the CIF a 

Generalized Linear Model (GLM) with Poisson distribution 

and logarithmic link function [14], [15]. Since GLM is 

available in many statistical data analysis software packages, 

the estimation of the parameters of these models can be readily 

performed using those packages. 

 

2.2.2 Power Series Expansion 

 

The bivariate Gaussian is a particular case of the bivariate 

power series expansion. Just as it is done using the Zernike 

polynomials, the CIF can be formulated as an exponentiated 

linear combination of the terms of the bivariate power series: 

 



𝜆𝑃(𝑡|𝑥(𝑡), 𝑃1, 𝑃2, 𝛽)

= 𝑒𝑥𝑝 ( ∑ ∑ 𝛽𝑝1,𝑝2
�̃�1

𝑝1(𝑡)�̃�2
𝑝2(𝑡)

𝑃2

𝑝2=0

𝑃1

𝑝1=0

), (6) 

 

where, 𝑃1 and 𝑃2 determine the model order and 𝛽 = {𝛽𝑝1,𝑝2
} 

is the parameter vector. �̃�𝑖(𝑡) are obtained from 𝑥𝑖(𝑡), 𝑖 = 1,2, 
as in Section 2.2.1. Previous studies used 𝑃1 = 𝑃2 = 2 [16], 

but this value was not optimized using a model selection 

criterion. 

 

2.3 The log-likelihood function and AICc 

 

Given a CIF 𝜆(𝑡|𝑥(𝑡), 𝛽), the log-likelihood function of 𝛽 

under a given set of spike times is [17]: 

 

𝑙(𝛽|𝑥, 𝑁) = ∑ 𝑙𝑜𝑔(𝜆(𝜏𝑖|𝑥(𝜏𝑖), 𝛽))

𝑁(𝑇)

𝑖=1

− ∫ 𝜆(𝑢|𝑥(𝑢), 𝛽)𝑑𝑢,

𝑇

0

 (7) 

 

where, 𝑥 and 𝑁 denote 𝑥(𝑡) and 𝑁(𝑡) for 𝑡 ∈ (0, 𝑇]. 
Because the position variable is sampled at 30 Hz, 𝑥(𝑡) is 

constant between position sampling times. Let Δ𝑥 denote the 

position sampling period and let 𝑢𝑠 = 𝑠Δ𝑥  denote the position 

sampling times for 𝑠 = 0, 1, … , 𝑆, such that 𝑆Δ𝑥 < 𝑇 ≤
(𝑆 + 1)Δ𝑥. Then the log-likelihood function becomes 

 

𝑙(𝛽|𝑥, 𝑁) = ∑ 𝑐𝑠𝑙𝑜𝑔(𝜆(𝑢𝑠|𝑥(𝑢𝑠), 𝛽)) − Λ𝑠

𝑆

𝑠=0

, (8) 

 

where, 𝑐𝑠 is the number of spikes observed in the interval 

[𝑢𝑠, 𝑢𝑠+1) for 0 ≤ 𝑠 < 𝑆, 𝑐𝑆 is the number of spikes observed 

in the interval [𝑢𝑆, 𝑇), Λ𝑠 = 𝜆(𝑢𝑠|𝑥(𝑢𝑠), 𝛽)Δ𝑥 for 0 ≤ 𝑠 < 𝑆 

and Λ𝑆 = 𝜆(𝑢𝑆|𝑥(𝑢𝑆), 𝛽)(𝑇 − 𝑢𝑆). 

This is the log-likelihood function of a GLM with Poisson 

distribution and logarithmic link function, to within a model-

independent constant term [14], [15]. The maximum 

likelihood estimate (MLE) �̂� of 𝛽 is computed by maximizing 

𝑙(𝛽|𝑥, 𝑁) with respect to 𝛽. We perform this computation 

using the fitglm function of MATLAB (R2021b) 

(MathWorks, Inc., Natick, MA, USA), where the dependent 

variable is the vector 𝑐𝑠, the independent variables are the 

expansion terms in Eq. 3 or Eq. 6 evaluated at 𝑡 = 𝑢𝑠, for 0 ≤
𝑠 ≤ 𝑆, and the offset vector is [𝑜1, … , 𝑜𝑆−1, 𝑜𝑆], where 𝑜𝑠 =
−𝑙𝑜𝑔(Δ𝑥) for 0 ≤ 𝑠 < 𝑆, and 𝑜𝑆 = −𝑙𝑜𝑔(𝑇 − 𝑢𝑆). 

Once �̂� is obtained, the AICc of the model is [18]: 

 

𝐴𝐼𝐶𝑐 = −2𝑙(�̂�|𝑥, 𝑁) + 2𝐾 +
2𝐾(𝐾 + 1)

𝑁(𝑇) − 𝐾 − 1
, (9) 

 

where, 𝐾 is the number of estimated parameters in the model. 

For the Zernike polynomials model, 𝐾 = (𝑛𝑚𝑎𝑥 +

1)(𝑛𝑚𝑎𝑥 + 2)/2, for the power series model, 𝐾 = (𝑃1 +
1)(𝑃2 + 1). 

For each place cell, 𝜆𝑍(𝑡|𝑥(𝑡), 𝑛𝑚𝑎𝑥 , 𝛽) is fit to the spike 

train for 𝑛𝑚𝑎𝑥 = 0, 1, … , 𝑛𝑜𝑝𝑡 + 𝑞 such that 𝐴𝐼𝐶𝑐 is 

minimized at 𝑛𝑜𝑝𝑡 and 𝐴𝐼𝐶𝑐 at 𝑛𝑜𝑝𝑡 + 𝑞 exceeds the 𝐴𝐼𝐶𝑐 at 

𝑛𝑜𝑝𝑡 by at least 10. An 𝐴𝐼𝐶𝑐 difference (𝛥𝐴𝐼𝐶𝑐) of 10 or more 

is considered to indicate that the model with the larger 𝐴𝐼𝐶𝑐 is 

clearly worse than the model with the minimum 𝐴𝐼𝐶𝑐 [18]–

[20]. Zernike polynomials were constructed using the Zernike 

polynomial MATLAB functions of Fricker [21]. 

Similarly, for each place cell, 𝜆𝑃(𝑡|𝑥(𝑡), 𝑃1, 𝑃2, 𝛽) is fit 

to the spike train for 𝑃1 = 0, 1, … , 𝑃1,𝑜𝑝𝑡 + 𝑞1 and 𝑃2 =

0, 1, … , 𝑃2,𝑜𝑝𝑡 + 𝑞2 such that 𝐴𝐼𝐶𝑐 is minimized at 

(𝑃1,𝑜𝑝𝑡 , 𝑃2,𝑜𝑝𝑡) and 𝛥𝐴𝐼𝐶𝑐 at any of (𝑃1,𝑜𝑝𝑡 , 𝑃2,𝑜𝑝𝑡 +

𝑞2), (𝑃1,𝑜𝑝𝑡 + 𝑞1, 𝑃2,𝑜𝑝𝑡) or (𝑃1,𝑜𝑝𝑡 + 𝑞1, 𝑃2,𝑜𝑝𝑡 + 𝑞2) is at 

least 10. For the 37 cells analyzed, the model type and order 

of the 𝐴𝐼𝐶𝑐-best model is determined. 

 

3. RESULTS 

 
Two models are considered equivalent in relative goodness-

of-fit if their 𝛥𝐴𝐼𝐶𝑐 ≤ 4 [18]–[20]. The optimal power series 

and Zernike polynomials models had 𝛥𝐴𝐼𝐶𝑐 ≤ 4 for six cells, 

the optimal power series model was clearly better for 17 cells 

(𝛥𝐴𝐼𝐶𝑐 > 10) and the Zernike polynomials model was 

clearly better for 9 cells. In the remaining five cells, the power 

series model was the better model for two cells. Figure 1 

illustrates the firing rate functions of two cells, where the 

better model is either the power series model (top panels) or 

the Zernike polynomial expansion model (bottom panels). 

The optimal order for the Zernike polynomials model was 

three for only one cell and ranged between three and 25 with 

a median value of 14, indicating that the optimal order of this 

Figure 1. Spike position data and firing rate (Eq. 3 or Eq. 6) plots of 

the cell 36 (top) and cell 23 (bottom). The blue trace in the leftmost 

graphs shows the trajectory of the rat’s head during the experiment. 

Red dots indicate the locations at spike times. The best fitting model 

was the power series expansion model for cell 36 (𝛥𝐴𝐼𝐶𝑐 = 90.7), 

whereas it was the Zernike polynomial expansion model for cell 23 

(𝛥𝐴𝐼𝐶𝑐 = 88.4). The firing rate is plotted at positions within the 

area enclosed by the rat’s trajectory. 



model is much higher than three for almost all place cells. The 

minimum, median and maximum 𝛥𝐴𝐼𝐶𝑐 of the model of order 

three was 0, 228 and 1387, respectively, with 𝛥𝐴𝐼𝐶𝑐 ≤ 4 for 

only cell 34. The number of parameters used per cell ranged 

between 10 and 351, with a median value of 120. 

The optimal order for the power series model was higher 

than 𝑃1 = 𝑃2 = 2 for 36 cells. The minimum, median and 

maximum 𝛥𝐴𝐼𝐶𝑐 of the model of order 𝑃1 = 𝑃2 = 2 was 0, 

326 and 1387, respectively, with 𝛥𝐴𝐼𝐶𝑐 ≤ 4 for only cell 34. 

The median values of 𝑃1,𝑜𝑝𝑡 and 𝑃2,𝑜𝑝𝑡 were 9 and 10, 

respectively. Their minimum values were 2 and 2, while their 

maximum values were 22 and 23, respectively. The number 

of parameters used per cell ranged between 9 and 340, with a 

median value of 135. 

 
4. DISCUSSION AND CONCLUSIONS 

 

Our results show that most hippocampal place cells encode 

more position information than that represented by Zernike 

polynomial expansion models of order 𝑛𝑚𝑎𝑥 = 3 or power 

series expansion models of order 𝑃1 = 𝑃2 = 2. Therefore, 

future place cell analyses and decoding algorithms may be 

constructed using higher order models, which may improve 

the characterization of the position-dependent firing 

properties of these cells and reduce decoding error. 

The power series expansion is computationally simpler to 

construct than the Zernike polynomials expansion. In 

decoding algorithms, the derivative of the log-likelihood 

function needs to be computed, which is relatively easier to 

compute for the power series compared to the Zernike 

polynomials. Our results suggest that the power series 

expansion model was clearly the better model for almost half 

of the place cells. Because of these reasons, we suggest that 

both the power series expansion and the Zernike polynomials 

expansion models may be used to fit place cell spike trains and 

the one with the smaller 𝐴𝐼𝐶𝑐 may be used for decoding. 

In a few cells, as in Fig. 1, the optimal model suggested 

the presence of multiple regularly-spaced local peaks, which 

resemble the hexagonal firing patterns of entorhinal grid cells 

[22]. It has been suggested that place cells may be formed as 

a result of input from grid cells [23]. The prevalence and 

significance of these patterns and their potential link to the 

entorhinal grid cells may be explored in future studies. 
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