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Abstract: This paper introduces a new programming model for distributed systems, 

distributed composite objects (DCO), to meet efficient implementation, transparency, and 

performance demands of distributed applications with cooperating users connected through 

the internet. DCO model incorporates two basic concepts. The first is composition, by which 

an object is partitioned into sub-objects that together constitute a single composite object.

The second one is replication, which extends the object concept to the distributed 

environment. The DCO model allows the representation of an object as a collection of sub-

objects and enhances the object distribution concept by implementing replication at the sub-

object level and only when demanded. DCOBE, a DCO-based programming environment, 

conceals implementation details of the DCO model behind its interface and provides basic 

mechanisms for object composition, distribution and replication of object state, consistency 

management, concurrency control and dynamic deployment of restructured objects. It 

facilitates the design of distributed applications, reducing significantly the overall time for 

development by taking care of distributed system issues. DCOBE, being implemented on 

JVM, provides an environment that works on heterogeneous platforms. A distributed 

application is developed using the Java language in a centralized manner and then made 

available on the internet. Objects are dynamically deployed to requesting client nodes. This 

allows users to deal with various environments that exist in a wide area network and to 

separate applications from the implementation of shared objects. 

Keywords: distributed composite object, distributed object-based systems, composition, 

replication, cooperative computations. 



1.  Introduction 

The increase in the number of interconnected computers and networks has led the community 

of software developers to distribute applications in order to support cooperative work. It has, 

therefore, become important to focus on distributed systems software that provides an 

infrastructure to enable user interactions and collaborations on common goals and shared data. 

Such software facilitates implementation because programs are written on top of a high-level 

execution environment. Programmers are no longer concerned with the complexities of 

distribution and maintenance of shared data, while maintaining acceptable levels of 

interactive performance. 

This paper introduces a new programming model for distributed systems, distributed 

composite objects (DCO) [1], to meet efficient implementation, transparency, fault tolerance 

and performance demands of cooperative applications with users connected through the 

internet. The distributed composite object model incorporates two basic concepts. The first 

concept is composition, by which an object is partitioned into sub-objects (SO) that together 

constitute a single composite object (CO). The second basic concept is replication.

Replication extends the object concept to the distributed environment. Sub-objects of a 

composite object are replicated on different address spaces to ensure availability and quick 

local access. Decomposition of an object into sub-objects reduces the granularity of 

replication.  

To a client, a DCO appears to be a local object. However, the distributed clients of a DCO 

are, in fact, each associated with local copies of one or more sub-objects and the set of 

replicated sub-objects distributed over multiple address spaces form a single distributed 

composite object. 



A software layer, Distributed Composite Object Based Environment (DCOBE) [2] provides a 

programming framework that is based on the DCO model. DCOBE is a middleware built on 

Java Virtual Machine and presents functionalities that facilitate the development of internet 

wide distributed applications, through a well-defined interface. An important feature of the 

programming framework is transparency. Users of DCOs acquire the benefits of a centralized 

environment as DCOBE takes care of issues such as distribution and replication of object 

state, management of consistency, and concurrency control. They are automatically 

programmed separately from the application code, thus enabling developers to concentrate on 

the semantics of the application they are working on.  

The paper is organized into eleven sections. Related work is explained in Section 2. Section 3 

presents object composition and replication concepts. The distributed composite object model 

is described in Section 4. Management of sub-objects is explained in Section 5. Section 6 

presents DCOBE architecture, while Section 7 explains the creation steps of a distributed 

composite object. An automatic class generator is presented in Section 8. A sample 

application is described in Section 9. Section 10 provides an evaluation of DCOBE. Finally, 

Section 11 presents our conclusion and plans for future work. 

2.  Related Work 

The DCO model has benefited from the large amount of research dedicated to consistency 

strategies on shared memory systems [3]. DCOBE provides a flexible framework for 

associating various replication coherence protocols for different sub-objects of a composite 

object. 

The majority of work on distributed object models follows an approach that allows clients to 

transparently access an object through remote method invocations. Related work includes 

DCOM [4], CORBA [5] and JAVA RMI [6]. In all cases, an object is presented to remote 



clients by means of a proxy that is installed at the client and offers the same interface as the 

actual object. Remote method invocation basically uses the same technique as RPC [7] and, 

when combined with object serialization (JAVA RMI), it forms a powerful technique for 

transparently invoking remote objects. The main difference with all these models to our work 

is that they provide remote objects, rather than physically distributed objects and, hence, fail 

to handle complex distribution issues such as replication and concurrency control. 

Smart proxies [8,9], on the other hand, add more functionality into stubs, e.g., adding caching 

mechanisms to reduce communication overhead and latencies, or forwarding method 

invocations to some member of a replica group for the purpose of load balancing or fault 

tolerance. Current smart proxy implementations usually either modify the middleware such 

that compatibility is no longer maintained, or they use means such as portable interceptors. In 

the latter case, a signifcant overhead in remote invocation mechanisms is introduced by 

adding additional levels of indirection on the client side. Smart proxies stay closer at the 

traditional client-server structure.  

An alternative approach is to fully encapsulate distribution in an object, which leads to a 

model of partitioned objects. The partitioned object model, used by Spring [10], SOS [11], 

Globe [12] and AspectIX [13] allows combining multiple distributed parts into a single 

distributed object with a single identity.  

A model called Subcontract is offered in Spring [14]. The Spring Subcontract structures an 

object around the so-called object representation, a table of method entries and a Subcontract. 

Spring offers two replication Subcontracts; the replicon and caching Subcontracts. The 

replicon is more basic; it binds each client to a replica and permits multi invocation on 

replicas. The caching Subcontract is more elaborate. However, as a general mechanism, it is 

too limited. Subcontracts do not provide generic support for a variety of consistency protocols 



and other requirements inherent for object cashing. For example, it is hard to develop 

Subcontracts that keep a group of objects shared by several clients consistent.   

Our work has been influenced closely by the SOS, AspectIX and Globe projects, which 

support state distribution through physically distributed shared objects. The SOS system is 

based on the Fragmented Object (FO) model [15]. The FO model is a structure for distributed 

objects that naturally extends the proxy principle. FO is a set of fragment objects local to an 

address space, connected together by a connective object. Fragments export the FO interface, 

while connective objects implement the interactions between fragments. A connective object 

embodies the required consistency and coherence properties of the fragmented object and 

provides an internal communication substrate for the FO. In this view of FO, a given address 

space appears only to contain local references. However, the lowest level of the FO structure, 

the connective object, encapsulates communication facilities, which are equivalent to remote 

invocation or message passing mechanisms. Even though the work hides the cooperation 

between fragments of a FO from the clients, the programmer of the FO is responsible to 

control the details of the cooperation. He has to decide if a fragment locally implements the 

service or is just a stub to a remote server fragment. FO hides data replication and consistency 

management from the user of an object, but those details are expected to be implemented by 

the developer of an object.  

AspectIX describes a middleware system that integrates the concept of fragmented objects 

into a CORBA environment. Their fragmented objects support implicit binding using the 

ORB’s marshalling mechanism by defining customized IOR (Interoperable Object Reference) 

profiles, while full interoperability with traditional CORBA applications is maintained.  

One of the key concepts of the Globe system is its model of Distributed Shared Objects 

(DSOs) [16]. In Globe, processes interact and communicate through DSOs. Each shared 

object offers one or more interfaces. A Globe object is physically distributed, meaning that its 



state might be partitioned and replicated across multiple machines at the same time. However, 

all implementation aspects are part of the object and hidden behind its interface. For an object 

invocation to be possible, a process has to bind to an object, which results in placement of a 

local object in the client’s address space. A local object may implement an interface by 

forwarding all method invocations, as in RPC client stubs, or through operations on a replica 

of the object state. Local objects are partitioned into sub-objects, which implement 

distribution issues such as replication and communication, allowing object developers to 

concentrate on the semantics of the object.  

SOS, Globe and AspectIX projects provide similar frameworks for partitioning of an object 

and implementations of replicating local objects. The major difference between our work and 

SOS and Globe is that, they both do not support the composite object model and caching is 

restricted to the state of the entire object. However, the DCO model allows the representation 

of an object as a collection of sub-objects and enhances the object distribution concept by 

implementing replication at the sub-object level, providing a finer granularity. To the best of 

our knowledge, there is no other programming framework that supports replication at the sub-

object level. Also, in SOS and Globe, deciding where and when to create a replica is left to 

the application. Even though Globe provides a general mechanism for associating replication 

strategies with objects, at present, a developer has to write his own implementation of a 

replication sub-object. DCOBE, in contrast, replicates sub-objects at all sites they are used 

and management of consistency of state and concurrency control is transparent to both object 

developers and users. Another essential difference is the binding mechanism used for getting 

access to an object. Dynamic loading of sub-objects is a feature that is not supported by either 

of the projects. Such implicit binding is a prerequisite for true object-based programming as 

object references have to be  transparently passed around an application. 

 



3. Object Composition and Replication 

The distributed composite object model includes two basic concepts: composition and 

replication. Composition allows aggregating multiple sub-objects into a single composite 

object. Replication extends the composite object concept to the distributed environment. Sub-

objects of a composite object are replicated on different address spaces when they are 

referenced, rather than having the whole composite object being accessed remotely.    This 

section elaborates on object composition and replication concepts. 

3.1 Object Composition 

Composition, also referenced as aggregation, is a mechanism for forming an object whole 

using other objects as its parts. It reduces complexity by treating many objects as one object. 

Three basic properties of composition are identified as the following:    

• Configuration – whether or not the parts bear a particular functional or structural 

relationship to one another or to the object they constitute. 

• Homeomerous – whether or not the parts are of the same kind as the whole. 

• Invariance – whether or not the parts can be separated from the whole.  

 

To clarify the structural connections between an object whole and its parts, [17] describes in 

detail six different kinds of composition, based on particular combinations of those basic 

properties. Composite objects are objects that have an externally-distinct structure, and this 

structure can be addressed via the public interface of the composite object. The objects that 

comprise a composite   object are referred to as component objects (sub-objects in this paper). 

A composite object has a single root object (container object in this paper), and the root 

references multiple children objects, each through an instance variable. Each child object can 

in turn reference its own children objects, again through instance variables. The instance that 



constitutes a composite object belongs to classes that are also organized in a hierarchy. The 

composition hierarchy can span an arbitrary number of levels. If a composite object design 

has component objects that are themselves composite objects, a two-level composition 

hierarchy is created. This hierarchy could be repeated at several layers of composition. 

 

Representing an object through the composition of several sub-objects can provide benefits to 

applications by improving manageability and performance. As it allows larger objects to be 

partitioned into smaller and more manageable units, the object designer gains the ability to 

apply the “divide and conquer” approach to data management. Furthermore, by limiting the 

amount of data to be examined or operated on, it provides performance benefits as well. 

 

3.2 Replication 

Distributed replication allows for multiple copies of an object to reside in several address 

spaces.  It is, in general,  an important approach to increasing  availability, achieving fault-

tolerance, and improving  efficiency of a system. Replication reduces the cost of read 

operations that do not alter the object state, since it is possible to simultaneously execute such 

operations locally on multiple nodes. However, operations that modify the  state of the object 

become more expensive because of coherence operations to maintain consistency.  

Read-Replication : multiple readers/single writer strategy divides object invocations into two 

types: read accesses that do not change the state of the object and write accesses that modify 

the object. Thus,  either one of the following two situations are allowed for at any time: 

• multiple nodes  with read-only replicas of the shared object - the object is replicated on 

two or more nodes and each node has read access to its copy while none of the nodes 

have write access, or 



• one node with a read/write replica - no two nodes may be modifying separate copies of 

an object at the same time and any node that requests read access to an object is not 

allowed to if a writer to the object already exists. 

As stated above, replication improves performance by allowing concurrent access to replicas 

at multiple nodes. However, if the concurrent accesses are not controlled, they may be 

executed in an order different from that expected. Memory coherence requires two conditions: 

a write must eventually be made visible to all nodes and writes to the same location must 

appear to be seen in the same order by all nodes[18]. Thus, to maintain the coherence of 

replicated objects, a mechanism that controls or synchronizes the accesses is necessary. A 

consistency model defines a specific kind of coherence provided by the system while a 

coherency protocol is responsible for managing object data so that the required level of 

consistency is actually provided. Consistency models define the order in which accesses to 

replicated data are seen by interested parties. A number of different models have been 

proposed in the literature, such as sequential consistency, causal consistency, PRAM 

consistency, weak consistency, release consistency, and entry consistency [18]. Consistency 

models can be divided into two major categories: strict models and relaxed models. In 

general, the stronger the consistency level, the higher is the latency its implementation 

produces [19].  

The coherency protocol is responsible for managing replicated objects so that the conditions 

to provide consistency are satisfied. The main issue is the synchronization of write accesses to 

objects in such a way as to insure no application reads old data once a write access has been 

completed on some replica of the object. There are two approaches: write-update and write 

invalidate [20]. Write-update broadcasts the effects of all write accesses to all nodes that have 

replicas of the object. This approach is usually considered to be expensive since a broadcast is 



needed on every write. In the write-invalidate scheme, on the other hand, invalidations are 

sent and modifications are requested. The basic concept is to send an invalidation message to 

all nodes that hold a replica before doing an update. Applications ask for updates as they need 

them.  

4. Distributed Composite Object Model 

The distributed composite object model allows applications to describe and to access shared 

data in terms of objects whose implementation details are embedded in several sub-objects. 

Each sub-object is either an elementary object with a centralized representation, or may itself 

be a composite object that comprises of further sub-objects. Several sub-objects are grouped 

together in a container object to form a composite object, as depicted in Figure-1. The 

developer of the composite object distributes the object’s state between multiple sub-objects 

and uses them to implement the features of the composite object. The clients see the interface, 

which the developer has defined for the composite object, rather than the interfaces from the 

collection of embedded sub-objects. Methods in the interface of the composite object issue 

calls to sub-objects in order to carry out the functionality expected of it. Therefore, from the 

client’s point of view, a composite object is a single shared object that has only one access 

point, the public interface it exports. He is not aware of its internal composition and, hence, 

has no explicit access to the sub-objects that make up their states. This restriction is an 

important aspect of our model and allows the object developer to dynamically adapt 

composite objects to changing conditions. The developer may add new sub-objects to a 

composite object to extend its design, remove existing ones or modify the implementation of 

some, without affecting the interface of the composite object whose methods client 

applications invoke. Thus, dynamic adaptation of the object over time becomes possible, 

without affecting the applications that use it. 



The proposed model relies on replication. Sub-objects of a composite object are replicated on 

different address spaces to ensure availability and quick local access. A replica encapsulates a 

local copy of the replicated state in the address space of the client and offers an interface for 

internal access, to manipulate this state. A composite object is first created on a single address 

space with its constituent sub-objects, as on Site2 in Figure-1. When a client application on 

another address space invokes an operation on the composite object which triggers a method 

of a particular sub-object, the state of that sub-object only, rather than that of the whole 

composite object, is copied to the client’s environment. With this replication scheme, sub-

objects are dynamically replicated on remote address spaces upon method invocation 

requests. The set of sub-objects replicated on a certain address space represents the composite 

object on that site. Thus, the state of a composite object is physically distributed over several 

address spaces. Copies of parts of, or whole, of a composite object can reside on multiple 

address spaces simultaneously. We call this conceptual representation over multiple address 

spaces a distributed composite object (DCO). Figure-2 shows a DCO that spreads over four 

address spaces. It is initially created on Site2 with all its sub-objects (SO1, SO2, and SO3), 

and is later replicated on three other sites, with only SO1 on Site1, SO2 and SO3 on Site3, and 

SO1 and SO3 on Site4. These four sites contribute to the representation of the DCO. The set 

of address spaces on which a DCO resides evolves dynamically as client applications start 

interactions on the target composite object. 

Clients of a DCO are aware neither of its composition, nor of its distribution. As the objects in 

our model are passive, a client accesses a DCO by invoking methods in the interface provided 

by the composite object. Invocations are ordinary local object invocations as the client has a 

local implementation of the object in its address space. Multiple clients may access the same 

DCO simultaneously. When the state of an object is modified, all replicas are kept consistent 

through consistency management protocols that involve remote interactions. 



We need to distinguish the programmer who is the composite object developer, and the user, 

the client of the composite object. The model we propose allows clients to perform operations 

on distributed composite objects without needing to know that there exist several sub-objects 

inside and they are actually distributed physically on several sites. The object developer is 

responsible of the design of the inner structure of the composite object. The nature of the 

application will determine the structural connections between the composite object and its 

parts. The kinds of composition referred to in Section 3.1 provide a practical guide to how a 

programmer should partition an object into sub-objects. An important key to better 

performance would be partitioning an object into discrete sub-objects because a chain of 

method calls between sub-objects will require each target sub-object to be copied on the local 

host, thus degrading performance. 

The following is a summary of the beneficial features of the DCO model: 

Transparency: DCO model, with the support of the DCOBE middleware, conceals all 

implementation details behind its interface, as expected of the object-oriented programming 

paradigm. Both the developer and clients of a DCO are isolated from issues dealing with: 

• distribution of object state, 

• replication of object state, 

• management of consistency of object state,  

• management of concurrency control, and 

• the underlying communication technology. 

Dynamic adaptation: DCO model builds on the concept of separation of interface and 

implementation. Clients of objects depend on interfaces, not on implementations. This allows 

for modifications on the internal composition of a DCO without affecting users that are 



presently bound to the object. Thus, object implementations may dynamically evolve to adapt 

themselves to changes in the environment. 

Dynamic deployment: Objects are dynamically deployed to requesting addresses from a 

machine that holds a valid representation; thus object installation prior to execution is not 

required. 

Reduced response time: Local accesses on sub-object replicas result in reduced method 

invocation time, especially for read or write access requests issued after the completion of the 

first write invocation, which inevitably introduces overhead due to getting access permission, 

concurrency control and consistency maintenance actions. 

Conserved bandwidth consumption: Due to its replication policy, communication cost of a 

DCO is lower when compared to remote method invocation mechanisms. In addition, 

replication of only target sub-objects, not the entire object, and only when demanded, helps in 

conservation of bandwidth consumption. 

Ease of use: Use of DCO incurs no additional task on the application developer as 

programming steps to create a DCO are very similar to those needed for a regular object. 

 

4.1 Application Domain of DCO Model  

Over the past decade, an evident shift from individuals to groups engaged in collaborative 

work has been observed in the design and implementation of computer systems. Collaborative 

information management, sharing and exchange on the WWW, collaborative design work of 

engineering teams, and collaborative authoring and editing  are a few of such computer 

systems which involve work that may be distributed either physically, carried out at different 

places, or temporally, carried out at different times. In parallel with the trend, there is a 

critical need for tools supporting collaboration among distributed users with similar interests, 



or who are part of the same group with some common purpose. The research field Computer 

Supported Collaborative Work (CSCW) focuses on techniques and tools to provide 

individuals working on related tasks with support to make distributed work more effective. 

Collaborative tools themselves need to be distributed and dynamic, and support the discovery 

and dissemination of information. The object composition and replication characteristics of 

the DCO model, together with the DCOBE framework, make it particularly suitable for the 

design and implementation of such computer systems, where participants require to access 

and share information without having to rely on any centralized repositories. Collaborative 

authoring and editing, distributed CAD packages, distributed information retrieval systems, 

and distributed news facility are a few examples that would benefit the features of the 

proposed model. 

5.  Management of Sub-objects 

A DCO is structured as a collection of composite objects, each with a set of replicated sub-

objects, which communicate with each other on issues for replication and consistency of state. 

We have defined an enhanced object structure to deal with implementation issues and thus 

provide the object developer and its clients with complete transparency of distribution, 

replication and consistency management. As illustrated in Figure-3, this structure includes 

two intermediate objects, namely, a connective object and a control object, which are inserted 

between the container object and each target sub-object. In Figure-3, sub-objects have “sub_”, 

control objects have “control_” and connective objects have “connective_” prefixes. 

Connective and control objects cooperate to enable client invocations on DCOs. A connective 

object is responsible for dynamic client to object binding which results in the placement of a 

valid replica of a sub-object in the caller's address space. A control object is a wrapper that 

controls accesses to its associated replica. It implements coherence protocols to ensure 



consistency of sub-object state. A client object invocation follows a path through these 

intermediate objects to reach the target sub-object after certain control actions.  

An Automatic Class Generator (ACG) that has been developed in the context of this work is 

used to generate classes for connective and control objects from interface descriptions of sub-

objects. Hence, the developer has to focus only on the design of the sub-objects that make up 

a composite object. The others are generated automatically, according to the coherence 

protocol specified by the developer. 

5.1 Connective Object 

The connective object is the target of all local client invocation requests. Structurally, it is an 

object with the same abstract type and implements the same interface as the sub-object it is 

associated with. For a client invocation to be possible, it is necessary that the client bind to 

that object, that is, a local object implementing the object interface be installed in the client's 

address space. Each connective object contains a reference that points to the control object of 

the referenced sub-object. It also contains a unique object-id associated with the sub-object 

which allows it to be located and copied on the local host. If the reference is bound, it means 

the control object is already present. The connective object forwards the invocation request to 

the control object. It is the control object's task to make a valid replica of the sub-object 

available locally. In case the reference is null, through a call to the DCOBE middleware 

system a copy of the control object is fetched and the reference is updated. 

In order for a sub-object to be copied to a site for the first time, its class definitions should be 

made available. They may be loaded prior to the start of the application or the action may be 

postponed to execution time, to the point in time when they are actually needed. DCOBE 

allows class definitions to be loaded at runtime, by means of Java’s dynamic class loading 

facility through the system calls described in detail in Section 6.3. 

 



The replication policy is independent of the frequency with which a sub-object gets 

referenced. Therefore, those sub-objects which are called very infrequently are copied on the 

local host as well. Once copied, DCOBE makes no attempt to remove a sub-object and 

completely relies on the Java garbage collector to clear objects which are no longer 

referenced. It would be interesting to keep statistics of the frequency with which a sub-object 

gets referenced to help the object developer to refine his object design, which would 

consequently lead to better system performance.  Such an enhancement to the system may be 

considered as future work. 

 

5.2 Control Object 

The control object is located between the connective object and the local implementation of 

the sub-object and exports the same interface as the sub-object. It receives both local and 

remote invocation requests and directs them to the local sub-object. Due to its composite and 

distributed nature, the state of a DCO is the union of the states of its sub-objects. Consistency 

problems arise as sub-object replicas on different address spaces are modified. The control 

object is responsible for the management of consistency of object state and concurrency 

control to ensure mutually exclusive access. It implements certain coherence and access 

synchronization protocols [21] before actually allowing a method invocation request to 

execute on the sub-object it is associated with. The system implements entry consistency [22] 

to maintain the coherence of shared objects. In an entry consistent environment, object 

invocations that modify the object (write accesses) require synchronization.  Two 

synchronization operations are defined to differentiate between entry and exit to critical 

regions which enclose write accesses to shared objects: an acquire operation tells the system 

that a critical region is about to be entered and a release operation indicates that a critical 

region has just been exited. Under this model, each replicated object is associated with a 



synchronization variable, actually a lock, that must be explictly acquired and released to 

enforce concurrent accesses to happen sequentially. 

There are two approaches in the synchronization of write accesses to objects so that no client 

reads old data once a write access has been completed on some replica: write-update and 

write-invalidate [3]. Write-update broadcasts the effects of all write accesses to all address 

spaces that hold replicas of the target object. In the write-invalidate scheme, on the other 

hand, an invalidation message is sent to all address spaces that hold a replica before doing an 

update. Upon receipt of an invalidation message, objects are simply marked invalid, but not 

immediately retrieved. Clients ask for updates as they need them. This increases latency on 

subsequent accesses, but decreases bandwidth consumption if the object is not accessed again 

or is invalidated several times before the next access. DCOBE implements both coherence 

protocols. The developer chooses the one which suits the requirements of his application the 

best and the control object is generated accordingly by the ACG.  

Each sub-object in the system has a single owner, a unique node, which is either the creator of 

the object or holds the only writable copy of the object. The owner node also maintains a list 

of nodes, namely the valid-list, which holds valid replicas of the sub-object. 

The interface of a control object is divided into two parts. The first part is identical to that of 

the sub-object and its methods are called by the connective object to access the sub-object 

replica. The second part is a standard upcall interface that is used to implement the coherence 

and access synchronization protocols. Control objects on different sites communicate through 

this interface to keep the object state consistent. 

The control object implements a method invocation request in three main steps. They are 

briefly explained below, omitting specific details. 



Step 1. Get access permission: This step involves a set of actions, possibly including 

communication with remote control objects, to obtain access permission to the sub-object. It 

is blocking in nature, and once activity is allowed, it proceeds to Step 2, where the 

corresponding method of the sub-object replica is invoked. The control object recognizes the 

type of the operation the method invocation involves; either a write (W) operation that 

modifies the state of the object or a read (R) operation that does not, and proceeds with this 

information. The object developer specifies the access type of each method with an 

appropriate symbol (R/W) that follows the method name in the interface declaration of a sub-

object. For an R-type of invocation request, the actions are similar for both types of coherence 

protocols. They result in the placement of a valid sub-object copy in the local address space if 

one is not already present (a local implementation is not created before it receives its first call 

or the current replica may have been invalidated) and return a permission to proceed, if 

currently there is no active writer to the object and the list of pending requests is empty. The 

client is added to the valid-list of the target sub-object. If those conditions do not hold, the 

client is suspended temporarily and the request is queued in a waiting list. 

A W-type of invocation request is queued for both coherence protocols, if a writer is already 

active or the pending list of requests is not empty. Otherwise, for the write-invalidate 

protocol, all reader clients in the valid list are sent an invalidation message and the valid list is 

purged. The operation returns a valid copy of the target sub-object on the caller's address 

space, if not already present, along with its ownership granting write access permission to the 

invoker. In the implementation of the write-update protocol, however, no invalidation takes 

place but the valid list is returned to the caller along with an access permission to enable 

further update operations on those replicas on remote addresses through remote invocation 

requests directed to nodes on the valid list. 



Step 2.  Invoke method: This is the step when the method invocation on the local sub-object 

takes place. After receiving permission to access the target sub-object, the control object 

issues the call which it had received from the connective object. If the implementation of the 

method of a sub-object further includes a method invocation on another sub-object, it is 

forwarded to the connective object of that sub-object and the same method invocation steps 

are repeated. 

Step 3. Complete invocation: This step completes the method invocation after issuing update 

messages, which involve method call requests to remote replicas on the valid list, to meet the 

requirements of write-update protocol. After the call returns, the control object activates 

invocation requests that have meanwhile blocked on the object. The classical multiple-

reader/single-writer scheme is implemented, with waiting readers given priority over waiting 

writers after a write access completes and a waiting writer given priority over waiting readers 

after the last read access completes. The system does not deal with situations that would result 

in starvation due to programmer errors, such as a non returning method call. 

6.  Distributed Composite Object Based Environment: DCOBE 

The main objective of DCOBE is to present a convenient environment for the realization of 

distributed computations that utilize the DCO model. It provides a DCO-based programming 

environment, as depicted in Figure-4, which hosts various numbers of applications dispersed 

on several nodes, interacting and collaborating on common goals and shared data. DCOBE 

conceals implementation details of the DCO model behind its interface, allowing users to 

concentrate merely on application logic rather than on issues dealing with activity on a 

distributed environment. It provides the basic mechanisms for object composition, distribution 

and replication of object state, consistency management, concurrency control and dynamic 

deployment of restructured objects. It is a middleware architecture that is implemented on a 



network of heterogeneous computers, each capable of executing Java Virtual Machine (JVM). 

Its place in the software hierarchy is between a Java application and the JVM.  

DCOBE architecture consists of two main components that handle the core functionalities of 

the middleware: a system-wide coordinator (DCOBE Coordinator–DC) and a server 

component (DCOBE Server-DS) on each node that participates a DCO-based application in 

the distributed environment. Java RMI [23] is used as the communication mechanism for the 

interaction between the coordinator and the servers on different nodes. Figure-5 illustrates the 

architecture of DCOBE and the inner composition of its components.  

6.1 DCOBE Coordinator – DC 

DC is the component that initializes the DCO based execution environment and coordinates 

the interaction of DCOBE Servers. It runs as a separate process, which is explicitly started at 

a predefined network address such that it may be accessible by all servers that participate in 

the environment. It has a remotely accessible interface that allows distributed DS’s to request 

services from it. When a DS is started, DC supervises a handshake protocol ensuring that each 

DS is initialized knowing the address of every other DS participating.  

Being unique makes DC very critical as it plays a major role in the system. In order to protect 

the system against failures, we have added a secondary DC process as a backup unit to the 

DCOBE architecture, component BDC in Figure-4. It is initiated on another node and 

monitors the primary DC continuously, duplicating its information base. If the primary fails, 

the backup recognizes the situation and takes over, and introduces itself as the current primary 

DC by notifying all servers. 

6.2 DCOBE Server – DS 

Its main goal is provide execution support for DCO objects. A DS is actually instantiated 

within the context of each application and provides facilities that implement the distributed 



composite object model. As a server is integrated in each client application, the application 

can directly perform method calls as both are in the same address space. Servers on remote 

address spaces cooperate to process application requests and to ensure consistency of the 

replicated DCO state.  

6.3 DCOBE Services 

DCOBE may provide service to several groups of users working on different applications. 

Location transparency is an important issue in a distributed environment. DCOBE allows 

applications to associate symbolic names to objects that are independent of location. A name 

service resolves user-defined names to obj_id’s which are globally unique and location 

independent. A location service relates each obj_id with the physical address where it can be 

contacted. Core functionalities of DCOBE are briefly described below: 

Start a new application: Starting a new application requires the creation of a DCOBE server 

object at the requesting node. DC registers the new server under a unique server_id in a 

server-access table and broadcasts the ‘server_id, node_address’ information pair to all 

current servers. The content of the server-access table is replicated at each node, providing 

the information for servers to communicate directly with one another. 

DCOBE_Server dcobeServer = new DCOBE_Server(); 

Create and register a new DCO: A new DCO creation includes allocation of memory for 

the composite object on the creator’s node and its registration within the system. A connective 

and a control object are created for each sub-object. DC associates the DCO with a unique 

obj_id that is used as the object reference on further access requests. The creation process 

completes with the registration of the previously created DCO under a user-defined name. 

This facility enables applications to associate symbolic names to objects, which are later used 

as reference in subsequent look-up operations from remote applications. An attempt to 



register under a name that already exists, results in an error return, which alerts the 

programmer to repeat the operation with another symbolic name. 

DCO_Class my_dco = new DCO_Class); 

register(my_dco,“dco_name”);  

Execute a method call on a DCO: A replica of a target sub-object may or may not be present 

on a node at the time of method invocation request. DCOBE handles each case differently. 

Case 1: This is the case where the requesting application is the creator of the DCO or has 

already received a local replica on its address space. The first step involves inquiring the 

existence of the control object that belongs to the sub-object, the target of the method call. 

This is necessary because replication of a DCO involves copying of the connective object 

only. The control objects and sub-objects are not copied until a particular method call requires 

their presence on the node. This mode of operation decreases bandwidth consumption, as 

certain sub-objects may never receive method calls on particular nodes, making their presence 

on those nodes unnecessary. If the control object of the target sub-object does not exist, a 

copy of the control object and the sub-object are retrieved from the server that holds a valid 

replica. The control object then proceeds with the method invocation process as described in 

Section 5.2 

Case 2: This is the case where an application issues a method call for the first time, on a DCO 

which has been created by a remote application. As stated before, a method call may proceed 

only if a container object for the target is present on the current address space. This requires 

the availability of DCO class definitions in order to be able to create a container object of the 

specified type. Class definitions may be statically loaded prior to the start of the application, 

or they may be dynamically loaded during execution time, at the point where they are needed, 

using Java’s dynamic class loading [24] facility. In DCOBE, users can implement their 



applications using either one of these approaches. However, the first one imposes additional 

effort on the users and conflicts with distribution transparency. For the alternative approach, 

the creator of a DCO registers its class name and the URL location where the class definitions 

may be loaded with a DCOBE call to enable dynamic class loading (1). 

register_class(“DCO_Class”,http://guray.hho.edu.tr/dco_classes/); (1) 

The remote application loads class definitions with a DCOBE call that requires the name of 

the class as a parameter (2). 

load_class(“DCO_Class”);        (2) 

Next, to bind to the DCO, it issues a look-up request (3) for the remotely created DCO 

through its user-defined name. This call returns replicas of the container and the connective 

objects of the DCO to the new address space. From this point on, the method invocation 

process proceeds as described above in Case 1. 

lookup(“dco_name”);         (3) 

Modify the structure of a DCO: The structure of a DCO may be dynamically altered by 

addition of new sub-objects, or modification or complete removal of existing ones. The 

application which has created the DCO halts its execution temporarily and restarts with the 

new class definitions of the DCO. Meanwhile, distributed clients of the DCO continue their 

execution independently, possible using the older version of the object. The developer 

application reregisters the restructured DCO under its previous symbolic name with which it 

is known throughout the distributed system (4). 

 re_register(my_dco,“dco_name”);       (4) 

This call notifies the DC to update its records associated with the DCO and to return a user 

list of the object. The local DS multicasts control messages to each DS on the list, which in 

turn, inform client applications of the object modification. An application is expected to 

http://guray.hho.edu.tr/my_dco_classes/


invoke the following method calls (5, 6) to reload the new class definitions and have the 

container and connective objects of each sub-object to be copied to its address space. 

However, an application may choose to act differently, depending on its use of the DCO. 

 load_class(“DCO_Class”);       (5) 

lookup(“dco_name”);        (6) 

Terminate an application: An application informs the system of its termination with the 

following DCOBE call (7); 

leave_system();        (7) 

The coordinator transfers the ownership of any object the terminating application holds to 

another that is on the user list of the associated object. After removing representative data 

from several tables, the registration of the server is cleared.  

7. Creation and Access of a Distributed Composite Object  

In this section, we will demonstrate with an example how a DCO is created and how it is 

accessed from a remote Java application. As DCOBE middleware supports the DCO model 

directly, no language extensions or system support classes are required during coding. The 

developer generates code as he does for a conventional centralized application. As an 

example, we assume a DCO class named Employee, whose state and implementation is 

distributed between three sub-objects: person, account, and profession. Figure-6 

shows the class definition a developer would prepare for the container object  employee,

identifying its composite structure and its user interface. As explained before, the user of the 

object has no direct contact with its sub-objects. These objects are accessed over the methods 

exported by the container class interface. In this example, for clarity, we have included 

methods whose contents are extremely simplified as to include only a single method 



invocation on the target sub-object. Actually, there is no restriction on the semantics of the 

methods of a DCO. 

Next, the class definitions and interface descriptions for each sub-object are prepared by the 

object developer. Class definitions are typical Java definitions, except for the prefix ‘Sub_’

that precedes the name of the class. Figure-7 shows the code for sub-object Sub_Account. 

Interface descriptions, on the other hand, list the methods the sub-object implements for 

internal use. At this point, the developer is required to identify, for each method, the type of 

operation its invocation involves using an appropriate symbol: W (short for Write) for one that 

modifies the state of the object and R (short for Read) for one that does not. This is the only 

difference between an RMI and sub-object class interface description. Figure-8 shows the 

interface description for sub-object Sub_Account. 

The next step involves the generation of class definitions for connective and control objects of 

each sub-object. The Automatic Class Generator creates them automatically using the 

information extracted from interface descriptions of the sub-objects. Figure-9 and Figure-10 

show the class definitions for the connective and the control objects generated respectively 

from interface Account.

The connective object of the sub-object is named as Sub_Account and implements the 

same interface as the sub-object because a method invocation on a sub-object is actually 

directed to its connective object first, as shown in Figure-3. The connective object is 

responsible for dynamic binding. It contains a pointer to the control object of the sub-object. 

Whenever one of its methods is activated, it first checks the binding of the reference to the 

control object (line denoted by (1) in Figure-9). If the reference has not yet been bound, a 

DCOBE call is issued, which returns copies of both the control object and the sub-object (line 

denoted by (2) in Figure-9). The method invocation is then forwarded to the control object 

(line denoted by (3) in Figure-9), which also implements the same interface as the sub-object. 



When a composite object is instantiated, it creates instances of its sub-objects. However, as 

the flow of control through the constructor methods indicates, first a connective object is 

created, which in turn creates a control object, which finally creates the sub-object itself. The 

control object registers the sub-object and, in return, receives a unique identifier, obj_id 

(line denoted by (1) in Figure-10), which is used by the connective and control objects on 

successive accesses to the sub-object. Control object implements coherence protocols to 

ensure consistency of the sub-object’s state. After getting access permission through a lock 

(line denoted by (2) in Figure-10), the method is invoked on the sub-object (line denoted by 

(3) in Figure-10). The control object also includes internal methods (upcalls not presented in 

Figure-10) that may be invoked by DCOBE Server in order to check the status of the lock on 

the sub-object and block a lock request from a remote node until the lock is explicitly 

released. 

After completing the class definitions for a composite object class, these class files are made 

available to other nodes by an HTTP-server so that they may be dynamically loaded from 

remote addresses. The following piece of code firstly instantiates a composite object in an 

application program. Immediately afterwards, connective objects, control objects and the sub-

objects are automatically created on that node (8). Second, the newly created composite object 

is registered with a user-defined name (9), and third, in order to make class definitions 

dynamically loadable, class base information is also registered to the DCOBE Coordinator 

(10). 

employee = new Employee();             (8) 

dcobeServer.register(employee, “John”);      (9) 

dcobeServer.register_class(“Employee”,“http://Class_Base/”);(10) 

For a distributed composite object to be accessible from a remote node, a user has to bind to 

the object through a lookup operation, that is, a registered composite object needs to installed 



in its address space. With this process, connective objects are also installed on the requesting 

node automatically. However, a local method invocation on the object becomes possible only 

after the control object and a replica of a sub-object is loaded. 

The following piece of code loads the class Employee dynamically using the dynamic class 

loading facility of Java (11) and binds to one of its instances, “John” (12).  

Employee = dcobeServer.load_class(“Employee“);  (11) 

employee = dcobeServer.lookup(“John”);    (12) 

Now, the remote user is ready to invoke a method on the distributed composite object (13). 

Only a replica of the sub-object account will be loaded to the user’s address space. In 

addition, according to the coherence protocol specified, all other replicas of account will 

either be invalidated or updated after this method completes execution. 

employee.deposit_Account(1000);     (13) 

 

8.  Automatic Class Generator 

As manual coding of connective and control objects by the DCO developer is both 

inconvenient and error-prone, DCOBE supports automatic generation of these classes via an 

Automatic Class Generator (ACG). ACG generates class definitions for connective and 

control objects from the interface descriptions of sub-objects. The DCO designer prepares the 

class and interface descriptions for sub-objects and the container object that comprises of the 

sub-objects as he would for a centralized application. The connective and control objects 

belonging to each sub-object are then generated automatically using the ACG, which has an 

interface to accept two parameters: firstly the name of the file which contains the interface 

description of the sub-object and, secondly, a description of the coherence protocol desired to 

be applied to the sub-object; update to denote the write-update protocol and invalidate to 



denote the write-invalidate protocol. As different applications have different consistency 

requirements, DCOBE allows different coherence protocols to be applied to different sub-

objects of a given DCO. Consequently, class definitions of the control object of each sub-

object are generated in agreement with the specified protocol. The following is a sample 

command which will generate the class files “Connective_Account.java” and 

“Control_Account.java” for the sub-object named Account from its interface descriptions 

from the file named “Account_itf.java” to conform to the mode operation required to 

implement the write-update protocol. 

 

java Class_Generator Account_itf.java update 

 

ACG consists of four main modules, namely, a lexical analyser (scanner), a syntax analyser 

(parser), a code generator, and an error reporter, as depicted in Figure-11. First, the scanner 

separates the characters in the interface description into tokens allowed by the Java language: 

keywords (public, interface, void, int, etc), identifiers to denote method names and 

parameters, and special characters such as the parenthesis or the colon.  Next, the parser 

groups tokens together into syntactic structures and checks if a given sequence of tokens 

conforms to the grammar rules for interface description given in Figure-12. The parser is a 

recursive descent parser which is easily implemented for the rather small grammar. A call to 

the code generator is issued at the point when the parser recognizes in its input a sequence that 

can be reduced to the definition of a method according to Rule 4. of the grammar in Figure-

12.  The code generator produces code for connective and control objects by appending a 

standard sequence of code that is executed to implement each of the coherence and access 

synchronization protocols to sub-object method definitions to create the class files for 

connective and control objects. 



Both scanner and parser modules report errors they discover to the error reporter module, 

which, in turn, issues an appropriate diagnostic message. For example, the scanner may be 

unable to proceed because the next token is misspelled, or the parser may be unable to 

recognize a structure because of a syntactic error, such as missing parenthesis. 

9. An Application: Collaborative Book Writing 

This section describes a typical application that can benefit the distributed composite object 

model; a real-time collaborative writing system that allows two or more physically dispersed 

people working together to produce a document, a book in our case. Collaborative book 

writing on the internet is not a new approach. There are several academic and industrial 

studies on collaborative writing such as IRIS [25], NetEdit [26], and Duplex [27]. Our goal is 

to show how the DCO model facilitates the design of the distributed application, reducing 

significantly the overall time for development by taking care of distributed system issues such 

as distribution, replication, consistency, concurrency and communication. 

The application aims to develop a web-based collaborative environment that allows users to 

view and edit shared text at the same time. Collaborative writing involves periods of 

synchronous activity where the group works together the same time, and periods of 

asynchronous activity, where group members work at different times. The authors need to be 

able to read and update (write) any displayed document content. They also require immediate 

feedback on their actions. The system has the following characteristics: 

• Low response time: Response to local user actions is quick (as quick as a single-user 

editor) and the latency for remote user action is short (determined mainly by external 

communication latency) 



• Distributed environments: Cooperating authors reside on different machines connected by 

different communication networks. 

• Unconstrained collaboration: Multiple users may concurrently and freely edit any part of 

the text at any time. 

There are two aspects that should be regarded separately: the storage of the text objects and 

the author interface for manipulating text content. 

9.1 Storage of Text Objects 

In this application, the text of a book is a persistent document. It is represented by a single 

distributed composite object, namely book, which is shared among authors. It consists of a 

collection of related sub-objects, each representing a specific part of the book text: its 

contents, preface, index, references, and chapters denoted by sections and sub-sections. A 

chapter object is still a composite object that may include several section sub-objects, and 

similarly, these section sub-objects are composite objects that may further be divided into 

sub-section sub-objects. Figure-13 illustrates the composite structure of the book object at an 

instant of time when it is accessed by three sites. 

The replicated architecture of the composite object model plays an important role in achieving 

good responsiveness and unconstrained collaboration. The shared sub-objects are replicated at 

the local storage of each participating author, as shown in Figure-13, so updates on different 

sub-objects are first performed at the local address space immediately, possibly 

simultaneously, and then propagated to remote sites, according to the consistency protocol. 

Multiple authors are allowed to access any part of the shared text. An invocation of a read 

type of method in the user interface results in the loading of the target sub-object into the local 

memory if it is not already present or if the present copy has been invalidated meanwhile. Any 

number of updates may be performed on the local replica, and the new content is submitted 



with a write type of method invocation. This action may be performed whenever desired, after 

a word has been changed, or after the author has been working several hours on the content. 

The write-invalidate coherence protocol resolves conflicts that arise on simultaneous requests 

to update operations on identical parts of the book by different authors. While authors carry 

out these operations, they will not be aware of the composite and distributed structure of the 

object they are working on.  

An interesting characteristic of the composite object book is that, initially at the start of the 

application, as no part of the book has been written yet, the set of sub-objects that will 

represent various parts of the book text is empty. As work progresses, the object book 

evolves, sub-object by sub-object, as new parts of the book text are added to the composite 

object. A sub-object named parts keeps track of the sub-objects thus added to the composite 

object in a table, where it stores the name of the part, a string, with a reference to the 

connective object associated with it. parts offers an interface with methods to add, remove, 

update, and search an entry in the table for internal use. It is created by the constructor method 

when an instance of book is created, and is automatically replicated on each address space 

where that instance is loaded.  

9.2 Author Interface 

Authors access object book via a user-friendly graphical interface, which contains methods 

that fall into three groups: 

• Content based methods: They involve the reading, writing, or editing of the content of a 

part of the book text. Presently, a simple class Editor implements the functionality 

required, providing a text-based editing environment with filing facilities. As further 

work, we plan to integrate standard editing tools into the framework to provide authors 

with an enhanced working environment.  



• Attribute based methods: They involve adding, modifying, or retrieving the attributes 

of a part, such as its author, last modification date, other authors’ opinions, etc. 

• Document based methods: They involve listing, adding, removing, renaming, or 

searching of parts or index entries. The contents sub-object is updated automatically if 

the invocation of a method requires such a modification. 

An instance of the graphical user interface is reproduced in Figure 14. 

 

10. Performance Evaluation 

We evaluate DCOBE according to two main criteria: a discussion of DCOBE overheads 

compared to those for another distributed object model, namely, that employed by Java RMI 

and a study of behaviors of DCOBE with respect to different parameters, such as varying 

numbers of DCOs and sub-objects, varying sizes of sub-objects, and different consistency 

requirements. 

To assess DCOBE performance, we conducted simple tests to measure the cost of basic 

operations on a LAN environment of ten INTEL architecture machines (Pentium IV 1.5 GHz 

with 512 MB RAM) connected through a 100 Mbit Ethernet and running Windows XP 

operating system. J2SDK 1.4.1 was used in the testing environment. Each time shown is a 

duration measured in milliseconds by calls to System.currentTimeMillis(). Tests 

were repeated ten times and the arithmetic average of the measurements are reported. 

10.1 Comparison with Java RMI 

In order to establish a baseline for Java-based communication to which DCOBE 

implementation can be compared, we carried out a similar test with Java RMI, using the 



standard java.rmi package. The same object sample used for DCOBE test, a composite object 

with two sub-objects, was initiated on a node and remote method invocations were issued 

from a different node. Method argument data types were of small size and therefore their 

marshalling/unmarshalling had a little effect on overall invocation times. The test was repeated 

ten times and the arithmetic average of the measurements are reported. Table-1 summarizes the 

results we have obtained. 

Creation and Registration: DCO creation time is approximately four times the time it takes 

for RMI object creation. This is due to the number of objects involved. As the sample DCO 

comprises of a container object and two sub-objects, together with the connective and control 

objects of these sub-objects, creation time actually includes the time it takes to create seven 

objects. However, DCO registration is much faster than RMI registration operation. For 

DCOBE, this is the time spent to register a DCO with a user defined name on a DS and DC. 

On the other hand, a RMI object is bound on a HTTP server registry with a user defined name.

Lookup and Binding: For RMI, it is the time required for the lookup operation of the RMI 

object’s stub from the remote server. For DCOBE, it is the time taken to load class definitions of 

a DCO, followed by binding process which returns replicas of DCO container and connective 

objects to the address space of its remote client (three objects in this case). The DCOBE 

operation is twice slower than RMI operation because, against a RMI stub, three objects are 

loaded from the remote site. 

Initial and Successive Method Invocation: This is the time it takes for a method invocation 

to complete. In case of RMI, all method invocations on the same object, regardless of being 

the initial, require the same amount of time to return (0.42 ms).  However, with DCOBE, the 

time required for the initial and successive calls differ greatly. The initial invocation request 

involves the loading of the control object and the target sub-object to the address space of the 

remote client and the processing of access permission requests in order to satisfy consistency 



and concurrency requirements. Consequently, the completion time of an initial method 

invocation on a DCOBE object is more than ten times than that of a RMI object. However, on 

successive invocations, as the request is handled locally on the local sub-object, completion 

time improves significantly. 

Invalidate replicas: It is the time taken to send invalidation messages to replicas of a sub-

object. 

Update replicas: It is the time taken to send remote invocation requests on replicas of a sub-

object. 

The results indicate that, for an initial method invocation request, the time required  to bind to 

an object and to complete the call  for DCOBE is almost twice the time taken by Java RMI 

(7.51 ms for Java RMI and 13.01 ms for DCOBE). At first glance, this may appear as a 

serious disadvantage. However, after the initialization phase, as DCOBE method invocations 

are carried out locally, they complete in significantly shorter times while RMI invocation 

requests are forwarded to a remote address. It is apparent that network latency is the most 

influential factor in the overall invocation time for Java RMI, and considerable speedups are 

expected with DCOBE as its replication policy reduces the effect of network latency 

considerably. 

 

10.2 DCOBE Performance Results 

In this section, we describe the results of tests we have carried out to compare the 

performance of DCOBE under different situations. 

Effect of increasing number of DCOs: This test compares system performance under 

increasing number of DCOs. Figure-15 illustrates the time needed for object creation and 

registration as the number of DCOs is increased.  DCO creation time includes the time spent 



to install the container object and the creation of each sub-object together with its connective 

and control objects. Registration records the object under a system wide recognized unique 

name. The test shows that the system can tolerate the existence of very large numbers of 

DCOs, the limit being physical capacity. 

Effect of increasing number of SOs: This test compares system performance when the 

number of sub-objects a composite object comprises of is varied. Figure-16 illustrates the time 

needed for creation and lookup operations for DCOs with increasing number of sub-objects. 

As expected, creation time increases with the number of sub-objects as the total number of 

objects to be created (three objects per sub-object) grows. However, we recognize that the 

time needed to complete a lookup operation is not closely effected by the number of sub-

objects owned by a DCO. 

Effect of increasing sizes of SOs: This test compares system performance on implementation 

of a coherence protocol when object size is varied. Figure-17 illustrates the time needed to 

update, to invalidate, and to retrieve a valid copy after invalidation, for objects of various 

sizes. An update involves a method call request message to be sent to remote replicas on the 

object’s valid list. That is, a message including method parameters as well is sent and the 

method is applied to all copies on remote nodes. With a constant number of replicas to be 

updated, we observe a slight variation in update time in relation to object size, interpreting it 

as the increased workload of the method for larger sized objects. The invalidation scheme, on 

the other hand, requires an invalidation message only to be sent to remote replicas before 

doing an update. With the number of remote replicas on the valid list of the object kept 

constant, the time needed for invalidation does not change, as it is not dependent on object 

size but rather on the length of the valid list. This is clearly observed in Figure-17, where 

measurement results for invalidation follow a constant value. However, with this scheme, 

applications ask for updates as they need them. Figure-17 depicts the variation in time 



required to retrieve a valid copy after invalidation, in relation to object size. As the operation 

entails the transfer of the entire sub-object, retrieval time increases significantly as the size of 

the object is enlarged. As a result, we may conclude that the update scheme that DCOBE 

implements is more efficient, especially for large objects. 

11. Conclusion 

This paper presents a new object model, distributed composite objects, for distributed 

computing along with the design of a middleware architecture, DCOBE, which provides basic 

mechanisms for the development, deployment and management of distributed computations. 

The proposed model, with the support of DCOBE, allows for collaborative design and control 

of distributed applications. Users describe shared data in terms of composite objects whose 

implementation details are embedded and encapsulated in different types of sub-objects. Sub-

objects of a composite object are replicated across multiple nodes when required. The main 

strength of the proposed model is that it provides the appropriate level of distribution 

visibility to the implementer of a distributed service, while hiding the distribution of sub-

objects from its clients. 

 DCOBE, being implemented on JVM, provides an environment that works on heterogeneous 

platforms. A distributed application is developed using the Java language in a centralized 

manner and then made available on the internet. Objects are dynamically deployed to 

requesting client nodes. This allows users to deal with various environments that exist in a 

wide area network and to separate applications from the implementation of shared objects. 

The key benefits of the proposed object model are distribution transparency, ease of 

application development, conserved bandwidth consumption, and dynamic adaptation and 

deployment of shared objects. Future work will concentrate on  extension of the DCO model 



with a transparent data persistence service to incorporate fault-tolerance.  We also plan to 

enhance the system by introducing access control policies for shared objects.  

Acknowledgments: We would like to thank the referees for their helpful feedback. 
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Figure-1. A composite object created on a single site with its three sub-objects 
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Figure-3. Access pattern in a composite object 
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Figure-4. Schematic view of DCOBE middleware 
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Figure-5. General view of DCOBE architecture 



public class Employee { 
 //Definitions of the sub-objects and other variables 

Connective_Person      person; 
Connective_Account     account; 
Connective_Profession  profession; 
String                 name; 
float                  amount; 
int                    professionId; 

 public Employee() { 
 account      = new Connective_Account(); 
 person       = new Connective_Person(); 

 profession   = new Connective_Profession(); 
 name         = “”; 
 amount       = 0; 
 professionId = 0; 
}
public void setName(String nm) { 

 name = nm; 
 } 
 public String getName() { 
 return name; 
 } 

public void depositAccount(float amount) { 
account.deposit(amount); 

}
public void withdrawAccount(float amount) { 
 account.withdraw(amount); 
}
public float balanceAccount() { 

 amount = account.balance();  
 return amount; 
 } 

public void setProfessionId(int pid) { 
 professionId = pid; 

 } 
public int getProfessionId() { 
 return professionId; 
}

}

Figure-6. Class definition for the container object  Employee 



public class Sub_Account { 
 float total = 0; 
 public void deposite(float amount) { 
 total = total + amount; 
 } 
 public void witdraw(float amount) { 
 total = total - amount; 
 } 
 public float balance() { 
 return total; 
 } 
}

Figure-7. Code for sub-object class Sub_Account 



public interface Sub_Account { 
 public void deposit_W(float amount); 

public void withdraw_W(float amount); 
 public float balance_R(); 
}

Figure-8. Interface description for class Sub_Account 



public class Connective_Account { 
 int obj_id; 

Control_Account controlObject; 
 public Connective_Account() {  
 controlObject = new Control_Account(); 

 obj_id = controlObject.get_id(); 
 }  
 public void deposite(float amount) { 
 ....... 
 } 
 public void witdraw(float amount) { 
 ....... 
 }  
 public float balance() {  

 if (controlObject == null) (1) 
controlObject = (Control_Account)  
 dcobeServer.get_controlObject(obj_id);(2) 

return controlObject.balance();(3) 
}

}

Figure-9. Class definition for the connective object Connective_Account 



public class Control_Account {  
 Sub_Account  subObject; 

int          obj_id; 
int          server_id; 
 
public Control_Account() { 

 subObject = new Sub_Account(); 
 server_id = dcobeServer.get_serverId(); 

obj_id = dcobeServer.register_object(this,subObject);(1) 
}
public void deposite(float amount) { 

 ....... 
 } 
 public void witdraw(float amount) { 
 ....... 
 }  

public float balance() {  
 access_right(R);(2) 

float account = subObject.balance();(3) 
access_end(server_id, R); 
return account; 

}
}

Figure-10. Class definition for the control object  Control_Account 
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1. list_of_itf    → ∈ | itf    list_of_itf 

2. itf    → “public” “interface” id “{” method_list    “}”

3. method_ list    → ∈ | method    method_list 

4. method    → “public” return_type    id “(” parameter_list    “) “;”

5. parameter_list    → ∈ | parameter    |    parameter    “,” parameter_list 

6. parameter    → parameter_type    id 

7. parameter_type    → “int” | “String” | “boolean” | id 

8. return_type   → ∈ | “void” | “int” | “String” | “boolean” | id 

Figure-12. Grammar rules for interface description 



Figure-13. Composite structure of book object as accessed by three distinct authors 
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Figure-14. Graphical user interface for authors 



Figure-15. DCO creation and registration costs for increasing number of DCOs 
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Figure-16. DCO create and lookup costs for increasing number of SOs



Figure-17. Update and invalidation costs for increasing sizes of SOs 
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Table-1. Comparison of basic operations in RMI and DCOBE 

Basic RMI and DCO Operations Time in 
RMI 

Time in 
DCOBE 

Object creation on a local site 0.26 ms 0.82 ms 

Object registering 3.32 ms 0.42 ms 

Lookup and binding 3.51 ms 6.02 ms 

Initial method invocation 0.42 ms 5.75 ms 

Successive method invocations 0.42 ms 0.001 ms 

Update and invalidate a sub-object’s replicas  
• invalidate replicas                 (for i number of replicas) 
• update replicas                      (for i number of replicas) 

--- 
 

i*0.41 ms 
i*1.30 ms 
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