
DCOBE: Distributed Composite Object Based Environment

Güray YILMAZ1, Nadia ERDOGAN2

1 Computer Engineering Department, Turkish Air Force Academy
34807, Yesilyurt, Istanbul–TURKEY

Tel: +90 212 6622288
Fax: +90 212 5565118

e-mail: g.yilmaz@hho.edu.tr

2 Computer Engineering Department
Electrical-Electronics Faculty, Istanbul Technical University

34469, Ayazaga, Istanbul–TURKEY
Tel: +90 2122853592
Fax: +90 212 2853679

e-mail : erdogan@cs.itu.edu.tr

Corresponding Author: Nadia Erdogan
 e-mail: erdogan@cs.itu.edu.tr

Postal Address: Computer Engineering Department
 Electrical-Electronics Engineering Faculty

 Istanbul Technical University
 34469, Ayazaga, Istanbul-TURKEY

 Telephone: 0 212 285 35 92
 Fax: 0 212 285 36 79

Keywords: distributed composite object, distributed object-based systems, composition,
replication, cooperative computations.

mailto:erdogan@cs.itu.edu.tr
mailto:erdogan@cs.itu.edu.tr
mailto:g.yilmaz@hho.edu.tr

DCOBE: Distributed Composite Object Based Environment

Güray YILMAZ1, Nadia ERDOGAN2

1 Computer Engineering Department, Turkish Air Force Academy

34807, Yesilyurt, Istanbul–TURKEY

Tel : +90 212 6622288

Fax : +90 212 5565118

email: g.yilmaz@hho.edu.tr

2 Computer Engineering Department,

Electrical-Electronics Engineering Faculty, Istanbul Technical University

34469, Ayazaga, Istanbul–TURKEY

Tel : +90 212 2853592

Fax: +90 212 2853679

email: erdogan@cs.itu.edu.tr

mailto:erdogan@cs.itu.edu.tr
mailto:g.yilmaz@hho.edu.tr

Abstract: This paper introduces a new programming model for distributed systems,

distributed composite objects (DCO), to meet efficient implementation, transparency, and

performance demands of distributed applications with cooperating users connected through

the internet. DCO model incorporates two basic concepts. The first is composition, by which

an object is partitioned into sub-objects that together constitute a single composite object.

The second one is replication, which extends the object concept to the distributed

environment. The DCO model allows the representation of an object as a collection of sub-

objects and enhances the object distribution concept by implementing replication at the sub-

object level and only when demanded. DCOBE, a DCO-based programming environment,

conceals implementation details of the DCO model behind its interface and provides basic

mechanisms for object composition, distribution and replication of object state, consistency

management, concurrency control and dynamic deployment of restructured objects. It

facilitates the design of distributed applications, reducing significantly the overall time for

development by taking care of distributed system issues. DCOBE, being implemented on

JVM, provides an environment that works on heterogeneous platforms. A distributed

application is developed using the Java language in a centralized manner and then made

available on the internet. Objects are dynamically deployed to requesting client nodes. This

allows users to deal with various environments that exist in a wide area network and to

separate applications from the implementation of shared objects.

Keywords: distributed composite object, distributed object-based systems, composition,

replication, cooperative computations.

1. Introduction

The increase in the number of interconnected computers and networks has led the community

of software developers to distribute applications in order to support cooperative work. It has,

therefore, become important to focus on distributed systems software that provides an

infrastructure to enable user interactions and collaborations on common goals and shared data.

Such software facilitates implementation because programs are written on top of a high-level

execution environment. Programmers are no longer concerned with the complexities of

distribution and maintenance of shared data, while maintaining acceptable levels of

interactive performance.

This paper introduces a new programming model for distributed systems, distributed

composite objects (DCO) [1], to meet efficient implementation, transparency, fault tolerance

and performance demands of cooperative applications with users connected through the

internet. The distributed composite object model incorporates two basic concepts. The first

concept is composition, by which an object is partitioned into sub-objects (SO) that together

constitute a single composite object (CO). The second basic concept is replication.

Replication extends the object concept to the distributed environment. Sub-objects of a

composite object are replicated on different address spaces to ensure availability and quick

local access. Decomposition of an object into sub-objects reduces the granularity of

replication.

To a client, a DCO appears to be a local object. However, the distributed clients of a DCO

are, in fact, each associated with local copies of one or more sub-objects and the set of

replicated sub-objects distributed over multiple address spaces form a single distributed

composite object.

A software layer, Distributed Composite Object Based Environment (DCOBE) [2] provides a

programming framework that is based on the DCO model. DCOBE is a middleware built on

Java Virtual Machine and presents functionalities that facilitate the development of internet

wide distributed applications, through a well-defined interface. An important feature of the

programming framework is transparency. Users of DCOs acquire the benefits of a centralized

environment as DCOBE takes care of issues such as distribution and replication of object

state, management of consistency, and concurrency control. They are automatically

programmed separately from the application code, thus enabling developers to concentrate on

the semantics of the application they are working on.

The paper is organized into eleven sections. Related work is explained in Section 2. Section 3

presents object composition and replication concepts. The distributed composite object model

is described in Section 4. Management of sub-objects is explained in Section 5. Section 6

presents DCOBE architecture, while Section 7 explains the creation steps of a distributed

composite object. An automatic class generator is presented in Section 8. A sample

application is described in Section 9. Section 10 provides an evaluation of DCOBE. Finally,

Section 11 presents our conclusion and plans for future work.

2. Related Work

The DCO model has benefited from the large amount of research dedicated to consistency

strategies on shared memory systems [3]. DCOBE provides a flexible framework for

associating various replication coherence protocols for different sub-objects of a composite

object.

The majority of work on distributed object models follows an approach that allows clients to

transparently access an object through remote method invocations. Related work includes

DCOM [4], CORBA [5] and JAVA RMI [6]. In all cases, an object is presented to remote

clients by means of a proxy that is installed at the client and offers the same interface as the

actual object. Remote method invocation basically uses the same technique as RPC [7] and,

when combined with object serialization (JAVA RMI), it forms a powerful technique for

transparently invoking remote objects. The main difference with all these models to our work

is that they provide remote objects, rather than physically distributed objects and, hence, fail

to handle complex distribution issues such as replication and concurrency control.

Smart proxies [8,9], on the other hand, add more functionality into stubs, e.g., adding caching

mechanisms to reduce communication overhead and latencies, or forwarding method

invocations to some member of a replica group for the purpose of load balancing or fault

tolerance. Current smart proxy implementations usually either modify the middleware such

that compatibility is no longer maintained, or they use means such as portable interceptors. In

the latter case, a signifcant overhead in remote invocation mechanisms is introduced by

adding additional levels of indirection on the client side. Smart proxies stay closer at the

traditional client-server structure.

An alternative approach is to fully encapsulate distribution in an object, which leads to a

model of partitioned objects. The partitioned object model, used by Spring [10], SOS [11],

Globe [12] and AspectIX [13] allows combining multiple distributed parts into a single

distributed object with a single identity.

A model called Subcontract is offered in Spring [14]. The Spring Subcontract structures an

object around the so-called object representation, a table of method entries and a Subcontract.

Spring offers two replication Subcontracts; the replicon and caching Subcontracts. The

replicon is more basic; it binds each client to a replica and permits multi invocation on

replicas. The caching Subcontract is more elaborate. However, as a general mechanism, it is

too limited. Subcontracts do not provide generic support for a variety of consistency protocols

and other requirements inherent for object cashing. For example, it is hard to develop

Subcontracts that keep a group of objects shared by several clients consistent.

Our work has been influenced closely by the SOS, AspectIX and Globe projects, which

support state distribution through physically distributed shared objects. The SOS system is

based on the Fragmented Object (FO) model [15]. The FO model is a structure for distributed

objects that naturally extends the proxy principle. FO is a set of fragment objects local to an

address space, connected together by a connective object. Fragments export the FO interface,

while connective objects implement the interactions between fragments. A connective object

embodies the required consistency and coherence properties of the fragmented object and

provides an internal communication substrate for the FO. In this view of FO, a given address

space appears only to contain local references. However, the lowest level of the FO structure,

the connective object, encapsulates communication facilities, which are equivalent to remote

invocation or message passing mechanisms. Even though the work hides the cooperation

between fragments of a FO from the clients, the programmer of the FO is responsible to

control the details of the cooperation. He has to decide if a fragment locally implements the

service or is just a stub to a remote server fragment. FO hides data replication and consistency

management from the user of an object, but those details are expected to be implemented by

the developer of an object.

AspectIX describes a middleware system that integrates the concept of fragmented objects

into a CORBA environment. Their fragmented objects support implicit binding using the

ORB’s marshalling mechanism by defining customized IOR (Interoperable Object Reference)

profiles, while full interoperability with traditional CORBA applications is maintained.

One of the key concepts of the Globe system is its model of Distributed Shared Objects

(DSOs) [16]. In Globe, processes interact and communicate through DSOs. Each shared

object offers one or more interfaces. A Globe object is physically distributed, meaning that its

state might be partitioned and replicated across multiple machines at the same time. However,

all implementation aspects are part of the object and hidden behind its interface. For an object

invocation to be possible, a process has to bind to an object, which results in placement of a

local object in the client’s address space. A local object may implement an interface by

forwarding all method invocations, as in RPC client stubs, or through operations on a replica

of the object state. Local objects are partitioned into sub-objects, which implement

distribution issues such as replication and communication, allowing object developers to

concentrate on the semantics of the object.

SOS, Globe and AspectIX projects provide similar frameworks for partitioning of an object

and implementations of replicating local objects. The major difference between our work and

SOS and Globe is that, they both do not support the composite object model and caching is

restricted to the state of the entire object. However, the DCO model allows the representation

of an object as a collection of sub-objects and enhances the object distribution concept by

implementing replication at the sub-object level, providing a finer granularity. To the best of

our knowledge, there is no other programming framework that supports replication at the sub-

object level. Also, in SOS and Globe, deciding where and when to create a replica is left to

the application. Even though Globe provides a general mechanism for associating replication

strategies with objects, at present, a developer has to write his own implementation of a

replication sub-object. DCOBE, in contrast, replicates sub-objects at all sites they are used

and management of consistency of state and concurrency control is transparent to both object

developers and users. Another essential difference is the binding mechanism used for getting

access to an object. Dynamic loading of sub-objects is a feature that is not supported by either

of the projects. Such implicit binding is a prerequisite for true object-based programming as

object references have to be transparently passed around an application.

3. Object Composition and Replication

The distributed composite object model includes two basic concepts: composition and

replication. Composition allows aggregating multiple sub-objects into a single composite

object. Replication extends the composite object concept to the distributed environment. Sub-

objects of a composite object are replicated on different address spaces when they are

referenced, rather than having the whole composite object being accessed remotely. This

section elaborates on object composition and replication concepts.

3.1 Object Composition

Composition, also referenced as aggregation, is a mechanism for forming an object whole

using other objects as its parts. It reduces complexity by treating many objects as one object.

Three basic properties of composition are identified as the following:

• Configuration – whether or not the parts bear a particular functional or structural

relationship to one another or to the object they constitute.

• Homeomerous – whether or not the parts are of the same kind as the whole.

• Invariance – whether or not the parts can be separated from the whole.

To clarify the structural connections between an object whole and its parts, [17] describes in

detail six different kinds of composition, based on particular combinations of those basic

properties. Composite objects are objects that have an externally-distinct structure, and this

structure can be addressed via the public interface of the composite object. The objects that

comprise a composite object are referred to as component objects (sub-objects in this paper).

A composite object has a single root object (container object in this paper), and the root

references multiple children objects, each through an instance variable. Each child object can

in turn reference its own children objects, again through instance variables. The instance that

constitutes a composite object belongs to classes that are also organized in a hierarchy. The

composition hierarchy can span an arbitrary number of levels. If a composite object design

has component objects that are themselves composite objects, a two-level composition

hierarchy is created. This hierarchy could be repeated at several layers of composition.

Representing an object through the composition of several sub-objects can provide benefits to

applications by improving manageability and performance. As it allows larger objects to be

partitioned into smaller and more manageable units, the object designer gains the ability to

apply the “divide and conquer” approach to data management. Furthermore, by limiting the

amount of data to be examined or operated on, it provides performance benefits as well.

3.2 Replication

Distributed replication allows for multiple copies of an object to reside in several address

spaces. It is, in general, an important approach to increasing availability, achieving fault-

tolerance, and improving efficiency of a system. Replication reduces the cost of read

operations that do not alter the object state, since it is possible to simultaneously execute such

operations locally on multiple nodes. However, operations that modify the state of the object

become more expensive because of coherence operations to maintain consistency.

Read-Replication : multiple readers/single writer strategy divides object invocations into two

types: read accesses that do not change the state of the object and write accesses that modify

the object. Thus, either one of the following two situations are allowed for at any time:

• multiple nodes with read-only replicas of the shared object - the object is replicated on

two or more nodes and each node has read access to its copy while none of the nodes

have write access, or

• one node with a read/write replica - no two nodes may be modifying separate copies of

an object at the same time and any node that requests read access to an object is not

allowed to if a writer to the object already exists.

As stated above, replication improves performance by allowing concurrent access to replicas

at multiple nodes. However, if the concurrent accesses are not controlled, they may be

executed in an order different from that expected. Memory coherence requires two conditions:

a write must eventually be made visible to all nodes and writes to the same location must

appear to be seen in the same order by all nodes[18]. Thus, to maintain the coherence of

replicated objects, a mechanism that controls or synchronizes the accesses is necessary. A

consistency model defines a specific kind of coherence provided by the system while a

coherency protocol is responsible for managing object data so that the required level of

consistency is actually provided. Consistency models define the order in which accesses to

replicated data are seen by interested parties. A number of different models have been

proposed in the literature, such as sequential consistency, causal consistency, PRAM

consistency, weak consistency, release consistency, and entry consistency [18]. Consistency

models can be divided into two major categories: strict models and relaxed models. In

general, the stronger the consistency level, the higher is the latency its implementation

produces [19].

The coherency protocol is responsible for managing replicated objects so that the conditions

to provide consistency are satisfied. The main issue is the synchronization of write accesses to

objects in such a way as to insure no application reads old data once a write access has been

completed on some replica of the object. There are two approaches: write-update and write

invalidate [20]. Write-update broadcasts the effects of all write accesses to all nodes that have

replicas of the object. This approach is usually considered to be expensive since a broadcast is

needed on every write. In the write-invalidate scheme, on the other hand, invalidations are

sent and modifications are requested. The basic concept is to send an invalidation message to

all nodes that hold a replica before doing an update. Applications ask for updates as they need

them.

4. Distributed Composite Object Model

The distributed composite object model allows applications to describe and to access shared

data in terms of objects whose implementation details are embedded in several sub-objects.

Each sub-object is either an elementary object with a centralized representation, or may itself

be a composite object that comprises of further sub-objects. Several sub-objects are grouped

together in a container object to form a composite object, as depicted in Figure-1. The

developer of the composite object distributes the object’s state between multiple sub-objects

and uses them to implement the features of the composite object. The clients see the interface,

which the developer has defined for the composite object, rather than the interfaces from the

collection of embedded sub-objects. Methods in the interface of the composite object issue

calls to sub-objects in order to carry out the functionality expected of it. Therefore, from the

client’s point of view, a composite object is a single shared object that has only one access

point, the public interface it exports. He is not aware of its internal composition and, hence,

has no explicit access to the sub-objects that make up their states. This restriction is an

important aspect of our model and allows the object developer to dynamically adapt

composite objects to changing conditions. The developer may add new sub-objects to a

composite object to extend its design, remove existing ones or modify the implementation of

some, without affecting the interface of the composite object whose methods client

applications invoke. Thus, dynamic adaptation of the object over time becomes possible,

without affecting the applications that use it.

The proposed model relies on replication. Sub-objects of a composite object are replicated on

different address spaces to ensure availability and quick local access. A replica encapsulates a

local copy of the replicated state in the address space of the client and offers an interface for

internal access, to manipulate this state. A composite object is first created on a single address

space with its constituent sub-objects, as on Site2 in Figure-1. When a client application on

another address space invokes an operation on the composite object which triggers a method

of a particular sub-object, the state of that sub-object only, rather than that of the whole

composite object, is copied to the client’s environment. With this replication scheme, sub-

objects are dynamically replicated on remote address spaces upon method invocation

requests. The set of sub-objects replicated on a certain address space represents the composite

object on that site. Thus, the state of a composite object is physically distributed over several

address spaces. Copies of parts of, or whole, of a composite object can reside on multiple

address spaces simultaneously. We call this conceptual representation over multiple address

spaces a distributed composite object (DCO). Figure-2 shows a DCO that spreads over four

address spaces. It is initially created on Site2 with all its sub-objects (SO1, SO2, and SO3),

and is later replicated on three other sites, with only SO1 on Site1, SO2 and SO3 on Site3, and

SO1 and SO3 on Site4. These four sites contribute to the representation of the DCO. The set

of address spaces on which a DCO resides evolves dynamically as client applications start

interactions on the target composite object.

Clients of a DCO are aware neither of its composition, nor of its distribution. As the objects in

our model are passive, a client accesses a DCO by invoking methods in the interface provided

by the composite object. Invocations are ordinary local object invocations as the client has a

local implementation of the object in its address space. Multiple clients may access the same

DCO simultaneously. When the state of an object is modified, all replicas are kept consistent

through consistency management protocols that involve remote interactions.

We need to distinguish the programmer who is the composite object developer, and the user,

the client of the composite object. The model we propose allows clients to perform operations

on distributed composite objects without needing to know that there exist several sub-objects

inside and they are actually distributed physically on several sites. The object developer is

responsible of the design of the inner structure of the composite object. The nature of the

application will determine the structural connections between the composite object and its

parts. The kinds of composition referred to in Section 3.1 provide a practical guide to how a

programmer should partition an object into sub-objects. An important key to better

performance would be partitioning an object into discrete sub-objects because a chain of

method calls between sub-objects will require each target sub-object to be copied on the local

host, thus degrading performance.

The following is a summary of the beneficial features of the DCO model:

Transparency: DCO model, with the support of the DCOBE middleware, conceals all

implementation details behind its interface, as expected of the object-oriented programming

paradigm. Both the developer and clients of a DCO are isolated from issues dealing with:

• distribution of object state,

• replication of object state,

• management of consistency of object state,

• management of concurrency control, and

• the underlying communication technology.

Dynamic adaptation: DCO model builds on the concept of separation of interface and

implementation. Clients of objects depend on interfaces, not on implementations. This allows

for modifications on the internal composition of a DCO without affecting users that are

presently bound to the object. Thus, object implementations may dynamically evolve to adapt

themselves to changes in the environment.

Dynamic deployment: Objects are dynamically deployed to requesting addresses from a

machine that holds a valid representation; thus object installation prior to execution is not

required.

Reduced response time: Local accesses on sub-object replicas result in reduced method

invocation time, especially for read or write access requests issued after the completion of the

first write invocation, which inevitably introduces overhead due to getting access permission,

concurrency control and consistency maintenance actions.

Conserved bandwidth consumption: Due to its replication policy, communication cost of a

DCO is lower when compared to remote method invocation mechanisms. In addition,

replication of only target sub-objects, not the entire object, and only when demanded, helps in

conservation of bandwidth consumption.

Ease of use: Use of DCO incurs no additional task on the application developer as

programming steps to create a DCO are very similar to those needed for a regular object.

4.1 Application Domain of DCO Model

Over the past decade, an evident shift from individuals to groups engaged in collaborative

work has been observed in the design and implementation of computer systems. Collaborative

information management, sharing and exchange on the WWW, collaborative design work of

engineering teams, and collaborative authoring and editing are a few of such computer

systems which involve work that may be distributed either physically, carried out at different

places, or temporally, carried out at different times. In parallel with the trend, there is a

critical need for tools supporting collaboration among distributed users with similar interests,

or who are part of the same group with some common purpose. The research field Computer

Supported Collaborative Work (CSCW) focuses on techniques and tools to provide

individuals working on related tasks with support to make distributed work more effective.

Collaborative tools themselves need to be distributed and dynamic, and support the discovery

and dissemination of information. The object composition and replication characteristics of

the DCO model, together with the DCOBE framework, make it particularly suitable for the

design and implementation of such computer systems, where participants require to access

and share information without having to rely on any centralized repositories. Collaborative

authoring and editing, distributed CAD packages, distributed information retrieval systems,

and distributed news facility are a few examples that would benefit the features of the

proposed model.

5. Management of Sub-objects

A DCO is structured as a collection of composite objects, each with a set of replicated sub-

objects, which communicate with each other on issues for replication and consistency of state.

We have defined an enhanced object structure to deal with implementation issues and thus

provide the object developer and its clients with complete transparency of distribution,

replication and consistency management. As illustrated in Figure-3, this structure includes

two intermediate objects, namely, a connective object and a control object, which are inserted

between the container object and each target sub-object. In Figure-3, sub-objects have “sub_”,

control objects have “control_” and connective objects have “connective_” prefixes.

Connective and control objects cooperate to enable client invocations on DCOs. A connective

object is responsible for dynamic client to object binding which results in the placement of a

valid replica of a sub-object in the caller's address space. A control object is a wrapper that

controls accesses to its associated replica. It implements coherence protocols to ensure

consistency of sub-object state. A client object invocation follows a path through these

intermediate objects to reach the target sub-object after certain control actions.

An Automatic Class Generator (ACG) that has been developed in the context of this work is

used to generate classes for connective and control objects from interface descriptions of sub-

objects. Hence, the developer has to focus only on the design of the sub-objects that make up

a composite object. The others are generated automatically, according to the coherence

protocol specified by the developer.

5.1 Connective Object

The connective object is the target of all local client invocation requests. Structurally, it is an

object with the same abstract type and implements the same interface as the sub-object it is

associated with. For a client invocation to be possible, it is necessary that the client bind to

that object, that is, a local object implementing the object interface be installed in the client's

address space. Each connective object contains a reference that points to the control object of

the referenced sub-object. It also contains a unique object-id associated with the sub-object

which allows it to be located and copied on the local host. If the reference is bound, it means

the control object is already present. The connective object forwards the invocation request to

the control object. It is the control object's task to make a valid replica of the sub-object

available locally. In case the reference is null, through a call to the DCOBE middleware

system a copy of the control object is fetched and the reference is updated.

In order for a sub-object to be copied to a site for the first time, its class definitions should be

made available. They may be loaded prior to the start of the application or the action may be

postponed to execution time, to the point in time when they are actually needed. DCOBE

allows class definitions to be loaded at runtime, by means of Java’s dynamic class loading

facility through the system calls described in detail in Section 6.3.

The replication policy is independent of the frequency with which a sub-object gets

referenced. Therefore, those sub-objects which are called very infrequently are copied on the

local host as well. Once copied, DCOBE makes no attempt to remove a sub-object and

completely relies on the Java garbage collector to clear objects which are no longer

referenced. It would be interesting to keep statistics of the frequency with which a sub-object

gets referenced to help the object developer to refine his object design, which would

consequently lead to better system performance. Such an enhancement to the system may be

considered as future work.

5.2 Control Object

The control object is located between the connective object and the local implementation of

the sub-object and exports the same interface as the sub-object. It receives both local and

remote invocation requests and directs them to the local sub-object. Due to its composite and

distributed nature, the state of a DCO is the union of the states of its sub-objects. Consistency

problems arise as sub-object replicas on different address spaces are modified. The control

object is responsible for the management of consistency of object state and concurrency

control to ensure mutually exclusive access. It implements certain coherence and access

synchronization protocols [21] before actually allowing a method invocation request to

execute on the sub-object it is associated with. The system implements entry consistency [22]

to maintain the coherence of shared objects. In an entry consistent environment, object

invocations that modify the object (write accesses) require synchronization. Two

synchronization operations are defined to differentiate between entry and exit to critical

regions which enclose write accesses to shared objects: an acquire operation tells the system

that a critical region is about to be entered and a release operation indicates that a critical

region has just been exited. Under this model, each replicated object is associated with a

synchronization variable, actually a lock, that must be explictly acquired and released to

enforce concurrent accesses to happen sequentially.

There are two approaches in the synchronization of write accesses to objects so that no client

reads old data once a write access has been completed on some replica: write-update and

write-invalidate [3]. Write-update broadcasts the effects of all write accesses to all address

spaces that hold replicas of the target object. In the write-invalidate scheme, on the other

hand, an invalidation message is sent to all address spaces that hold a replica before doing an

update. Upon receipt of an invalidation message, objects are simply marked invalid, but not

immediately retrieved. Clients ask for updates as they need them. This increases latency on

subsequent accesses, but decreases bandwidth consumption if the object is not accessed again

or is invalidated several times before the next access. DCOBE implements both coherence

protocols. The developer chooses the one which suits the requirements of his application the

best and the control object is generated accordingly by the ACG.

Each sub-object in the system has a single owner, a unique node, which is either the creator of

the object or holds the only writable copy of the object. The owner node also maintains a list

of nodes, namely the valid-list, which holds valid replicas of the sub-object.

The interface of a control object is divided into two parts. The first part is identical to that of

the sub-object and its methods are called by the connective object to access the sub-object

replica. The second part is a standard upcall interface that is used to implement the coherence

and access synchronization protocols. Control objects on different sites communicate through

this interface to keep the object state consistent.

The control object implements a method invocation request in three main steps. They are

briefly explained below, omitting specific details.

Step 1. Get access permission: This step involves a set of actions, possibly including

communication with remote control objects, to obtain access permission to the sub-object. It

is blocking in nature, and once activity is allowed, it proceeds to Step 2, where the

corresponding method of the sub-object replica is invoked. The control object recognizes the

type of the operation the method invocation involves; either a write (W) operation that

modifies the state of the object or a read (R) operation that does not, and proceeds with this

information. The object developer specifies the access type of each method with an

appropriate symbol (R/W) that follows the method name in the interface declaration of a sub-

object. For an R-type of invocation request, the actions are similar for both types of coherence

protocols. They result in the placement of a valid sub-object copy in the local address space if

one is not already present (a local implementation is not created before it receives its first call

or the current replica may have been invalidated) and return a permission to proceed, if

currently there is no active writer to the object and the list of pending requests is empty. The

client is added to the valid-list of the target sub-object. If those conditions do not hold, the

client is suspended temporarily and the request is queued in a waiting list.

A W-type of invocation request is queued for both coherence protocols, if a writer is already

active or the pending list of requests is not empty. Otherwise, for the write-invalidate

protocol, all reader clients in the valid list are sent an invalidation message and the valid list is

purged. The operation returns a valid copy of the target sub-object on the caller's address

space, if not already present, along with its ownership granting write access permission to the

invoker. In the implementation of the write-update protocol, however, no invalidation takes

place but the valid list is returned to the caller along with an access permission to enable

further update operations on those replicas on remote addresses through remote invocation

requests directed to nodes on the valid list.

Step 2. Invoke method: This is the step when the method invocation on the local sub-object

takes place. After receiving permission to access the target sub-object, the control object

issues the call which it had received from the connective object. If the implementation of the

method of a sub-object further includes a method invocation on another sub-object, it is

forwarded to the connective object of that sub-object and the same method invocation steps

are repeated.

Step 3. Complete invocation: This step completes the method invocation after issuing update

messages, which involve method call requests to remote replicas on the valid list, to meet the

requirements of write-update protocol. After the call returns, the control object activates

invocation requests that have meanwhile blocked on the object. The classical multiple-

reader/single-writer scheme is implemented, with waiting readers given priority over waiting

writers after a write access completes and a waiting writer given priority over waiting readers

after the last read access completes. The system does not deal with situations that would result

in starvation due to programmer errors, such as a non returning method call.

6. Distributed Composite Object Based Environment: DCOBE

The main objective of DCOBE is to present a convenient environment for the realization of

distributed computations that utilize the DCO model. It provides a DCO-based programming

environment, as depicted in Figure-4, which hosts various numbers of applications dispersed

on several nodes, interacting and collaborating on common goals and shared data. DCOBE

conceals implementation details of the DCO model behind its interface, allowing users to

concentrate merely on application logic rather than on issues dealing with activity on a

distributed environment. It provides the basic mechanisms for object composition, distribution

and replication of object state, consistency management, concurrency control and dynamic

deployment of restructured objects. It is a middleware architecture that is implemented on a

network of heterogeneous computers, each capable of executing Java Virtual Machine (JVM).

Its place in the software hierarchy is between a Java application and the JVM.

DCOBE architecture consists of two main components that handle the core functionalities of

the middleware: a system-wide coordinator (DCOBE Coordinator–DC) and a server

component (DCOBE Server-DS) on each node that participates a DCO-based application in

the distributed environment. Java RMI [23] is used as the communication mechanism for the

interaction between the coordinator and the servers on different nodes. Figure-5 illustrates the

architecture of DCOBE and the inner composition of its components.

6.1 DCOBE Coordinator – DC

DC is the component that initializes the DCO based execution environment and coordinates

the interaction of DCOBE Servers. It runs as a separate process, which is explicitly started at

a predefined network address such that it may be accessible by all servers that participate in

the environment. It has a remotely accessible interface that allows distributed DS’s to request

services from it. When a DS is started, DC supervises a handshake protocol ensuring that each

DS is initialized knowing the address of every other DS participating.

Being unique makes DC very critical as it plays a major role in the system. In order to protect

the system against failures, we have added a secondary DC process as a backup unit to the

DCOBE architecture, component BDC in Figure-4. It is initiated on another node and

monitors the primary DC continuously, duplicating its information base. If the primary fails,

the backup recognizes the situation and takes over, and introduces itself as the current primary

DC by notifying all servers.

6.2 DCOBE Server – DS

Its main goal is provide execution support for DCO objects. A DS is actually instantiated

within the context of each application and provides facilities that implement the distributed

composite object model. As a server is integrated in each client application, the application

can directly perform method calls as both are in the same address space. Servers on remote

address spaces cooperate to process application requests and to ensure consistency of the

replicated DCO state.

6.3 DCOBE Services

DCOBE may provide service to several groups of users working on different applications.

Location transparency is an important issue in a distributed environment. DCOBE allows

applications to associate symbolic names to objects that are independent of location. A name

service resolves user-defined names to obj_id’s which are globally unique and location

independent. A location service relates each obj_id with the physical address where it can be

contacted. Core functionalities of DCOBE are briefly described below:

Start a new application: Starting a new application requires the creation of a DCOBE server

object at the requesting node. DC registers the new server under a unique server_id in a

server-access table and broadcasts the ‘server_id, node_address’ information pair to all

current servers. The content of the server-access table is replicated at each node, providing

the information for servers to communicate directly with one another.

DCOBE_Server dcobeServer = new DCOBE_Server();

Create and register a new DCO: A new DCO creation includes allocation of memory for

the composite object on the creator’s node and its registration within the system. A connective

and a control object are created for each sub-object. DC associates the DCO with a unique

obj_id that is used as the object reference on further access requests. The creation process

completes with the registration of the previously created DCO under a user-defined name.

This facility enables applications to associate symbolic names to objects, which are later used

as reference in subsequent look-up operations from remote applications. An attempt to

register under a name that already exists, results in an error return, which alerts the

programmer to repeat the operation with another symbolic name.

DCO_Class my_dco = new DCO_Class);

register(my_dco,“dco_name”);

Execute a method call on a DCO: A replica of a target sub-object may or may not be present

on a node at the time of method invocation request. DCOBE handles each case differently.

Case 1: This is the case where the requesting application is the creator of the DCO or has

already received a local replica on its address space. The first step involves inquiring the

existence of the control object that belongs to the sub-object, the target of the method call.

This is necessary because replication of a DCO involves copying of the connective object

only. The control objects and sub-objects are not copied until a particular method call requires

their presence on the node. This mode of operation decreases bandwidth consumption, as

certain sub-objects may never receive method calls on particular nodes, making their presence

on those nodes unnecessary. If the control object of the target sub-object does not exist, a

copy of the control object and the sub-object are retrieved from the server that holds a valid

replica. The control object then proceeds with the method invocation process as described in

Section 5.2

Case 2: This is the case where an application issues a method call for the first time, on a DCO

which has been created by a remote application. As stated before, a method call may proceed

only if a container object for the target is present on the current address space. This requires

the availability of DCO class definitions in order to be able to create a container object of the

specified type. Class definitions may be statically loaded prior to the start of the application,

or they may be dynamically loaded during execution time, at the point where they are needed,

using Java’s dynamic class loading [24] facility. In DCOBE, users can implement their

applications using either one of these approaches. However, the first one imposes additional

effort on the users and conflicts with distribution transparency. For the alternative approach,

the creator of a DCO registers its class name and the URL location where the class definitions

may be loaded with a DCOBE call to enable dynamic class loading (1).

register_class(“DCO_Class”,http://guray.hho.edu.tr/dco_classes/); (1)

The remote application loads class definitions with a DCOBE call that requires the name of

the class as a parameter (2).

load_class(“DCO_Class”); (2)

Next, to bind to the DCO, it issues a look-up request (3) for the remotely created DCO

through its user-defined name. This call returns replicas of the container and the connective

objects of the DCO to the new address space. From this point on, the method invocation

process proceeds as described above in Case 1.

lookup(“dco_name”); (3)

Modify the structure of a DCO: The structure of a DCO may be dynamically altered by

addition of new sub-objects, or modification or complete removal of existing ones. The

application which has created the DCO halts its execution temporarily and restarts with the

new class definitions of the DCO. Meanwhile, distributed clients of the DCO continue their

execution independently, possible using the older version of the object. The developer

application reregisters the restructured DCO under its previous symbolic name with which it

is known throughout the distributed system (4).

 re_register(my_dco,“dco_name”); (4)

This call notifies the DC to update its records associated with the DCO and to return a user

list of the object. The local DS multicasts control messages to each DS on the list, which in

turn, inform client applications of the object modification. An application is expected to

http://guray.hho.edu.tr/my_dco_classes/

invoke the following method calls (5, 6) to reload the new class definitions and have the

container and connective objects of each sub-object to be copied to its address space.

However, an application may choose to act differently, depending on its use of the DCO.

 load_class(“DCO_Class”); (5)

lookup(“dco_name”); (6)

Terminate an application: An application informs the system of its termination with the

following DCOBE call (7);

leave_system(); (7)

The coordinator transfers the ownership of any object the terminating application holds to

another that is on the user list of the associated object. After removing representative data

from several tables, the registration of the server is cleared.

7. Creation and Access of a Distributed Composite Object

In this section, we will demonstrate with an example how a DCO is created and how it is

accessed from a remote Java application. As DCOBE middleware supports the DCO model

directly, no language extensions or system support classes are required during coding. The

developer generates code as he does for a conventional centralized application. As an

example, we assume a DCO class named Employee, whose state and implementation is

distributed between three sub-objects: person, account, and profession. Figure-6

shows the class definition a developer would prepare for the container object employee,

identifying its composite structure and its user interface. As explained before, the user of the

object has no direct contact with its sub-objects. These objects are accessed over the methods

exported by the container class interface. In this example, for clarity, we have included

methods whose contents are extremely simplified as to include only a single method

invocation on the target sub-object. Actually, there is no restriction on the semantics of the

methods of a DCO.

Next, the class definitions and interface descriptions for each sub-object are prepared by the

object developer. Class definitions are typical Java definitions, except for the prefix ‘Sub_’

that precedes the name of the class. Figure-7 shows the code for sub-object Sub_Account.

Interface descriptions, on the other hand, list the methods the sub-object implements for

internal use. At this point, the developer is required to identify, for each method, the type of

operation its invocation involves using an appropriate symbol: W (short for Write) for one that

modifies the state of the object and R (short for Read) for one that does not. This is the only

difference between an RMI and sub-object class interface description. Figure-8 shows the

interface description for sub-object Sub_Account.

The next step involves the generation of class definitions for connective and control objects of

each sub-object. The Automatic Class Generator creates them automatically using the

information extracted from interface descriptions of the sub-objects. Figure-9 and Figure-10

show the class definitions for the connective and the control objects generated respectively

from interface Account.

The connective object of the sub-object is named as Sub_Account and implements the

same interface as the sub-object because a method invocation on a sub-object is actually

directed to its connective object first, as shown in Figure-3. The connective object is

responsible for dynamic binding. It contains a pointer to the control object of the sub-object.

Whenever one of its methods is activated, it first checks the binding of the reference to the

control object (line denoted by (1) in Figure-9). If the reference has not yet been bound, a

DCOBE call is issued, which returns copies of both the control object and the sub-object (line

denoted by (2) in Figure-9). The method invocation is then forwarded to the control object

(line denoted by (3) in Figure-9), which also implements the same interface as the sub-object.

When a composite object is instantiated, it creates instances of its sub-objects. However, as

the flow of control through the constructor methods indicates, first a connective object is

created, which in turn creates a control object, which finally creates the sub-object itself. The

control object registers the sub-object and, in return, receives a unique identifier, obj_id

(line denoted by (1) in Figure-10), which is used by the connective and control objects on

successive accesses to the sub-object. Control object implements coherence protocols to

ensure consistency of the sub-object’s state. After getting access permission through a lock

(line denoted by (2) in Figure-10), the method is invoked on the sub-object (line denoted by

(3) in Figure-10). The control object also includes internal methods (upcalls not presented in

Figure-10) that may be invoked by DCOBE Server in order to check the status of the lock on

the sub-object and block a lock request from a remote node until the lock is explicitly

released.

After completing the class definitions for a composite object class, these class files are made

available to other nodes by an HTTP-server so that they may be dynamically loaded from

remote addresses. The following piece of code firstly instantiates a composite object in an

application program. Immediately afterwards, connective objects, control objects and the sub-

objects are automatically created on that node (8). Second, the newly created composite object

is registered with a user-defined name (9), and third, in order to make class definitions

dynamically loadable, class base information is also registered to the DCOBE Coordinator

(10).

employee = new Employee(); (8)

dcobeServer.register(employee, “John”); (9)

dcobeServer.register_class(“Employee”,“http://Class_Base/”);(10)

For a distributed composite object to be accessible from a remote node, a user has to bind to

the object through a lookup operation, that is, a registered composite object needs to installed

in its address space. With this process, connective objects are also installed on the requesting

node automatically. However, a local method invocation on the object becomes possible only

after the control object and a replica of a sub-object is loaded.

The following piece of code loads the class Employee dynamically using the dynamic class

loading facility of Java (11) and binds to one of its instances, “John” (12).

Employee = dcobeServer.load_class(“Employee“); (11)

employee = dcobeServer.lookup(“John”); (12)

Now, the remote user is ready to invoke a method on the distributed composite object (13).

Only a replica of the sub-object account will be loaded to the user’s address space. In

addition, according to the coherence protocol specified, all other replicas of account will

either be invalidated or updated after this method completes execution.

employee.deposit_Account(1000); (13)

8. Automatic Class Generator

As manual coding of connective and control objects by the DCO developer is both

inconvenient and error-prone, DCOBE supports automatic generation of these classes via an

Automatic Class Generator (ACG). ACG generates class definitions for connective and

control objects from the interface descriptions of sub-objects. The DCO designer prepares the

class and interface descriptions for sub-objects and the container object that comprises of the

sub-objects as he would for a centralized application. The connective and control objects

belonging to each sub-object are then generated automatically using the ACG, which has an

interface to accept two parameters: firstly the name of the file which contains the interface

description of the sub-object and, secondly, a description of the coherence protocol desired to

be applied to the sub-object; update to denote the write-update protocol and invalidate to

denote the write-invalidate protocol. As different applications have different consistency

requirements, DCOBE allows different coherence protocols to be applied to different sub-

objects of a given DCO. Consequently, class definitions of the control object of each sub-

object are generated in agreement with the specified protocol. The following is a sample

command which will generate the class files “Connective_Account.java” and

“Control_Account.java” for the sub-object named Account from its interface descriptions

from the file named “Account_itf.java” to conform to the mode operation required to

implement the write-update protocol.

java Class_Generator Account_itf.java update

ACG consists of four main modules, namely, a lexical analyser (scanner), a syntax analyser

(parser), a code generator, and an error reporter, as depicted in Figure-11. First, the scanner

separates the characters in the interface description into tokens allowed by the Java language:

keywords (public, interface, void, int, etc), identifiers to denote method names and

parameters, and special characters such as the parenthesis or the colon. Next, the parser

groups tokens together into syntactic structures and checks if a given sequence of tokens

conforms to the grammar rules for interface description given in Figure-12. The parser is a

recursive descent parser which is easily implemented for the rather small grammar. A call to

the code generator is issued at the point when the parser recognizes in its input a sequence that

can be reduced to the definition of a method according to Rule 4. of the grammar in Figure-

12. The code generator produces code for connective and control objects by appending a

standard sequence of code that is executed to implement each of the coherence and access

synchronization protocols to sub-object method definitions to create the class files for

connective and control objects.

Both scanner and parser modules report errors they discover to the error reporter module,

which, in turn, issues an appropriate diagnostic message. For example, the scanner may be

unable to proceed because the next token is misspelled, or the parser may be unable to

recognize a structure because of a syntactic error, such as missing parenthesis.

9. An Application: Collaborative Book Writing

This section describes a typical application that can benefit the distributed composite object

model; a real-time collaborative writing system that allows two or more physically dispersed

people working together to produce a document, a book in our case. Collaborative book

writing on the internet is not a new approach. There are several academic and industrial

studies on collaborative writing such as IRIS [25], NetEdit [26], and Duplex [27]. Our goal is

to show how the DCO model facilitates the design of the distributed application, reducing

significantly the overall time for development by taking care of distributed system issues such

as distribution, replication, consistency, concurrency and communication.

The application aims to develop a web-based collaborative environment that allows users to

view and edit shared text at the same time. Collaborative writing involves periods of

synchronous activity where the group works together the same time, and periods of

asynchronous activity, where group members work at different times. The authors need to be

able to read and update (write) any displayed document content. They also require immediate

feedback on their actions. The system has the following characteristics:

• Low response time: Response to local user actions is quick (as quick as a single-user

editor) and the latency for remote user action is short (determined mainly by external

communication latency)

• Distributed environments: Cooperating authors reside on different machines connected by

different communication networks.

• Unconstrained collaboration: Multiple users may concurrently and freely edit any part of

the text at any time.

There are two aspects that should be regarded separately: the storage of the text objects and

the author interface for manipulating text content.

9.1 Storage of Text Objects

In this application, the text of a book is a persistent document. It is represented by a single

distributed composite object, namely book, which is shared among authors. It consists of a

collection of related sub-objects, each representing a specific part of the book text: its

contents, preface, index, references, and chapters denoted by sections and sub-sections. A

chapter object is still a composite object that may include several section sub-objects, and

similarly, these section sub-objects are composite objects that may further be divided into

sub-section sub-objects. Figure-13 illustrates the composite structure of the book object at an

instant of time when it is accessed by three sites.

The replicated architecture of the composite object model plays an important role in achieving

good responsiveness and unconstrained collaboration. The shared sub-objects are replicated at

the local storage of each participating author, as shown in Figure-13, so updates on different

sub-objects are first performed at the local address space immediately, possibly

simultaneously, and then propagated to remote sites, according to the consistency protocol.

Multiple authors are allowed to access any part of the shared text. An invocation of a read

type of method in the user interface results in the loading of the target sub-object into the local

memory if it is not already present or if the present copy has been invalidated meanwhile. Any

number of updates may be performed on the local replica, and the new content is submitted

with a write type of method invocation. This action may be performed whenever desired, after

a word has been changed, or after the author has been working several hours on the content.

The write-invalidate coherence protocol resolves conflicts that arise on simultaneous requests

to update operations on identical parts of the book by different authors. While authors carry

out these operations, they will not be aware of the composite and distributed structure of the

object they are working on.

An interesting characteristic of the composite object book is that, initially at the start of the

application, as no part of the book has been written yet, the set of sub-objects that will

represent various parts of the book text is empty. As work progresses, the object book

evolves, sub-object by sub-object, as new parts of the book text are added to the composite

object. A sub-object named parts keeps track of the sub-objects thus added to the composite

object in a table, where it stores the name of the part, a string, with a reference to the

connective object associated with it. parts offers an interface with methods to add, remove,

update, and search an entry in the table for internal use. It is created by the constructor method

when an instance of book is created, and is automatically replicated on each address space

where that instance is loaded.

9.2 Author Interface

Authors access object book via a user-friendly graphical interface, which contains methods

that fall into three groups:

• Content based methods: They involve the reading, writing, or editing of the content of a

part of the book text. Presently, a simple class Editor implements the functionality

required, providing a text-based editing environment with filing facilities. As further

work, we plan to integrate standard editing tools into the framework to provide authors

with an enhanced working environment.

• Attribute based methods: They involve adding, modifying, or retrieving the attributes

of a part, such as its author, last modification date, other authors’ opinions, etc.

• Document based methods: They involve listing, adding, removing, renaming, or

searching of parts or index entries. The contents sub-object is updated automatically if

the invocation of a method requires such a modification.

An instance of the graphical user interface is reproduced in Figure 14.

10. Performance Evaluation

We evaluate DCOBE according to two main criteria: a discussion of DCOBE overheads

compared to those for another distributed object model, namely, that employed by Java RMI

and a study of behaviors of DCOBE with respect to different parameters, such as varying

numbers of DCOs and sub-objects, varying sizes of sub-objects, and different consistency

requirements.

To assess DCOBE performance, we conducted simple tests to measure the cost of basic

operations on a LAN environment of ten INTEL architecture machines (Pentium IV 1.5 GHz

with 512 MB RAM) connected through a 100 Mbit Ethernet and running Windows XP

operating system. J2SDK 1.4.1 was used in the testing environment. Each time shown is a

duration measured in milliseconds by calls to System.currentTimeMillis(). Tests

were repeated ten times and the arithmetic average of the measurements are reported.

10.1 Comparison with Java RMI

In order to establish a baseline for Java-based communication to which DCOBE

implementation can be compared, we carried out a similar test with Java RMI, using the

standard java.rmi package. The same object sample used for DCOBE test, a composite object

with two sub-objects, was initiated on a node and remote method invocations were issued

from a different node. Method argument data types were of small size and therefore their

marshalling/unmarshalling had a little effect on overall invocation times. The test was repeated

ten times and the arithmetic average of the measurements are reported. Table-1 summarizes the

results we have obtained.

Creation and Registration: DCO creation time is approximately four times the time it takes

for RMI object creation. This is due to the number of objects involved. As the sample DCO

comprises of a container object and two sub-objects, together with the connective and control

objects of these sub-objects, creation time actually includes the time it takes to create seven

objects. However, DCO registration is much faster than RMI registration operation. For

DCOBE, this is the time spent to register a DCO with a user defined name on a DS and DC.

On the other hand, a RMI object is bound on a HTTP server registry with a user defined name.

Lookup and Binding: For RMI, it is the time required for the lookup operation of the RMI

object’s stub from the remote server. For DCOBE, it is the time taken to load class definitions of

a DCO, followed by binding process which returns replicas of DCO container and connective

objects to the address space of its remote client (three objects in this case). The DCOBE

operation is twice slower than RMI operation because, against a RMI stub, three objects are

loaded from the remote site.

Initial and Successive Method Invocation: This is the time it takes for a method invocation

to complete. In case of RMI, all method invocations on the same object, regardless of being

the initial, require the same amount of time to return (0.42 ms). However, with DCOBE, the

time required for the initial and successive calls differ greatly. The initial invocation request

involves the loading of the control object and the target sub-object to the address space of the

remote client and the processing of access permission requests in order to satisfy consistency

and concurrency requirements. Consequently, the completion time of an initial method

invocation on a DCOBE object is more than ten times than that of a RMI object. However, on

successive invocations, as the request is handled locally on the local sub-object, completion

time improves significantly.

Invalidate replicas: It is the time taken to send invalidation messages to replicas of a sub-

object.

Update replicas: It is the time taken to send remote invocation requests on replicas of a sub-

object.

The results indicate that, for an initial method invocation request, the time required to bind to

an object and to complete the call for DCOBE is almost twice the time taken by Java RMI

(7.51 ms for Java RMI and 13.01 ms for DCOBE). At first glance, this may appear as a

serious disadvantage. However, after the initialization phase, as DCOBE method invocations

are carried out locally, they complete in significantly shorter times while RMI invocation

requests are forwarded to a remote address. It is apparent that network latency is the most

influential factor in the overall invocation time for Java RMI, and considerable speedups are

expected with DCOBE as its replication policy reduces the effect of network latency

considerably.

10.2 DCOBE Performance Results

In this section, we describe the results of tests we have carried out to compare the

performance of DCOBE under different situations.

Effect of increasing number of DCOs: This test compares system performance under

increasing number of DCOs. Figure-15 illustrates the time needed for object creation and

registration as the number of DCOs is increased. DCO creation time includes the time spent

to install the container object and the creation of each sub-object together with its connective

and control objects. Registration records the object under a system wide recognized unique

name. The test shows that the system can tolerate the existence of very large numbers of

DCOs, the limit being physical capacity.

Effect of increasing number of SOs: This test compares system performance when the

number of sub-objects a composite object comprises of is varied. Figure-16 illustrates the time

needed for creation and lookup operations for DCOs with increasing number of sub-objects.

As expected, creation time increases with the number of sub-objects as the total number of

objects to be created (three objects per sub-object) grows. However, we recognize that the

time needed to complete a lookup operation is not closely effected by the number of sub-

objects owned by a DCO.

Effect of increasing sizes of SOs: This test compares system performance on implementation

of a coherence protocol when object size is varied. Figure-17 illustrates the time needed to

update, to invalidate, and to retrieve a valid copy after invalidation, for objects of various

sizes. An update involves a method call request message to be sent to remote replicas on the

object’s valid list. That is, a message including method parameters as well is sent and the

method is applied to all copies on remote nodes. With a constant number of replicas to be

updated, we observe a slight variation in update time in relation to object size, interpreting it

as the increased workload of the method for larger sized objects. The invalidation scheme, on

the other hand, requires an invalidation message only to be sent to remote replicas before

doing an update. With the number of remote replicas on the valid list of the object kept

constant, the time needed for invalidation does not change, as it is not dependent on object

size but rather on the length of the valid list. This is clearly observed in Figure-17, where

measurement results for invalidation follow a constant value. However, with this scheme,

applications ask for updates as they need them. Figure-17 depicts the variation in time

required to retrieve a valid copy after invalidation, in relation to object size. As the operation

entails the transfer of the entire sub-object, retrieval time increases significantly as the size of

the object is enlarged. As a result, we may conclude that the update scheme that DCOBE

implements is more efficient, especially for large objects.

11. Conclusion

This paper presents a new object model, distributed composite objects, for distributed

computing along with the design of a middleware architecture, DCOBE, which provides basic

mechanisms for the development, deployment and management of distributed computations.

The proposed model, with the support of DCOBE, allows for collaborative design and control

of distributed applications. Users describe shared data in terms of composite objects whose

implementation details are embedded and encapsulated in different types of sub-objects. Sub-

objects of a composite object are replicated across multiple nodes when required. The main

strength of the proposed model is that it provides the appropriate level of distribution

visibility to the implementer of a distributed service, while hiding the distribution of sub-

objects from its clients.

 DCOBE, being implemented on JVM, provides an environment that works on heterogeneous

platforms. A distributed application is developed using the Java language in a centralized

manner and then made available on the internet. Objects are dynamically deployed to

requesting client nodes. This allows users to deal with various environments that exist in a

wide area network and to separate applications from the implementation of shared objects.

The key benefits of the proposed object model are distribution transparency, ease of

application development, conserved bandwidth consumption, and dynamic adaptation and

deployment of shared objects. Future work will concentrate on extension of the DCO model

with a transparent data persistence service to incorporate fault-tolerance. We also plan to

enhance the system by introducing access control policies for shared objects.

Acknowledgments: We would like to thank the referees for their helpful feedback.

References

1. Yilmaz, G. and Erdogan, N. (2001) A New Distributed Composite Model for Collaborative

Computing, Proceedings of ISCIS XVI, Antalya, Turkey, 3-5 November, pp. 80-86.

2. Yilmaz, G. (2002) Distributed Composite Object Model for Distributed Object-Based Systems,

PhD Thesis, Istanbul Technical University, Institute of Science and Technology, Istanbul,

Turkey.

3. Mosberger, D. (1993) Memory Consistency Models. Operating Systems Review. 17(1), pp.

18–26.

4. Eddon, G. and Eddon, H. (1998) Inside Distributed COM. Microsoft Press, Redmond, WA.

5. OMG Document Technical Report formal/2002-12-02 (2002) The Common Object Request

Broker Architecture: Core Specification-Revision 3.0.2. OMG. Framingham, MA, USA.

6. Wollarth, A., Riggs, R., and Waldo, J. (1996) A Distributed Object Model for the Java System.

Computing Systems, 9(4), pp. 291-312.

7. Birrell, A. and Nelson, B. (1984) Implementing Remote Procedure Calls. ACM Trans. Comp.

Syst., 2(1), pp. 39-59.

8. Koster, R. and Kramp, T. (2000) Structuring QoS-supporting services with smart proxies.

Proceedings of IFIP/ACM Middleware Conference (LNCS 1795), 4-8 April, pp.273-288.

Springer-Verlag.

9. Santos, N., Marques, P. and Silva, L. (2002) A Framework for Smart Proxies and Interceptors

in RMI. Proceedings of ISCA PDCS’2002, Louisville, KY, USA, September.

 10. Mitchell, J., et al. (1994) An Overview of the Spring System. Proceedings of Compcon 1994,

San Francisco, California, USA, February 28-March 4, IEEE.

11. Shapiro, M., Gourhant, Y., Herbert, S., Mosseri, L., Ruffin, M. and Valot, C., (1989) SOS: An

Object-Oriented Operating System-Assessment and Perspectives. Computing Systems, 2(4), pp.

287-338.

12. Steen, M.V., Homburg, P. and Tanenbaum, A.S., (1999) Globe: A Wide-Area Distributed

System, IEEE Concurrency, 7(1), pp. 70-78.

13. Reiser, H. P., Hauck, F. J., Kapitza, R. and Schmied, A. I., (2003) Integrating fragmented

objects into a CORBA environment. Proceedings of Net.Object Days, Erfurt, Germany, Sept.

22-25.

14. Hamilton, G., Powell, M. and Mitchell, J. (1993) Subcontract: A Flexible Base for Distributed

Programming.Proceedings of 14th. ACM Symp. Operating. System Principles, New York,

December, pp. 69-79. ACM Press.

15. Makpangou, M., Gourhant, Y., Le Narzul, J.P. and Shaphiro, M., (1994) Fragmented Objects

for Distributed Abstractions. In: Casavant, T.L. and Singhal, M. (eds), Readings in Distributed

Computing Systems. IEEE Computer Society Press, USA.

16. Homburg, P., Doorn, L.V., Steen, M.V., Tanenbaum A.S. and De Jonge W., (1995) An Object

Model for Flexible Distributed Systems. Proceedings of 1st Annual ASCI Conference, Heijen,

The Netherlands, May 30-June 1, pp. 69-78.

17. Odell, J.J. (1994) Advanced Object-Oriented Analysis and Design Using UML. Cambridge

University Press.

18. Adve, S.V. and Gharachorloo, K. (1996) Shared Memory Consistency Models: A Tutorial.

IEEE Computer, 29(12), pp.66-76.

19. Attiya, H. and Welch, J. (1994) Sequential Consistency versus Linearizability. ACM Trans. on

Computer Systems, 12(2), pp. 91-122.

20. Stenstrom, P. (1990) A Survey of Cash Coherence Schemes for Multiprocessors. IEEE

Computer, 23(6), pp. 12-24.

21. Carter, J. B., Bennett, J.K. and Zwaenepoel, W. (1995) Techniques for reducing consistency-

related communication in distributed shared-memory systems. ACM Trans. Comp. Syst., 13(3),

pp. 205–243.

22. Nebro, A. J., Pimentel, E.and Troya, J. M. (1999) Distributed Objects: An Approach based on

Replication and Migration, Journal of Object-Oriented Programming, 12(1), pp.22-27.

23. Java Remote Method Invocation Specification (1997). Sun Microsystems. Palo Alto, CA,.

24. Halloway, S. D. (2001) Component Development for the Java Platform, Addison-Wesley, New

York.

25. TUMI9524. (1995) The Collaborative Multi-user Editor IRIS. Technische Universitat

Munchen.

26. TR-01-13 (2001) NetEdit: A Collaborative Editor. Computer Science, Virginia Tech.

27. Pacull, F.,Sandoz, A. And Schiper, A. (1994) Duplex: A Distributed Collaborative Editing

Environment in Large Scale. Proceedings of ACM Conf. on CSCW, Chapel Hill, North

Carolina, USA, 22-26 October.

Figure-1. A composite object created on a single site with its three sub-objects

Site 1 Site 2

Site 3 Site 4
Composite object

CO

Sub-object

Container object

application2

SO1

SO2

SO3

 s
m
i

SO1

O

application1

c
o
s t

SO1

SO2

SO3

SO2

SO3

application2

application3

S S

O

SO1

SO3

application4

distributed
composite
object
Figure-2. A DCO with three sub-objects that spreads over four sites
composite
object
ub-object
anagement

nteractions
Site 3
CO
 C
CO
ontainer
bject

ub-objec
method
call
ite 1
 ite 2
Site 4
C

Network

employee

connective_
person

connective_
account

connective_
job

Node_ i

Composite Object

Figure-3. Access pattern in a composite object

control_person

control_job

control_account

sub_person

sub_job

sub_account

Figure-4. Schematic view of DCOBE middleware

user

application

DS DS DS

DCOBE
interface

DC BDC

user
user

application
application

network

Application Application Application

DS

Network

node-i

CO1

CO2

JVM

Initialization
Manager

Naming
Manager

Object
Manager

Location
Manager

Terminating
Manager

CO1

CO2

CO1

CO2

node-m

DC

JVM

Initialization
Manager

DS Manager

Object
Manager

Location
Manager

DCO1

DCO1

DS

JVM

Initialization
Manager
Naming
Manager

Object
Manager

Location
Manager

Terminating
Manager

DS

JVM

Initialization
Manager

Naming
Manager

Object
Manager

Location
Manager

Terminating
Manager

node-j node-k

Figure-5. General view of DCOBE architecture

public class Employee {
 //Definitions of the sub-objects and other variables

Connective_Person person;
Connective_Account account;
Connective_Profession profession;
String name;
float amount;
int professionId;

 public Employee() {
 account = new Connective_Account();
 person = new Connective_Person();

 profession = new Connective_Profession();
 name = “”;
 amount = 0;
 professionId = 0;
}
public void setName(String nm) {

 name = nm;
 }
 public String getName() {
 return name;
 }

public void depositAccount(float amount) {
account.deposit(amount);

}
public void withdrawAccount(float amount) {
 account.withdraw(amount);
}
public float balanceAccount() {

 amount = account.balance();
 return amount;
 }

public void setProfessionId(int pid) {
 professionId = pid;

 }
public int getProfessionId() {
 return professionId;
}

}

Figure-6. Class definition for the container object Employee

public class Sub_Account {
 float total = 0;
 public void deposite(float amount) {
 total = total + amount;
 }
 public void witdraw(float amount) {
 total = total - amount;
 }
 public float balance() {
 return total;
 }
}

Figure-7. Code for sub-object class Sub_Account

public interface Sub_Account {
 public void deposit_W(float amount);

public void withdraw_W(float amount);
 public float balance_R();
}

Figure-8. Interface description for class Sub_Account

public class Connective_Account {
 int obj_id;

Control_Account controlObject;
 public Connective_Account() {
 controlObject = new Control_Account();

 obj_id = controlObject.get_id();
 }
 public void deposite(float amount) {

 }
 public void witdraw(float amount) {

 }
 public float balance() {

 if (controlObject == null) (1)
controlObject = (Control_Account)
 dcobeServer.get_controlObject(obj_id);(2)

return controlObject.balance();(3)
}

}

Figure-9. Class definition for the connective object Connective_Account

public class Control_Account {
 Sub_Account subObject;

int obj_id;
int server_id;

public Control_Account() {

 subObject = new Sub_Account();
 server_id = dcobeServer.get_serverId();

obj_id = dcobeServer.register_object(this,subObject);(1)
}
public void deposite(float amount) {

 }
 public void witdraw(float amount) {

 }

public float balance() {
 access_right(R);(2)

float account = subObject.balance();(3)
access_end(server_id, R);
return account;

}
}

Figure-10. Class definition for the control object Control_Account

Lexical
Analyzer

Syntax
Analyzer

Code
Generator

Error
Reporter

Class_itf.java
Connective_Class.java

Control_Class.java

Error Code

Figure-11. Automatic Class Generator Modules

1. list_of_itf → ∈ | itf list_of_itf

2. itf → “public” “interface” id “{” method_list “}”

3. method_ list → ∈ | method method_list

4. method → “public” return_type id “(” parameter_list “) “;”

5. parameter_list → ∈ | parameter | parameter “,” parameter_list

6. parameter → parameter_type id

7. parameter_type → “int” | “String” | “boolean” | id

8. return_type → ∈ | “void” | “int” | “String” | “boolean” | id

Figure-12. Grammar rules for interface description

Figure-13. Composite structure of book object as accessed by three distinct authors

Site 1 Site 2

Site 3

Author1 Author2

contents

index

references

Chapter 1

Chapter 2

1.2

2.1

2.1.1

contents

book

preface

index

references

Chapter 1

1.1

1.1.1

Chapter 2

1.2

2.1

contents

preface

index

Chapter 1

1.2

1.2.1

Chapter 3

1.3

3.1

3.2

3.2.1

Author3

sub-object

book

book

parts parts

parts

Figure-14. Graphical user interface for authors

Figure-15. DCO creation and registration costs for increasing number of DCOs

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

0 5 10 15 20 25 30 35 40 45 50

number of DCO (x1000)

tim
e

in
m

s
create
register

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160

number of SOs in a DCO

tim
e

in
m

s
dco create

dco lookup from
remote site

Figure-16. DCO create and lookup costs for increasing number of SOs

Figure-17. Update and invalidation costs for increasing sizes of SOs

0

2
4

6

8

10
12

14

0 5 10 15 20 25 30

size of a SO (x1000 byte)

tim
e

in
m

s
get a SO af ter inv alidate

inv alidate a SO

update a SO

Table-1. Comparison of basic operations in RMI and DCOBE

Basic RMI and DCO Operations Time in
RMI

Time in
DCOBE

Object creation on a local site 0.26 ms 0.82 ms

Object registering 3.32 ms 0.42 ms

Lookup and binding 3.51 ms 6.02 ms

Initial method invocation 0.42 ms 5.75 ms

Successive method invocations 0.42 ms 0.001 ms

Update and invalidate a sub-object’s replicas
• invalidate replicas (for i number of replicas)
• update replicas (for i number of replicas)

i*0.41 ms
i*1.30 ms

	Keywords: distributed composite object, distributed object-based systems, composition, replication, cooperative computations.
	Keywords: distributed composite object, distributed object-based systems, composition, replication, cooperative computations.
	1. Introduction
	6. Distributed Composite Object Based Environment: DCOBE
	
	
	
	

	
	
	
	6.3 DCOBE Services
	Start a new application: Starting a new application requires the creation of a DCOBE server object at the requesting node. DC registers the new server under a unique server_id in a server-access table and broadcasts the 'server_id, node_address' information pair to all current servers. The content of the server-access table is replicated at each node, providing the information for servers to communicate directly with one another.
	
	
	
	
	
	
	
	9. An Application: Collaborative Book Writing
	References

