
CS105 

Introduction to Object-Oriented 

Programming

Prof. Dr. Nizamettin AYDIN

naydin@itu.edu.tr

nizamettin.aydin@ozyegin.edu.tr

1



Class Diagrams

2



Outline

• UML (Unified Modeling Language)

–Goals of UML

–Characteristics of UML

• Conceptual Modelling

• Uses for UML

• UML Class Diagram

–Purpose of Class Diagrams

–Benefits of Class Diagrams

• Vital components of a Class Diagram

• Relationships between classes

• Class Diagram Examples
3



UML (Unified Modeling Language)

• a standardized general-purpose, graphical 

modeling language in the field of Software 

Engineering.

• used to specify, visualize, construct, and 

document the artifacts (major elements) of the 

software system.

• helps in designing and characterizing, especially 

those software systems that incorporate the 

concept of Object orientation. 

• describes the working of both the software and 

hardware systems.

4



Goals of UML

• Since it is a general-purpose modeling language, 

it can be utilized by all the modelers.

• UML came into existence after the introduction of 

object-oriented concepts to systemize and 

consolidate the object-oriented development, due 

to the absence of standard methods at that time.

• The UML diagrams are made for business users, 

developers, ordinary people, or anyone who is 

looking forward to understand the system, such 

that the system can be software or non-software.

• UML is a simple modeling approach that is used to 

model all the practical systems.
5



Characteristics of UML

• The UML has the following features:

• It is a generalized modeling language.

• It is distinct from other programming languages 

like C++, Python, etc.

• It is interrelated to object-oriented analysis and 

design.

• It is used to visualize the workflow of the system.

• It is a pictorial language, used to generate 

powerful modeling artifacts.

6



Conceptual Modeling

• A conceptual model is composed of several 

interrelated concepts

• makes it easy to understand the objects and how 

they interact with each other. 

• This is the first step before drawing UML 

diagrams.

• Following are some object-oriented concepts that 

are needed to begin with UML:

7



Conceptual Modeling

• Following are some object-oriented concepts that are needed to begin 
with UML:
– Object: 

• An object is a real world entity.

• There are many objects present within a single system. 

• It is a fundamental building block of UML.

– Class: 

• a software blueprint for objects, which means that it defines the variables and methods common 
to all the objects of a particular type.

– Abstraction: 

• the process of portraying the essential characteristics of an object to the users while hiding the 
irrelevant information. 

• Basically, it is used to envision the functioning of an object.

– Inheritance: 

• the process of deriving a new class from the existing ones.

– Polymorphism: 

• a mechanism of representing objects having multiple forms used for different purposes.

– Encapsulation: 

• binds the data and the object together as a single unit, enabling tight coupling between them.

8



UML Diagrams

9



Uses for UML

• As a sketch: 

–to communicate aspects of system

• forward design: doing UML before coding

• backward design: doing UML after coding as documentation

• often done on whiteboard or paper

• used to get rough selective ideas

• As a blueprint: 

–a complete design to be implemented

• sometimes done with CASE (Computer-Aided Software 
Engineering) tools

• As a programming language: 

–with the right tools, code can be auto-generated and 
executed from UML

• only good if this is faster than coding in a "real" language

10



UML Class Diagram

• What is a UML class diagram?

–a picture of the classes in an OO system, their fields and 

methods, and connections between the classes that 

interact or inherit from each other.

• shows the attributes, classes, functions, and relationships to give 

an overview of the software system. 

• constitutes class names, attributes, and functions in a separate 

compartment that helps in software development. 

• What are some things that are not represented in 

a UML class diagram?

–details of how the classes interact with each other

–algorithmic details; 

• how a particular behavior is implemented

11



Purpose of Class Diagrams

• to build a static view of an application. 

–It is the only diagram that is widely used for construction, 

and it can be mapped with object-oriented languages. 

–It is one of the most popular UML diagrams.

• Following are the purpose of class diagrams given 

below:

–It analyses and designs a static view of an application.

–It describes the major responsibilities of a system.

–It is a base for component and deployment diagrams.

–It incorporates forward and reverse engineering.

12



Benefits of Class Diagrams

• It can represent the object model for complex 

systems.

• It reduces the maintenance time by providing an 

overview of how an application is structured 

before coding.

• It provides a general schematic of an application 

for better understanding.

• It represents a detailed chart by highlighting the 

desired code, which is to be programmed.

• It is helpful for the stakeholders and the 

developers.

13



Vital components of a Class Diagram

• The class diagram is made up of three sections:

–Upper Section: 

• encompasses the name of the class. 

–A class is a representation of similar objects 

that shares the same relationships, attributes, 

operations, and semantics. 

• rules that should be taken into account while 

representing a class:

–Capitalize the initial letter of the class name.

–Place the class name in the center of the upper section.

–A class name must be written in bold format.

–The name of the abstract class should be written in italics format.

14



Vital components of a Class Diagram

• The class diagram is made up of three sections:

–Middle Section: 

• constitutes the attributes, which describe 
the quality of the class.

visibility name : type [count] = default_value

• The attributes have the following characteristics:

–The attributes are written along with its visibility 
factors, which are 

• public (+), private (-), protected (#), and 
package/default (~), derived (/). 

• derived attribute: not stored, but can be computed from other attribute values

–The accessibility of an attribute class is illustrated by the visibility factors.

–A meaningful name should be assigned to the attribute, which will explain 
its usage inside the class.

• underline static attributes

–attribute example:

- balance : double = 0.00

15



Vital components of a Class Diagram

• The class diagram is made up of three sections:

–Lower Section: 

• The lower section contain methods or operations. 

visibility name (parameters) : return_type

• underline static methods

–method example:

+ distance(p1: Point, p2: Point): double

• The methods are represented in the form of a list, 

where each method is written in a single line. 

• omit return_type on constructors and when return 

type is void

• It demonstrates how a 

class interacts with 

data.

16



Comments

• represented as a folded note, attached to the 

appropriate class/method/etc by a dashed line

17



Perspectives of Class Diagram

• The choice of perspective depends on how far along you 

are in the development process.

• A diagram can be interpreted from various perspectives:

–Conceptual: 

• represents the concepts in the domain

–Specification: 

• focus is on the interfaces of Abstract Data Type (ADTs) in the 

software

–Implementation: 

• describes how classes will implement their interfaces

• the class name is the only mandatory information

18



Relationships between classes

• A class may be involved in one or more 

relationships with other classes. 

• A relationship can be one of the following types:

19



Relationships between classes

• Generalization (Inheritance): 

–a relationship between a parent class (superclass) and a 

child class (subclass).

–Represents an "is-a" relationship.

–An abstract class name is shown in italics.

–inheritance between classes

• The child class is inherited from the parent 

class.

–SubClass1 and SubClass2 are specializations 

of SuperClass

• inheritance example with two styles. 

–they are semantically equivalent.

20



Relationships between Classes

• Association: 

–describes a static or physical connection between two or 

more objects. 

–depicts how many objects are there in the relationship.

–a usage relationship

• aggregation

• Composition

• dependency

–For example, a department is associated with the 

college.

21



Relationships between Classes

• Association: 

–Simple association

• A structural link between two peer classes.

• There is an association between Class1 and Class2

–The figure below shows an example of simple association. 

• There is an association that connects the <<control>> class Class1 and 

<<boundary>> class Class2. 

• The relationship is displayed as a solid line connecting the two classes.

22



Relationships between Classes

• Association: 

–Multiplicity (Cardinality)

• expressed in terms of:

–one to one

–one to many

–many to many

• Associational (usage) relationships

1. multiplicity (how many are used)

*  0, 1, or more

1  1 exactly

2..4  between 2 and 4, inclusive

3..*  3 or more

2. name (what relationship the objects have)

3. navigability (direction)

23



Multiplicity of associations

• one-to-one

–each student must carry exactly one ID card

• one-to-many

–one rectangle list can contain many rectangles

24



Relationships between Classes

• Association: 

–Aggregation

• A special type of association.

• It represents an “is part of" relationship.

–Class2 is part of Class1.

–Many instances (denoted by the *) of Class2 can be associated with 

Class1.

–Objects of Class1 and Class2 have separate lifetimes.

• The figure below shows an example of aggregation. 

• The relationship is displayed as a solid line with a unfilled diamond at the association end, which is connected to the 

class that represents the aggregate.

25

The company encompasses a number of 

employees, and even if one employee 

resigns, the company still exists.



Relationships between Classes

• Association: 

–Composition

• A stronger version of aggregation,

–where parts are destroyed when the whole is destroyed

–Objects of Class2 live and die with Class1

–Class2 cannot stand by itself.

• It represents an "is entirely made of" relationship.

• The figure below shows an example of composition. 

• The relationship is displayed as a solid line with a filled diamond at the association end, which is connected to the 

class that represents the whole or composite.

26

A contact book consists of multiple 

contacts, and if you delete the contact 

book, all the contacts will be lost.



Relationships between Classes

• Association: 

–Dependency

• A special type of association that forms a weaker relationship.

–symbolized by a dotted line

• A semantic relationship between two or more classes, 

–where a change in one class cause changes in another class,

• but not the other way around

• The figure below shows an example of dependency. 

• The relationship is displayed as a dashed line with an open arrow.

27

The Person class might have a hasRead

method with a Book parameter that returns 

true if the person has read the book 

(perhaps by checking some database).



Abstract Classes

• In the abstract class, no objects can be a direct 

entity of the abstract class. 

• can neither be declared nor be instantiated. 

–It is used to find the functionalities across the classes. 

• written in italics. 

• It is best to use the abstract class with multiple 

objects.
• Assume that we have an abstract class named 

displacement with a method declared inside it, 

and that method will be called as a drive (). 

–This abstract class method can be 

implemented by any object, for example, car, 

bike, scooter, cycle, etc.

28



How to draw a Class Diagram?

• The class diagram is used most widely to construct 
software applications. 

–It not only represents a static view of the system but also all the 
major aspects of an application. 

–A collection of class diagrams as a whole represents a system.

• Key points to keep in mind while drawing a class diagram:

–Give a meaningful name to the class diagram.

–Objects and their relationships should be acknowledged in advance.

–Attributes and methods of each class must be known.

–A minimum number of desired properties should be specified 

• more number of the unwanted property will lead to a complex diagram.

–Notes can be used as and when required by the developer to 
describe the aspects of a diagram.

–The diagrams should be redrawn and reworked as many times to 
make it correct before producing its final version.

29



Class Diagram Example: Voting Program

30



Class Diagram Example: Rental System

31

DVD Movie VHS Movie Video Game

Rental Item

Rental Invoice

1..*
1

Customer

Checkout Screen

0..1

1

Simple

Association

Class

Abstract

Class

Simple 

Aggregation

Generalization

Composition

Multiplicity



Class Diagram Example: Student Record

32

StudentBody

+ main (args : String[])

+ toString() : String

1 100
Student

- firstName : String

- lastName : String

- homeAddress : Address

- schoolAddress : Address

+ toString() : String

- streetAddress : String

- city : String

- state : String

- zipCode : long

Address



Class Diagram Example: Order System

33



Class Diagram Example: GUI

• A class diagram may also have notes attached to 

classes or relationships.

34



Class Diagram Example: Sales Order System

35



Tools for creating UML diagrams

• ClickUp
– https://clickup.com/

• Violet 
– http://horstmann.com/violet/ 

• Rational Rose
– https://www.ibm.com/support/pages/ibm-rational-rose-enterprise-7004-ifix001

• Visual Paradigm UML Suite 
– http://www.visual-paradigm.com/ 

• SmartDraw
– https://www.smartdraw.com/

• EdrawMax
– https://www.edrawsoft.com/

• Lucidchartx
– https://www.lucidchart.com/

⁞

• there are many others, but most are commercial

36



Any Questions?

37


	Slide 1
	Slide 2
	Slide 3: Outline
	Slide 4: UML (Unified Modeling Language)
	Slide 5: Goals of UML
	Slide 6: Characteristics of UML
	Slide 7: Conceptual Modeling
	Slide 8: Conceptual Modeling
	Slide 9: UML Diagrams
	Slide 10: Uses for UML
	Slide 11: UML Class Diagram
	Slide 12: Purpose of Class Diagrams
	Slide 13: Benefits of Class Diagrams
	Slide 14: Vital components of a Class Diagram
	Slide 15: Vital components of a Class Diagram
	Slide 16: Vital components of a Class Diagram
	Slide 17: Comments
	Slide 18: Perspectives of Class Diagram
	Slide 19: Relationships between classes
	Slide 20: Relationships between classes
	Slide 21: Relationships between Classes
	Slide 22: Relationships between Classes
	Slide 23: Relationships between Classes
	Slide 24: Multiplicity of associations
	Slide 25: Relationships between Classes
	Slide 26: Relationships between Classes
	Slide 27: Relationships between Classes
	Slide 28: Abstract Classes
	Slide 29: How to draw a Class Diagram?
	Slide 30: Class Diagram Example: Voting Program
	Slide 31: Class Diagram Example: Rental System
	Slide 32: Class Diagram Example: Student Record
	Slide 33: Class Diagram Example: Order System
	Slide 34: Class Diagram Example: GUI
	Slide 35: Class Diagram Example: Sales Order System
	Slide 36: Tools for creating UML diagrams
	Slide 37

