
CS105

Introduction to Object-Oriented

Programming

Prof. Dr. Nizamettin AYDIN

naydin@itu.edu.tr

nizamettin.aydin@ozyegin.edu.tr

1

Abstract Classes and

Interfaces

2

Outline

• Shapes

• Inheritance

• Abstract Classes

• Abstract and Concrete Classes

• Abstract Functions

• Interface

• Adapter Class

• instanceof operator

3

Shapes

• Let’s implement classes for shapes

–Rectangle

–Circle

–etc.

• What is common in all these shapes?

– x and y coordinates that hints about the location of the

shape.

4

Shapes

• (x,y) coordinate

• In circle we hold an additional radius, in rectangle

we have height and width.

5

(x,y) r

(x,y) w

h

Inheritance

• We can have a shape class.

• Other shapes can inherit from the shape class.

6

Shape

Circle Rectangle

• Sometimes a class should define a method that

logically belongs in the class, but that class cannot

specify how to implement the method.

• For instance:

–Every shape has an area.

–Logically, every shape should have a getArea method.

–But ...

7

• Every shape has an area.

• Logically, every shape should have a getArea

method.

• But, the area of every shape is calculated

differently.

–Area of Circle = pow(radius, 2) × pi

–Area of Rectangle = height × width

• There is not any implementation of getArea

method in the Shape class that is correct for all

subclasses of Shape.

–Therefore, we need to enforce the subclasses of Shape

to implement the getArea method.
8

Abstract Classes

• At this point

–Every shape has an area.

–But there is not a possible way to implement

the getArea method in the Shape class.

–Therefore, maybe we should not let the instantiation of a

Shape object, even when we have the Shape class.
• instantiate: create a new instance

• Can we?

• Yes we can, with use of abstract classes.

• Classes that cannot be used to instantiate objects

are abstract classes.
9

Abstract and Concrete Classes

• Classes that cannot be used to instantiate objects

are abstract classes.

• Classes that can be used to instantiate objects are

concrete classes.

• Concrete class is the default class.

10

Abstract Classes

• Classes that cannot be used to instantiate objects

are abstract classes.

• They are used as super-classes during inheritance

and provide common attributes and behaviors to

its sub-classes.

11

Shape Class (Concrete)

12

Shape Class (Abstract)

• You make a class

abstract by

declaring it with
keyword abstract.

13

Shape Class (Abstract)

14

Abstract Classes

• Abstract classes are incomplete.

• Their sub-classes can complete these incomplete

parts and become concrete classes.

• If they don’t, sub-classes will be also abstract.

• What do we mean by incomplete?

–Remember the getArea() function.

15

Abstract Functions

• A method that has been declared but not

implemented is an abstract function.

• The keyword abstract needs to be used.

• The body of the method is missing.

– incomplete function

• Constructors and static methods cannot be

abstract.
16

Shape Class (Abstract)

17

Abstract Classes

• A class which contains at least one abstract

function is an abstract class and must be declared

abstract.

• A class can still be an abstract class even if it does

not contain any abstract methods but contain the

abstract keyword.

• Concrete classes provide implementations of

every method they declare.

• A concrete sub-class needs to implement all the

abstract methods inherited from the abstract

super-class.

18

Abstract Classes

• When inheriting from an abstract class

–If the sub-class implements all the inherited abstract

methods, it can be instantiated

–If the subclass does not implement all the inherited

abstract methods, it too must be abstract.

19

Circle and Rectangle Classes

• Inheriting from abstract Shape class.

20

Circle and Rectangle Classes

• Inheriting from abstract Shape class.

–One solution is to make Rectangle class abstract as well

21

Circle and Rectangle Classes

• Inheriting from abstract Shape class.

–The other solution is to implement the getArea method.

22

Circle and Rectangle Classes

• Inheriting from abstract Shape class.

–Same for the circle class..

23

Using Shapes

24

Quick Note

• Not all hierarchies contain abstract classes.

• Not all super-classes needs to be abstract.

25

Remember the last class

• We have the following classes:

–Shape is not abstract

26

Remember the last class

• When Shape is abstract, we don’t get that

compiler error.

–Why?

27

Remember the last class

• When Shape is abstract, we don’t get that

compiler error.

–Why?

• getArea method has been declared in Shape class

• Any object that Shape can refer to needs to

implement this getArea method in order to be

instantiated.

28

• There are things we cannot do with abstract

classes.

• Lets see interfaces...

29

Interface

• Interfaces offer a capability requiring that

unrelated classes implement a set of common

methods

• An interface only declares the public behaviors of

a class but does not implement them.

–Based on this definition, in an interface

• All methods are implicitly public

• All methods are implicitly abstract

–There are not any concrete methods

• There are not any attributes

–It does not contain any class instance

–It can contain constants (final variables)

30

Example interface

• Use the keyword interface

• Can we instantiate an interface?

–No.

• Actually an interface is a very abstract class

–None of its methods are implemented

–All methods are abstract

31

When do you need an interface?

• You would write an interface when you want

classes of various types to all have a certain set of

capabilities (behaviors).

–You can write methods that work for more than one kind

of class.

• Very common in GUI implementations.

interface KeyListener {

public void keyPressed(KeyEvent e);

public void keyReleased(KeyEvent e);

public void keyTyped(KeyEvent e);

}

32

Interface

• A class can extend a class.

• A class can implement an interface.

33

34

Interface

• A class can only extend one class.

• A class can implement multiple interfaces.

–This lets the class fill multiple “roles”

–In writing Applets, it is common to have one class

implement several different listeners

• Example:

class MyApplet extends Applet

implements ActionListener,

KeyListener {

...

}

35

• When a class implements an interface, the class

needs to implement all the declared methods of

the interface.

• If all the declared methods are not implemented,

then the class becomes an abstract class.

–At this point, we need to use the keyword abstract

36

37

38

• You can even extend an interface (to add

methods):

39

Interface

 You can even extend an interface (to add

methods):

interface KeyListener {

public void keyPressed(KeyEvent e);

public void keyReleased(KeyEvent e);

public void keyTyped(KeyEvent e);

}

interface FunkyKeyListener extends KeyListener {

public void funkykeyEvent(KeyEvent e);

}

40

Interface

• When you implement an interface, you need to

implement all the declared functions.

• There can be a lot of methods

interface KeyListener {

public void keyPressed(KeyEvent e);

public void keyReleased(KeyEvent e);

public void keyTyped(KeyEvent e);

}

• What if you only care about a couple of these

methods, not all?

41

Adapter Class

• An adapter class implements an interface and

provides empty method bodies

class KeyAdapter implements KeyListener {

public void keyPressed(KeyEvent e) { };

public void keyReleased(KeyEvent e) { };

public void keyTyped(KeyEvent e) { };

}

• You can override only the methods you care about

• This isn’t elegant, but it does work

• Java provides a number of adapter classes

42

Example…

• With interface you can write methods that work

with more than one class

interface RuleSet {

boolean isLegal(Move m, Board b);

void makeMove(Move m);

}

• Every class that implements RuleSet must have

these methods

43

…Example…

class CheckersRules implements RuleSet {

public boolean isLegal(Move m, Board b)

{ ... }

public void makeMove(Move m) { ... }

}

class ChessRules implements RuleSet {

public boolean isLegal(Move m, Board b)

{ ... }

public void makeMove(Move m) { ... }

}

44

…Example

• Is this a legal statement?

RuleSet rulesOfThisGame = new ChessRules();

• This assignment is legal because a

rulesOfThisGame object is a RuleSet object.

• Is this a legal statement?

if (rulesOfThisGame.isLegal(m, b)) {

rulesOfThisGame.makeMove(m);

}

• This statement is legal because, whatever kind of

RuleSet object rulesOfThisGame is, it must have

isLegal and makeMove methods

45

instanceof operator

• instanceof is a keyword that tells you whether

a variable “is a” member of a class or interface

class Dog extends Animal implements Pet {...}

Animal fido = new Dog();

• Are these true or false?

fido instanceof Dog

fido instanceof Animal

fido instanceof Pet

46

Vocabulary …

• abstract method

–a method which is declared but not defined (it has no

method body)

• abstract class

–a class which either (1) contains abstract methods, or (2)

has been declared abstract

• Instantiate

–to create an instance (object) of a class

• Interface

–Similar to a class, but contains only abstract methods

(and possibly constants)

47

…Vocabulary

• Adapter class

–A class that implements an interface but has only empty
method bodies

• Final methods

–methods that cannot be overridden

–all private or static methods are implicitly final

• Static (early) binding

–Binding occurs during compile time

–Uses reference type during binding

• Dynamic (late) binding

–Binding occurs during run time

–Uses object type during binding

48

Any Questions?

49

