
CS105

Introduction to Object-Oriented

Programming

Prof. Dr. Nizamettin AYDIN

naydin@itu.edu.tr

nizamettin.aydin@ozyegin.edu.tr

1

Inheritance and

Polymorphism

2

Outline

• more benefits of inheritance

• Reference and Object

• Inheritance

• Polymorphism

• Compile Time vs. Runtime

• Casting

• Final method

• Static vs. Dynamic Binding

3

more benefits of inheritance

• Assume that we have an animal farm with different

types of animals and we don’t know inheritance

4

• Assume that we have an animal farm with different

types of animals and we don’t know inheritance.

• Can we store all these different animal types in

one data structure, like an array?

• Dog

• Cat

• Cow

• Mouse
5

• Assume that we have an animal farm with different
types of animals and we don’t know inheritance.

• Can we store all these different animal types in
one data structure, like an array?

• An array needs to
hold objects of same
type!

• Dog

• Cat

• Cow

• Mouse

6

• Assume that we have an animal farm with different

types of animals and we don’t know inheritance.

• Can we store all these different animal types in

one data structure, like an array?

–An array needs to hold

objects of same type!

• Dog

• Cat

• Cow

• Mouse

7

• Inheritance gives us the ability to store all animals

in one data structure.

• A cat/dog/cow/mouse is an Animal

8

Reference and Object

Reference Object

• Animal is an animal

9

Reference and Object

Reference Object

• Are these statements legal?

–Cat is a cat

–Dog is a dog

• Both of them are legal statements.

10

Reference and Object

Reference Object

• Are these statements legal?

• Can an animal reference point to a cat/dog object?

–Cat is an animal

–Dog is an animal

• Both of them are legal statements.

11

12

Inheritance

• Therefore we can keep all animal types in one

single data structure.

• An animal array can store an animal object and

other animal types (cat, dog etc.).

13

Reference and Object

Reference Object

• Is this a legal statement?

• Not a legal statement

–Not all animals is a cat.

–An animal may not have all the capabilities of a cat.

–Cats can jump but not all animals can.
14

Reference and Object

Reference Object

• Is this a legal statement?

• Cat is an object.

• This is a legal statement.

15

• Are these statements valid?

–An animal reference can refer to a cat object.

–All cats are animal.

16

• Are these statements valid?

–animal1 is an animal reference

–Compiler knows the reference type but not the object type

17

• What is the output?
18

Polymorphism

• Polymorphism

–Helps build extensible systems

–Programs generically process objects as superclass

objects

• Can add classes to systems easily

–Classes must be part of generically processed hierarchy

• Polymorphism gives us the capability to call the

right method.

19

20

Compile Time vs. Runtime

• What does compiler do?

–Compiler interprets our code

• Then what happens in runtime?

–At runtime, the environment executes the interpreted code

• There are two steps of our programs:

–Compiler time

–Runtime

• Compile time decisions are based on reference
type

• Run time decisions are based on object type

21

Compiler

• Only knows about the reference type.

• When a method is called, it looks for that method

inside that particular reference type class.

22

Run time

• At run time, the exact run time object is used to

find where a method belongs to.

• The method used needs to match with the

signature of the actual method.

• Example in the next slide...

23

• toString() method

• The method signatures match

24

• Is there a way to fix this?

–Lets assume that animal1

will always refer to a cat object.
25

• It is possible with

explicit casting

26

Casting

• Widening

–Automatic type promotion (from int to double)

–Super-class reference = sub-class object;

• Narrowing

–Explicit casting (from double to int)

–Sub-class reference = (subclass) super-class reference;

27

Casting

• Compiler will search

for speak method

inside the cat class.
28

Casting

• What do you think will

happen at this point?

29

Casting

• We won’t get a compiler error, relax

• It will be worse, we will get a run time error

30

Casting

• We need to make sure that we don’t cast wrong.

• How?

–By doing run time type check

– instanceof operator

• Checks whether there is an is a relationship

31

Final method

• A method in the super class that cannot be

overridden in a subclass.

• Any idea which methods can be final?

• Methods that are declared private are implicitly

final, because it’s not possible to override them in

a subclass.

• Methods that are declared static are implicitly final.

32

Static vs. Dynamic Binding

• A final method’s declaration can never change,

–so all sub classes use the same method implementation,

and calls to final methods are resolved at compile time—

–this is known as static (early) binding.

• Dynamic (late) binding: methods to be executed

are determined in run time,

–depending on the object type.

33

What is the output?

34

What is the output?

35

What is the output?

36

• Call to the super.someMethod() get bound at

compile time.

• Call to the this.someMethod() get bound at

run time.

37

Any Questions?

38

