
CS105

Introduction to Object-Oriented

Programming

Prof. Dr. Nizamettin AYDIN

naydin@itu.edu.tr

nizamettin.aydin@ozyegin.edu.tr

1

Inheritance

2

Outline

• Inheritance Hierarchies

• Inheritance

• protected Members

• Class Hierarchy

• Extending from Object Class

• Derived Classes

• Constructors

• super();

• Constructor Call

• Overriding (Overwriting)

• Overloading vs. Overriding

3

Inheritance Hierarchies

4

Inheritance

• In object-oriented design, inheritance is a relationship

between

–a more general class (called the base class)

and

–a more specialized class (called the derived class).

• Classes are created from existing ones

–Absorbing attributes and behaviors

• The derived class inherits data and behavior from the base class.

• Adding new capabilities

• Software reusability

• Every car (in previous slide) is a vehicle.

• IS-A

–denotes inheritance.

5

Inheritance

• The IS-A Relationship

–All Cars are Vehicles.

–All Motorcycles are Vehicles.

–All Sedans are Vehicles.

• Vehicles is the base class.

• Car is a derived class.

• Truck derives from Vehicle 6

Inheritance

• Everything about being a Vehicle is inherited by Cars and

Trucks and SUVs.

• Those things specific to Cars are only inherited by Sedans

and SUVs.

7

Inheritance

• The Substitution Principle:

• The substitution principle states that you can always use a

derived-class object when a base-class object is expected.

• Suppose we have an algorithm or function that

manipulates a Vehicle object.

• Since a car IS-A vehicle, we can supply a Car object to

such an algorithm or function, and it will work correctly.

8

Inheritance

• Superclasses and Subclasses

• “Is a” Relationship

–Object “is an” object of another class

• Rectangle “is a” quadrilateral

–Class Rectangle inherits from class Quadrilateral

–Form tree-like hierarchical structures

9

Superclass Subclasses

Student GraduateStudent

UndergraduateStudent

Shape Circle

Triangle

Rectangle

Loan CarLoan

HomeImprovementLoan

MortgageLoan

Employee FacultyMember

StaffMember

Account CheckingAccount

SavingsAccount

Some simple inheritance examples in which the subclass “is a” superclass.

Inheritance

• An inheritance hierarchy for university
CommunityMembers.

10

CommunityMember

Employee Student

Faculty Staff

Administrator Teacher

Alumni

CommunityMember is a direct

superclass of Employee

CommunityMember is

an indirect superclass of
Faculty

Inheritance

• A portion of a Shape class hierarchy.

11

Shape

TwoDimensionalShape ThreeDimensionalShape

Circle Square Triangle Sphere Cube Tetrahedron

protected Members

• protected access members

–Between public and private in protection

–Accessed only by

• Superclass methods

• Subclass methods

• Methods of classes in same package

–package access

• Relationship between Superclass and Subclass Objects:

• Subclass object

–can be treated as superclass object

• Reverse is not true

– Shape is not always a Circle

–Every class implicitly extends java.lang.Object

• Unless specified otherwise in class definition’s first line

12

13

Point.java

Line 5

protected

members prevent

clients from direct

access (unless

clients are Point

subclasses or are

in same package)

1 // Fig. 9.4: Point.java

2 // Definition of class Point

3

4 public class Point {

5 protected int x, y; // coordinates of Point

6

7 // No-argument constructor

8 public Point()

9 {

10 // implicit call to superclass constructor occurs here

11 setPoint(0, 0);

12 }

13

14 // constructor

15 public Point(int xCoordinate, int yCoordinate)

16 {

17 // implicit call to superclass constructor occurs here

18 setPoint(xCoordinate, yCoordinate);

19 }

20

21 // set x and y coordinates of Point

22 public void setPoint(int xCoordinate, int yCoordinate)

23 {

24 x = xCoordinate;

25 y = yCoordinate;

26 }

27

28 // get x coordinate

29 public int getX()

30 {

31 return x;

32 }

33

protected members prevent

clients from direct access (unless
clients are Point subclasses or

are in same package)

14

34 // get y coordinate

35 public int getY()

36 {

37 return y;

38 }

39

40 // convert into a String representation

41 public String toString()

42 {

43 return "[" + x + ", " + y + "]";

44 }

45

46 } // end class Point

Point.java

15

Circle.java

Line 4

Circle is a Point

subclass

Line 4

Circle inherits

Point’s

protected

variables and

public methods

(except for

constuctor)

Line 10

Implicit call to

Point

constructor

Line 19

Explicit call to

Point

constructor using

super

1 // Fig. 9.5: Circle.java

2 // Definition of class Circle

3

4 public class Circle extends Point { // inherits from Point

5 protected double radius;

6

7 // no-argument constructor

8 public Circle()

9 {

10 // implicit call to superclass constructor occurs here

11 setRadius(0);

12 }

13

14 // constructor

15 public Circle(double circleRadius, int xCoordinate,

16 int yCoordinate)

17 {

18 // call superclass constructor to set coordinates

19 super(xCoordinate, yCoordinate);

20

21 // set radius

22 setRadius(circleRadius);

23 }

24

25 // set radius of Circle

26 public void setRadius(double circleRadius)

27 {

28 radius = (circleRadius >= 0.0 ? circleRadius : 0.0);

29 }

30

Circle is a Point subclass

Implicit call to Point constructor

Circle inherits Point’s

protected variables and public

methods (except for constuctor)

Explicit call to Point

constructor using super

16

Circle.java

Lines 44-48

Override method

toString of class

Point by using

same signature

31 // get radius of Circle

32 public double getRadius()

33 {

34 return radius;

35 }

36

37 // calculate area of Circle

38 public double area()

39 {

40 return Math.PI * radius * radius;

41 }

42

43 // convert the Circle to a String

44 public String toString()

45 {

46 return "Center = " + "[" + x + ", " + y + "]" +

47 "; Radius = " + radius;

48 }

49

50 } // end class Circle

Override method toString of class

Point by using same signature

17

InheritanceTest.

java

Lines 18-19

Instantiate

objects

Line 22

Circle invokes

method toString

Line 26

Superclass

object

references

subclass

Line 29

Point invokes

Circle’s

toString method

Line 33

Downcast Point

to Circle

1 // Fig. 9.6: InheritanceTest.java

2 // Demonstrating the "is a" relationship

3

4 // Java core packages

5 import java.text.DecimalFormat;

6

7 // Java extension packages

8 import javax.swing.JOptionPane;

9

10 public class InheritanceTest {

11

12 // test classes Point and Circle

13 public static void main(String args[])

14 {

15 Point point1, point2;

16 Circle circle1, circle2;

17

18 point1 = new Point(30, 50);

19 circle1 = new Circle(2.7, 120, 89);

20

21 String output = "Point point1: " + point1.toString() +

22 "\nCircle circle1: " + circle1.toString();

23

24 // use "is a" relationship to refer to a Circle

25 // with a Point reference

26 point2 = circle1; // assigns Circle to a Point reference

27

28 output += "\n\nCircle circle1 (via point2 reference): " +

29 point2.toString();

30

31 // use downcasting (casting a superclass reference to a

32 // subclass data type) to assign point2 to circle2

33 circle2 = (Circle) point2;

34

Instantiate Point and Circle objects

Circle invokes its overridden

toString method

Superclass object can

reference subclass object

Point still invokes Circle’s

overridden toString method

Downcast Point to Circle

18

InheritanceTest.

java

Line 36

Circle invokes

its overridden

toString method

Line 40

Circle invokes

method area

Line 43

Use instanceof

to determine if

Point refers to

Circle

Line 44

If Point refers to

Circle, cast

Point as Circle

35 output += "\n\nCircle circle1 (via circle2): " +

36 circle2.toString();

37

38 DecimalFormat precision2 = new DecimalFormat("0.00");

39 output += "\nArea of c (via circle2): " +

40 precision2.format(circle2.area());

41

42 // attempt to refer to Point object with Circle reference

43 if (point1 instanceof Circle) {

44 circle2 = (Circle) point1;

45 output += "\n\ncast successful";

46 }

47 else

48 output += "\n\npoint1 does not refer to a Circle";

49

50 JOptionPane.showMessageDialog(null, output,

51 "Demonstrating the \"is a\" relationship",

52 JOptionPane.INFORMATION_MESSAGE);

53

54 System.exit(0);

55 }

56

57 } // end class InheritanceTest

Circle invokes its overridden

toString method

Circle invokes method area

Use instanceof to determine

if Point refers to Circle

If Point refers to Circle,

cast Point as Circle

• Assigning subclass references to superclass references

19

20

Animal Class

• Assume that we

have an animal class

–Attributes

• Name

• Color

–Behaviors

• Speak

• Do they all speak the

same way?

–Dogs bark

–Cats meow

–Cows moo

–Ducks quack

–

21

Different type of animals

• We will talk about two bad solutions:

–First way:

• Inside the same class

–Second way:

• Writing a different class

22

First Way – Inside the same class

• Need to hold an additional attribute:

–Type of the animal

• Main:

23

First Way – Inside the same class

• Speak function

–Check the type of the animal and speak accordingly

24

First Way – Inside the same class

• Main:

25

First Way – Problem 1

• Many dog types, all bark differently

–Loudness

–Pace

–...

• Do we need to

define another dog

type variable?

26

First Way – Problem 1

• Many dog types, all bark differently

–Loudness

–Pace

–...

27

First Way – Problem 2

• Jumping is behavior of some animals

• cat, dog can jump but not the fish...

• In main, we should not call jump for fish, but right now we

can as follows:

28

Different type of animals

• We will talk about two bad solutions:

–First way:

• Inside the same class

–Second way:

• Writing a different class

• Second way: Class for each type

–We will have individual classes for each animal.

29

Second way: Class for each type

30

Different type of animals

• We will talk about two bad solutions:

–First way:

• Inside the same class

–Second way:

• Writing a different class

• A good solution is to use inheritance

–Keep the common attributes and functionalities in one class

–Split only the different attributes and functionalities in different

classes.

31

Inheritance

• A class can inherit some of its attibutes and behaviors from

another class.

• A derived class inherits from the base class.

• A sub class inherits from/extends the super class.

• Keep the common attributes and functionalities in one

class

–Animal class

• name and color

• setter and getter functions

• Split only the different attributes and functionalities in

different classes.

–Cat, dog, cow ... classes

• speak, jump function

32

Animal Class

33

Cat and Dog Classes

34

inherits from

Class Hierarchy

• Classes in Java form hierarchies.

• Animal class represent all animal objects.

• The four subclasses correspond to particular animal type

object.

35

Class Hierarchy

• This class diagram shows that Cat, Dog, Cow and Fish is

also an Animal but the inverse is NOT TRUE.

• Any animal is not a Cat, any Animal is not a Dog, etc.

36

Class Hierarchy

• Can the Animal class be also a derived class?

• When you define a new class in Java, that class

automatically inherits the behavior of its superclass.

• If no superclass is defined, by default, the class will inherit

from the Object class.

37

Class Hierarchy

38

Extending from Object Class

• is the same as

• The extends clause on the header line specifies the name

of the superclass.

• If the extends clause is missing, the new class becomes a

direct subclass of Object, which is the root of Java’s class

hierarchy.

39

Class Hierarchy

• Except for the class named Object that stands at the top of

the hierarchy, every class in Java is a subclass of some

other class.

40

Lets get back to our Animal class

41

Derived Classes

• Instead of calling the set methods can we just modify the

name and color directly?

42

Derived Classes

• What is the problem?

43

Derived Classes

• The name and color is private therefore cannot be

accessed from the derived/sub class Cat.

• Therefore we need to use the getters and setters method

to reach these private class instances.

44

What is inherited?

• All class instances and functions of the base/super class

are inherited.

• But not all of them are visible from the sub class

– Public and protected ones are visible

– Default and private ones are NOT visible

• Please note that default ones are visible if they are in the same package.

–These can be accessed only through getter and setter functions.

45

Remember Visibility

46

Lets get back to our Animal class

47

Constructors

• What happens inside this constructor?

• Initially the default constructor of the super class is called

by compiler.

• Whenever you create an object of an extended class, Java

must call some constructor for the super class object to

ensure that its structure is correctly initialized.

48

Constructors

• Below two are the same!

49

super();

• Similar to this();

• this(arg); // same class constructor call

• super(arg); // super class constructor call

• Both of these need to be used in the first line of the

constructor.

• If not, then default super() will be included by compiler

50

Constructor Call

51

Constructor Call

52

Constructor Call

53

Constructor Call

54

Constructor Call

55

Constructor Call

56

Explicit Animal Constructor

• Lets have an explicit Animal constructor

57

Explicit Animal Constructor

• Lets have an explicit Animal constructor

58

59

Constructor Calls

• Java therefore invokes the superclass constructor in one of

the following ways:

–Classes that begin with an explicit call to this invoke one of the

other constructors for this class, delegating responsibility to that

constructor for making sure that the superclass constructor gets

called.

–Classes that begin with a call to super invoke the constructor in

the super class that matches the argument list provided.

–Classes that begin with no call to either super or this invoke

the default super class constructor with no arguments.

60

Example

• What is the

output?

61

Lets implement some functions

• Animals speak differently, so speak function needs to be

implemented differently.

• In animal class we don’t have a speak() function

62

Cat Class

• Speak function implemented within the Cat class.

63

toString method

• Can we call the toString method from a cat object?

• Yes, we can.

• What will be the output?

64

toString method

• Can the Cat class has its own toString function?

65

Overriding (Overwriting)

• Yes, it can.

–It is called function overriding.

• A subclass may redefine a method that is defined by a
superclass.

–In this case, it is said that the subclass overrides the method.

• When one class extends another, the subclass is allowed to
override method definitions in its superclass.

• Whenever you invoke that method on an instance of the
extended class, Java chooses the new version of the method
provided by that class and not the original version provided by
the superclass.

• The decision about which version of a method to use is always
made on the basis of what the type of object in fact is (run-time)
and not on what it happens to be declared as at that point in the
code (compile-time).

66

What will be the output?

67

toString method

• Cat is still an animal.

• How can I print animal representation as well as the cat

representation?

• How can I print out the following from the above main?

68

• If you need to invoke the original version of a method, you

can do so by using the keyword super as a receiver.

• For example, if you needed to call the original version of an

init method as specified by the superclass, you could call

69

Overloading vs. Overriding

• What is the difference between these two?

• Overloading

–Same class has the same function name but with different

parameters.

• Overriding

–Subclass has the same function signature (name and

parameters) with the superclass

70

toString method in Animal Class

• Is toString an overriding function or not?

–Yes, it overrides the toString method of the Object class

71

Any Questions?

72

