—O0ZYEGIN——
—UNIVERSITY—

CS105

Introduction to Object-Oriented
Programming

Prof. Dr. Nizamettin AYDIN
naydin@itu.edu.tr
nizamettin.aydin@ozyegin.edu.tr

Extending Bank Account
Example

* Primitive types

* Object types

« Memory Allocation
* Heaps

« Member Functions
 Memory Model
 Class Instances

« Standard Streams
* Arrays

Outline

Bank Account

* Lets implement a bank account program

« What type of information do we need for a bank account?
—Account ID (int)
—Balance (double)
—Currency (String)

public class AccountTest {
public static void main(String [] args) {
int accountlID = 1;

double accountlBalance = 1000;
String accountlCurrency="TL";

Bank Account

public class AccountTest {
public static wvoid main(String [] args) {

int accountlID = 1;
double accountlBalance = 1000;
String accountlCurrency="TL";

 Int and double are primitive types
« String Is an object type
* What is primitive type? What is object type?

8 types
—byte

Primitive types

—short (16 bit signed)

—int (32 bit signed)
—long (64 bit)

—float (32 bit floating point)
—double (64 bit floating point)

—boolean
—char

Object types

« Everything else that is not primitive
—Arrays
—All other user defined classes

* An object can be created with the new keyword
—1int [] myArray = new 1int [10];

« When new keyword is used, some space to store this
object is allocated from the memory.

* Where in memory?

Bank Account

public class AccountTest {
public static wvoid main(String [] args) {

int accountlID = 1;
double accountlBalance = 1000;
String accountlCurrency="TL";

 Int and double are primitive types
« String Is an object type
* How are they represented in memory?

Bank Account

public class AccountTest {
public static wvoid main(String [] args) {

int accountlID = 1;
double accountlBalance = 1000;
String accountlCurrency="TL";

* Primitive types are stored in Stack
* Objects are stored in Heap
* What is Stack and Heap?

Memory Allocation

* When you declare a variable in a program, Java allocates
space for that variable from one of several memory
regions:

* Heap
—Holds objects created in the program

« Stack
—Used during the execution of the program

—Stack holds

* short lived objects (local primitive types)

* When a function is called a block of memory (stack frame) is allocated to
hold the local variables.

* It Is removed when the execution of function finishes
—references to other objects in the heap

10

Memory Allocation

* Heap vs. Stack

—Heap holds the objects where Stack holds reference to these
objects

* Objects

—When new keyword is used, some space to store this object is
allocated from the heap memory.

 Variable declaration:

—Primitive type mylint
—Object type myString

e _

Heaps

* A heap (or, for greater clarity, max-heap) is a binary tree
that:

—1s almost complete: all nodes are filled except the last level may
have some missing toward the right.

—all nodes store values that are at least as large as the values
stored in their descendants.

* The heap property ensures that the tree’s largest element
IS stored in the root

* The shape of a heap Is

very reqgular / "\

* In a heap, the left and 2 57
right subtrees both store PN N
elements that are 10 o 2

16
smaller than the root
element 7/ \9 /

4

Memory Allocation

« Variable assignment:

—Primitive type myint
* myint = 5;
. myString
—Object type

 Sting mySiing: oo1me

« myString = new String("Text");

13

Memory Allocation

« Variable assignment:

—Primitive type mylint
* int myInt; 5
* myint = 5;

—Object type myString

 String myString;
* myString = new String("Text");

* Instead of showing the address,
we will use an arrow

Bank Account

public class AccountTest {
public static wvoid main(String [] args) {

int accountlID = 1;
double accountlBalance = 1000;
String accountlCurrency="TL";

i account1ID

1
* Primitive types are stored in Stack

accountlBalance

1000

15

Bank Account

public class AccountTest {
public static wvoid main(String [] args) {
int accountlID = 1;

double accountlBalance = 1000;
String accountlCurrency="TL";

} account1Currency

* Objects are stored In
* Their reference is stored in Stack

16

Bank Account

int accountlID = 1; int accountZID = 2;
double accountlBalance = 1000; double accountZBalance = 800;
String accountlCurrency="TL"; String accountZCurrency="US";
account11D account2ID
account1Balance account2Balance
Cccount1Currency account2Currency

!

17

Member Functions

 Member functions can also be represented in memory diagrams

account] account?

Current Account Class (Version 15)

public class Account {
private int number;
private double balance;
private String currency;

public Account (int number, double balance, String currency) {[]
public Account (int number, String currency) {[]

public Account (int number) {[]

public int getNumber() {[]

public double getBalance() {[]

public String getCurrency() {[]

public void setCurrency(String currency) L

private void checkSetCurrency (String c) {[]

public void deposit(double d) { []
public void withdraw (double d) {[]

public void report () {[]

public String toString() {[]

Another class

» Lets add another class

—Customer object
* Name
e Account

private String name;
private Account account;

public Customer (String name, Account account)
this.name = name;
this.account = account;

{

20

Customer Class

public String getName () {
return this.name;

I

public Account getAccount() {
return this.account;

}

public void deposit (double amount) {
this.account.deposit (amount) ;

I

public void withdraw (double amount) {
this.account.withdraw (amount) ;

}

public wvoid report() {
System.out.println("Customer " + this.name + " ");
this.account.report();

21

Using Customer Class

public static void main(Stringl[] args) {

Account accountl = new Account(l, 100, "TL"):
Customer customerl = new Customer ("&Ali", accountl);

Account accountZ = new Account(l, 200, "USD");
Customer customerZ = new Customer ("Veli"™, account?);

customerl.report();
customeriZ.report();

[*! Problems | @ Javadoc |'_{.:l Declaration | & Console 2
P

<terminated> AccountTest (3) [Java Application] C:\Pragram Fil
hustumer 413

Aoccount 1 has 100.0 TL.

Customer Veli

ABccount 1 has 200.0 USD.

« Draw the Memory Model

22

account]

Draw the Memory Model

customerl account?2

atic vt-trlng [

customer?

23

What is the output?

public static void main(String[] args) {

Account accountl = new Account(l, 100, "TL");
Customer customerl = new Customer ("Ali"™, accountl):;

Account accountZ = new Account(l, 200, "USD"):
Customer customerZ = new Customer ("Vell"™, accountl):;

customerl.deposit (50);

customerl.report();
customer?.report();
| R
<terminated> AccountTest (3) [Java Application] C:\Program Fil
Eﬂ.ﬂ TL have been deposited
The balance i=s 150.0 TL
Customer Ali
Account 1 has 150.0 TL.
Customer Velil
Account 1 has 200.0 US5D.

24

account]

Before and After deposit

customer]l account] customer]l

What is the output?

Account accountl = new Account(l, 100, "TL");
Customer customerl = new Customer ("Al1i"™, accountl):

Account accountZ = new Account(l, 200, "UsSD"):
Customer customerZ = new Customer ("Vell"™, account2):;

customerl.deposit (50);
customer?.gethAccount () .setCurrency ("TL") ;

customerl.report();

customerZ.report () ; _ o
<terminated> AccountTest (3) [lava Application]

bﬂ.ﬂ TL have been deposited
The balance is 150.0 TL
Customer All

Account 1 has 150.0 TL.
Customer Veli

Account 1 has S80.0 TL.

26

account?

Before and After setCurrency

customer? account? customer?

What is the final memory model?

Account accountl = new Account(l, 100, "TL");
Customer customerl = new Customer ("Ali"™, accountl):;

Account accountZ = new Account(l, 200, "UsD");

Customer customerZ = new Customer ("Veli"™, accountl):;

customerl.deposit (50);
customerz.deposit (500)

accountl.withdraw (100) ;
account2.withdraw (200) ;

customerl.report():
customer?Z.report ()

28

Account accountl = new Account(l, 100, "TL"):;
Customer customerl = new Customer ("Ali"™, accountl);

LAccount accountZ = new Account(l, 200, "UsD");
Customer customerZ = new Customer ("Veli", accountl):

account | customer account? customer?2

.

29

account |

customerl.deposit (50);
customer2.deposit (500) ;

customer| account?

M

=

customer?2

account |

accountl.withdraw (100) ;
account2.withdraw (200) ;

customer| account? customer?2

<

=

Additional Classes

 We have customer and account, lets have a bank then.
* A bank has a name and customers.

 Bank Class — Class Instances:

* Only one name but multiple customers.
—name (String)
—customers (array)

public class Bank {
private String name;
private Customer[] customers;

« How many customers?
—Need to know in advance, why?

Bank Class — Class Instances

* Lets say a bank can have at most 3 customers.
 Create an array of size 3

« But you don’t have to use all 3 customers.
—It can be less.
—Therefore keep the number of customers value in a variable.

public class Bank {
private String name;
private Customer[] customers;
private int numCustomers;

Bank Class - Constructor

* Initially banks have no customers.
« What should be the constructor arguments?

public Bank(String n) {
name = n;

customers = new Customer([3]:

numcustomers = 0;

Bank Class — Adding Customers

« An addCustomer method to add customers.
* This method takes one customer as an argument.
* |t updates the array and the numCustomers value.

public void addCustomer (Customer c)
customers [numCustomers] = C;
numcustomers++;

{

Bank Class — Other Functions

public String getName () {
return name;

}

public void setName (String n) {
name = n;

}

public void display() {
System.out.println("---- "+name+" -—-");
for(int 1=0; 1 < numCustomers; 1++) {
customers[i] .report():

}
System.out.println("--—————-—--—--——-——- ")

}

36

Bank Application

« Assume that we have an application which takes customer
iInformation in runtime from users.

* We need to use Scanner in order to read the input from the
console.

import java.utll.Scanner;
public class AccountTest |

public static void main(String[] args) {
Scanner input = new Scanner (System.in);

37

Standard Streams

Text terminal

Keyboard
#1 stdout
#2 stderr Display

#0 stdin

Process

Bank Application

* For each customer, what kind of information do we need?

* Name

e Account
—Balance
—Currency

—Number?
* The system can assign the next available account number to the account.
* Need to keep a counter for account number.

39

Bank Application

public static void main(Stringl[] args) ({

i

Scanner input = new Scanner (System.in);

Bank bank = new Bank ("TrustBank"):;
int accountMNo = 1;

System.out.println("Welcome to " + bank.getName()):;

while (true) {
System.out.print ("Enter customer name (empty to quit):

String customerName = input.nextLine():
if (customerName.equals(""))
break;

System.out.print ("Enter currency: ");
String curr = input.nextLine():;

System.out.print ("Enter initial balance: ");
double balance = Double.parseDouble(input.nextLine());

bank.addCustomer (new Customer (customerName,

new Account (accountNo, balance, curr)));
accountNo++;
bank.display():

}
System.out.println("Bye!");

'I'F};

40

Memory Model?

« What will be the memory model after user enters
—"Ali” for customer name
—"“TL” for account’s currency
—100 for initial balance

 How many objects are we going to create?

bank.addCustomer (new Customer (customerName,
new Account (accountNo, balance, curr)));:

41

Memory Model

bank.addCustomer (new Customer (customerName,
new Account (accountNo, balance, curr))):

* The path is from inside out.

* User entered
— "TL" for account’s currency
— 100 for initial balance

« Return its reference to =

« Customer constructor.

42

Memory Model

bank.addCustomer (new Customer (customerName,
new Account (accountNo, balance, curr))):

 Save customer’s
address at bank’s
customer array

bank

Memory Model

Memory Model

45

Arrays

 Arrays are fixed length.

* We need a data structure that can be resized.
—ArrayList

 ArrayList
—Dynamic in size
—See ArraylList slides ...

 with ArrayList

* We don’t need
numCustomers
anymore.

Bank Class

private String name;
private ArrayList<Customer> customers;

public Bank(String n) {
name = n;
customers = new ArrayList<Customer>();

}

public String getName () {
return name;

}

public void setName{String n) {
name = n;

}

public void addCustomer (Customer customer)
customers.add (customer) ;

}

public void display() {
System.out.println("---- "+name+" --——-");
for (Customer customer: customers) {
customer.report();
}
system.out.println("-—————————————-—- ")

j

{

47

Any Questions?

