
CS105

Introduction to Object-Oriented

Programming

Prof. Dr. Nizamettin AYDIN

naydin@itu.edu.tr

nizamettin.aydin@ozyegin.edu.tr

1

Extending Bank Account

Example

2

Outline

• Primitive types

• Object types

• Memory Allocation

• Heaps

• Member Functions

• Memory Model

• Class Instances

• Standard Streams

• Arrays

3

Bank Account

• Lets implement a bank account program

• What type of information do we need for a bank account?

–Account ID (int)

–Balance (double)

–Currency (String)

4

Bank Account

• int and double are primitive types

• String is an object type

• What is primitive type? What is object type?

5

Primitive types

• 8 types

–byte

–short (16 bit signed)

–int (32 bit signed)

–long (64 bit)

–float (32 bit floating point)

–double (64 bit floating point)

–boolean

–char

6

Object types

• Everything else that is not primitive

–Arrays

–All other user defined classes

• An object can be created with the new keyword

– int [] myArray = new int [10];

• When new keyword is used, some space to store this

object is allocated from the memory.

• Where in memory?

7

Bank Account

• int and double are primitive types

• String is an object type

• How are they represented in memory?

8

Bank Account

• Primitive types are stored in Stack

• Objects are stored in Heap

• What is Stack and Heap?

9

Memory Allocation

• When you declare a variable in a program, Java allocates

space for that variable from one of several memory

regions:

• Heap

–Holds objects created in the program

• Stack

–Used during the execution of the program

–Stack holds

• short lived objects (local primitive types)

• When a function is called a block of memory (stack frame) is allocated to

hold the local variables.

• It is removed when the execution of function finishes

–references to other objects in the heap

10

Memory Allocation

• Heap vs. Stack

–Heap holds the objects where Stack holds reference to these

objects

• Objects

–When new keyword is used, some space to store this object is

allocated from the heap memory.

• Variable declaration:

–Primitive type

• int myInt;

–Object type

• String myString;

11

Heaps

• A heap (or, for greater clarity, max-heap) is a binary tree
that:

–is almost complete: all nodes are filled except the last level may
have some missing toward the right.

–all nodes store values that are at least as large as the values
stored in their descendants.

• The heap property ensures that the tree’s largest element
is stored in the root

• The shape of a heap is
very regular

• In a heap, the left and
right subtrees both store
elements that are
smaller than the root
element

12

Memory Allocation

• Variable assignment:

–Primitive type

• int myInt;

• myInt = 5;

–Object type

• String myString;

• myString = new String("Text");

13

Memory Allocation

• Variable assignment:

–Primitive type

• int myInt;

• myInt = 5;

–Object type

• String myString;

• myString = new String("Text");

• Instead of showing the address,

we will use an arrow

14

Bank Account

• Primitive types are stored in Stack

15

Bank Account

• Objects are stored in Heap

• Their reference is stored in Stack

16

Bank Account

17

Member Functions

• Member functions can also be represented in memory diagrams

18

Current Account Class (Version 15)

19

Another class

• Lets add another class

–Customer object

• Name

• Account

20

Customer Class

21

Using Customer Class

• Draw the Memory Model
22

Draw the Memory Model

23

What is the output?

24

Before and After deposit

25

What is the output?

26

Before and After setCurrency

27

What is the final memory model?

28

29

30

31

Additional Classes

• We have customer and account, lets have a bank then.

• A bank has a name and customers.

• Bank Class – Class Instances:

• Only one name but multiple customers.

–name (String)

–customers (array)

• How many customers?

–Need to know in advance, why?

32

Bank Class – Class Instances

• Lets say a bank can have at most 3 customers.

• Create an array of size 3

• But you don’t have to use all 3 customers.

–It can be less.

–Therefore keep the number of customers value in a variable.

33

Bank Class - Constructor

• Initially banks have no customers.

• What should be the constructor arguments?

34

Bank Class – Adding Customers

• An addCustomer method to add customers.

• This method takes one customer as an argument.

• It updates the array and the numCustomers value.

35

Bank Class – Other Functions

36

Bank Application

• Assume that we have an application which takes customer

information in runtime from users.

• We need to use Scanner in order to read the input from the

console.

37

Standard Streams

38

Bank Application

• For each customer, what kind of information do we need?

• Name

• Account

–Balance

–Currency

–Number?

• The system can assign the next available account number to the account.

• Need to keep a counter for account number.

39

Bank Application

40

Memory Model?

• What will be the memory model after user enters

–‘‘Ali’’ for customer name

–‘‘TL’’ for account’s currency

–100 for initial balance

• How many objects are we going to create?

41

Memory Model

• The path is from inside out.

• User entered

– "TL" for account’s currency

– 100 for initial balance

• Return its reference to

• Customer constructor.

42

Memory Model

• Save customer’s

address at bank’s

customer array

43

Memory Model

44

Memory Model

45

Arrays

• Arrays are fixed length.

• We need a data structure that can be resized.

–ArrayList

• ArrayList

–Dynamic in size

–See ArrayList slides ...

46

Bank Class

• with ArrayList

• We don’t need

numCustomers

anymore.

47

Any Questions?

48

