
CS105

Introduction to Object-Oriented

Programming

Prof. Dr. Nizamettin AYDIN

naydin@itu.edu.tr

nizamettin.aydin@ozyegin.edu.tr

1

Access Modifiers

2

Outline

• Bank Account – version 8

• Constructors

• Class instances

• Access Specification

• Controlling Access to Entries

• Access Modifiers

• Bank Account – version 9

• Accessing Class Instances

• Getters
–Getter Function

• Setters
–Setter Functions

• toString method

• Code Repetition

• Private Function

3

Bank Account – version 8

public class AccountTest {

public static void main(String[] args) {

Account account1 = new Account(1, 100, "TL");

Account account2 = new Account(2, 200, "USD");

account1.deposit(300);

account2.deposit(-300);

account1.report();

account2.report();

}

}

4

Definition of deposit

• Deposit

• dɪˈpɒzɪt/

–https://www.merriam-webster.com/dictionary/deposit

–https://dictionary.cambridge.org/tr/s%C3%B6zl%C3%BCk/ingilizce/deposit

–A sum of money placed in a bank account.

–A payment made in advance, such as a security deposit for

renting a property.

–A layer of sediment that settles at the bottom of a liquid.

• We should not allow depositing negative amount of money.

• How?

5

https://www.merriam-webster.com/dictionary/deposit
https://dictionary.cambridge.org/tr/s%C3%B6zl%C3%BCk/ingilizce/deposit

deposit function

public void deposit(double d) {
if (d > 0)

balance = balance + d;
else

System.out.println("The amount should be positive!");

}

public class AccountTest {
public static void main(String[] args) {

Account account1 = new Account(1, 100, "TL");

Account account2 = new Account(2, 200, "USD");

account1.deposit(300);

account2.deposit(-300);

account1.report();

account2.report();

}

}

6

Bank Account

• Can you think of any other controls that we should have?

• A bank account should get a number during

initialization.

• A bank account should not have negative initial balance.

7

Constructors

• Assume that we don’t have the interest rate

• We have the following constructors:

public Account() {

}
public Account(int n, double b, String c){

number = n;
balance = b;
currency = c;

}
public Account(int n, String c){

number = n;
balance = 0;
currency = c;

}
public Account(int n){

number = n;
balance = 0;
currency = "TL";

}

8

Constructors

• A bank account should get a number during
initialization.

public Account() {

}
public Account(int n, double b, String c){

number = n;
balance = b;
currency = c;

}
public Account(int n, String c){

number = n;
balance = 0;
currency = c;

}
public Account(int n){

number = n;
balance = 0;
currency = "TL";

}

9

Constructors

• A bank account should get a number during

initialization.

• Remove the following constructor.

public Account() {

}

10

Constructors

• A bank account should get a number during

initialization.

public Account(int n, double b, String c){

number = n;

balance = b;

currency = c;

}

public Account(int n, String c){

number = n;

balance = 0;

currency = c;

}

public Account(int n){

number = n;

balance = 0;

currency = "TL";

}

11

Constructors

• A bank account should not have negative initial balance.

public Account(int n, double b, String c){

number = n;

balance = b;

currency = c;

}

public Account(int n, String c){

number = n;

balance = 0;

currency = c;

}

public Account(int n){

number = n;

balance = 0;

currency = "TL";

}

12

Negative Initial Balance

public class AccountTest {

public static void main(String[] args) {

Account account1 = new Account(1, 100, "TL");

Account account2 = new Account(2, 200, "USD");

Account account3 = new Account(3, -200, "USD");

account1.deposit(300);

account2.deposit(-300);

account1.report();

account2.report();

account3.report();

}

}

13

Constructors

• A bank account should not have negative initial balance.

• We should have check the initial balance.

public Account(int n, double b, String c){

number = n;

balance = b;

currency = c;

}

• If it is negative, the balance should be 0.
public Account(int n, double b, String c){

number = n;

if (b > 0)

balance = b;

else

balance =0;

currency = c;

}

14

What is the output?

public class AccountTest {

public static void main(String[] args) {

Account account1 = new Account(1, 100, "TL");

Account account2 = new Account(2, 200, "USD");

Account account3 = new Account(3, -200, "USD");

account1.deposit(300);

account2.deposit(-300);

account1.report();

account2.report();

account3.report();

}

}

15

So, are we done?

•With changing the constructor and the

deposit function, are we sure that balance

will not be a negative amount?

16

What is the output?

public class AccountTest {

public static void main(String[] args) {

Account account1 = new Account(1, 100, "TL");

Account account2 = new Account(2, 200, "USD");

Account account3 = new Account(3, -200, "USD");

account1.deposit(300);

account2.deposit(-300);

account1.balance = -500;

account2.balance = -1000;

account3.balance = -5000;

account1.report();

account2.report();

account3.report();

}

}

17

Class instances

• The class instances need to be protected.

• We need to keep the control of how these instances are

accessed.

• How?

–Through using access modifiers.

• Access modifiers

–are used to set access levels for classes, variables, and other

entries.

18

Access Specification

public class Account {

int number;

double balance;

String currency;

}

• Access modifier:

• For the top-level classes, it can be either

– public :

• visible to the earth

or

– default (no keyword) :

• visible only within the same package

19

Access Specification

public class Account {

int number;

double balance;

String currency;

}

• These variables do not have any particular access

modifier;

–therefore, they are visible and accessible from only within the

same package (package-private).

20

Access Specification

• Let’s try to use them from outside the package

21

Access Specification

package xmpl;

public class Account {

int number;

double balance;

String currency;

}

package xmpl1;

import xmpl.Account;

public class AccountTest {

public static void main(String[] args) {

Account account1 = new Account();

account1.number = 1;

account1.balance = 100;

account1.currency = "TL";

}

}

22

Access Specification

package xmpl;

public class Account {

public int number;

public double balance;

public String currency;

}

package xmpl1;

import xmpl.Account;

public class AccountTest {

public static void main(String[] args) {

Account account1 = new Account();

account1.number = 1;

account1.balance = 100;

account1.currency = "TL";

}

}

23

number, balance and

currency are visible in

everywhere!

No access

related errors!

Important!!!

• However, making everything public is not the solution.

–When something is public, it can be accessed and also can be

modified from everywhere!

• It is also not a good idea to leave it package-private.

–In default case (without any access modifier) that information can

be accessed and modified everywhere within the package.

• These are not optimum solutions.

• You should encapsulate that information and limit its

access and make sure that it can be modified only within

your control.

24

Controlling Access to Entries

• Each entry (class, class instance, member function) in a

Java class is marked with one of the following keywords to

control which classes have access to that entry:

– public:

• the entry is accessible from everywhere

– private:

• the entry is accessible only within the class, invisible everywhere outside

the class

– no keyword (default):

• entry is accessible to classes inside the same package, invisible to all the

others.

• package private.

– protected:

• entry is accessible to the class itself, other classes inside the same

package and all subclasses.

25

Access Modifiers

• Which one is the most restrictive one?

–public

–private

–no keyword (default)

–protected

• Which one is the least restrictive one?

–public

–private

–no keyword (default)

–protected

• Rank them in increasing order of restrictiveness?

–public

–private

–no keyword (default)

–protected

26

• Answer:
–public, protected, default, private

– protected entities can be accessed
by sub-classes in other packages

Access Modifiers: Access levels

• private: the class itself

• default: private + classes inside the same package

• protected: default + all sub-classes

• public: all classes

• the access to members permitted by each modifier:

Source: http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

27

Important!!!

• However, making everything public is not the solution.

–When something is public, it can be accessed and also can be

modified from everywhere!

• It is also not a good idea to leave it package-private.

–In default case (without any access modifier) that information can

be accessed and modified everywhere within the package.

• These are not optimum solutions.

• You should encapsulate that information and limit its

access and make sure that it can be modified only within

your control.

28

For most of the cases

• Class instances should be private

–Only the class itself can access these variables

–They are visible only inside the class definition

• Only member functions of the class can access them

–They are invisible outside the class

–Therefore, the control is on the class itself only.

• There may be times for exceptions.

–Example: during inheritance

• Class methods should be public or private

– public if they will be used publicly

– private if they are useful for another class function but not to be

used by other classes directly

• There can be exceptions to these.

29

Bank Account – version 9

• Class instances

public class Account {

private int number;

private double balance;

private String currency;

}

• Member functions were public already

30

public class AccountTest {

public static void main(String[] args) {

Account account1 = new Account(1, 100, "TL");

Account account2 = new Account(2, 200, "USD");

Account account3 = new Account(3, -200, "USD");

account1.deposit(300);

account2.deposit(-300);

account1.balance = -500;

account2.balance = -1000;

account3.balance = -5000;

account1.report();

account2.report();

account3.report();

}

}

No read/write access

31

Accessing Class Instances

• Since class instances are private, we won’t have direct

access to those instances

–no read or write access

• How can we access them?

–by using getters and setters

• get and set methods allow customized access to class

instances

– getter for read access

• returns the class instance without modifying

– setter for write access

• modifies the class instance

• mostly assigns the function argument’s value to the class instance

32

Getters

• getter for read access

–returns the class instance without modifying

• An example getter function:

public int getNumber() {

return number;

}

• What other getter functions do we need?

33

Getter Function

public class Account {

private int number;

private double balance;

private String currency;

}

public int getNumber() {

return number;

}

public int getBalance() {

return balance;

}

public int getCurrency() {

return currency;

}

34

Setters

• Using private for class instances gives more control to the

class.

–The class can enforce legal value assignments through setters.

• setter for write access

–modifies the class instance

–mostly assigns the function argument’s value to the class

instance

• An example setter function:

public void setCurrency(String c) {

currency = c;

}

35

Setter Functions

• Do we need other setter functions?

• account number

–Initialized when an account is created

–Cannot be changed afterwards

• account balance

–We don’t use a set function but instead

• Deposit:

–to put money in a bank account

• Withdraw:

–to remove money from a bank account

36

deposit and withdraw functions

• We already have the deposit function

public void deposit(double d) {

if (d > 0) {

balance = balance + d;

System.out.println(d + " " + currency

+ " have been deposited");

System.out.println("The balance is"

+ balance + " " + currency);

}

else

System.out.println("The amount should be

"positive!");

}

• Can you write down the withdraw function?

37

deposit and withdraw functions

• Can you write down the withdraw function?

• Do not let withdraw if

–withdraw amount is negative

–withdraw amount is larger than the balance

• Otherwise

–withdraw the money and update the balance

38

deposit and withdraw functions

public void withdraw(double d) {

if (d > 0) {

if (balance < d) {

System.out.println("Account does not have "

+ d + " " + currency);

}

else {

balance = balance - d;

System.out.println(d + " " + currency

+ " have been withdrawn");

System.out.println("The balance is "

+ balance + " " + currency);

}

}

else

System.out.println("The amount should be

positive!");

}

39

deposit and withdraw functions

public class AccountTest {

public static void main(String[] args) {

Account account1 = new Account(1, 100, "TL");

Account account2 = new Account(2, 200, "USD");

Account account3 = new Account(3, -200, "USD");

account1.deposit(300);

account2.deposit(-300);

account1.withdraw(300);

account2.withdraw(600);

account1.report();

account2.report();

account3.report();

}

}

40

setCurrency function

• Let's review setCurrency function

public void setCurrency(String c) {

currency = c;

}

• 1 USD = 32.88 TL

• How should we modify the above function?

• Will this work?

public void setCurrency(String c) {

currency = c;

if (currency.equals("TL") && c.equals("USD")) {

balance = balance / 32.88;

}

if (currency.equals("USD") && c.equals ("TL")){

balance = balance * 32.88;

}

}
41

setCurrency function

public void setCurrency(String c) {

if (currency.equals("TL") && c.equals("USD")) {

balance = balance / 32.88;

}

if (currency.equals("USD") && c.equals ("TL")){

balance = balance * 32.88;

}

currency = c;

}

42

public class AccountTest {

public static void main(String[] args) {

Account account1 = new Account(1, 100, "TL");

Account account2 = new Account(2, 200, "USD");

Account account3 = new Account(3, -200, "USD");

account1.deposit(300);

account2.deposit(-300);

account3.deposit(500);

account1.withdraw(300);

account2.withdraw(600);

account3.setCurrency("TL");

account1.setCurrency("USD");

account1.report();

account2.report();

account3.report();

}

}

What is the output?

43

Unknown currency?

• What happens in the following case?

account3.setCurrency("TL");

account1.setCurrency("USD");

account2.setCurrency("AKCE");

public void setCurrency(String c) {

if (currency.equals("TL") && c.equals("USD")) {

balance = balance / 32.88;

}

if (currency.equals("USD") && c.equals ("TL")){

balance = balance * 32.88;

}

currency = c;

}

44

Unknown currency?

• How can we fix this setCurrency function?
public void setCurrency(String c) {

if (currency.equals("TL") && c.equals("USD")) {
balance = balance / 32.88;

}
if (currency.equals("USD") && c.equals ("TL")){

balance = balance * 32.88;
}
currency = c;

}

public void setCurrency(String c) {
if (currency.equals("TL") && c.equals("USD")) {

balance = balance / 32.88;
}
if (currency.equals("USD") && c.equals ("TL")){

balance = balance * 32.88;
}
if (currency.equals("TL") || c.equals("USD")) {

currency = c;
}

}

45

Unknown currency?

• The same thing can happen in constructor as well.
//Constructors

public Account(int n, double b, String c){

number = n;

if (b > 0)

balance = b;

else

balance = 0;

currency = c;

}

public Account(int n, String c){

number = n;

balance = 0;

currency = c;

}

public Account(int n){

number = n;

balance = 0;

currency = "TL";

}

• In default we should set it to "TL"

46

//Constructors

public Account(int n, double b, String c){

number = n;

if (b > 0)

balance = b;

else

balance = 0;

currency = c;

}

public Account(int n, String c){

number = n;

balance = 0;

currency = c;

}

Fixing Constructors

47

//Constructors

public Account(int n, double b, String c){

number = n;

if (b > 0)

balance = b;

else

balance = 0;

if (c.equals("USD"))

currency = c;

else

currency = ("TL");

}

public Account(int n, String c){

number = n;

balance = 0;

if (c.equals("USD"))

currency = c;

else

currency = ("TL");

}

Code Repetition

//Constructors

public Account(int n, double b, String c){

number = n;

if (b > 0)

balance = b;

else

balance = 0;

if (c.equals("USD"))

currency = c;

else

currency = ("TL");

}

public Account(int n, String c){

number = n;

balance = 0;

if (c.equals("USD"))

currency = c;

else

currency = ("TL");

}

48

How can we write a

function for this check?

private void checksetCurrency(String c) {
if (c.equals("USD"))

currency = c;
else

currency = "TL";
}

//Constructors
public Account(int n, double b, String c){

number = n;
if (b > 0)

balance = b;
else

balance = 0;

checksetCurrency(c);
}
public Account(int n, String c){

number = n;
balance = 0;

checksetCurrency(c);
}

Private Function

49

private void checksetCurrency(String c) {

if (c.equals("USD"))

currency = c;

else

currency = "TL";

}

public class AccountTest {

public static void main(String[] args) {

Account account1 = new Account(1, 100, "TL");

Account account2 = new Account(2, 200, "USD");

Account account3 = new Account(3, -200, "USD");

account1.deposit(300);

account2.deposit(-300);

account3.deposit(500);

account2.checksetCurrency("TL");

account1.report();

account2.report();

}

}

Private Function

50

Private Function

• Functions that are helper functions to other member

functions should be kept private.

–Private function can be accessed from within the class.

–Private function can not be accessed from outside the class.

• Get and Set Functions

– Setter methods usually begins with ‘set’ prefix.

• setCurrency

– Getter methods usually begins with ‘get’ prefix.

• getCurrency

• But there is an exception for Boolean values

–For Boolean values the prefix ‘is’ usually used.

51

Boolean Get Functions (Version 10)

• Assume that some accounts can be active while some of them
are not.

–They can be on hold.

• Keep active information within a Boolean

private int number;
private double balance;
private String currency;
private boolean active;

//Constructors

public Account(int n, double b, String c){

number = n;

if (b > 0)

balance = b;

else

balance = 0;

checksetCurrency(c);

active = true;

}

52

public int getNumber() {

return number;

}

public double getBalance() {

return balance;

}

public String getCurrency() {

return currency;

}

public boolean isActive() {

return active;

}

Get Functions (Version 10)

53

• For set functions you can still use ‘set’ prefix

– setActive

public void setActive(boolean a) {

active = a;

}

public static void main(String[] args) {

Account account1 = new Account(1, 100, "TL");

Account account2 = new Account(2, 200, "USD");

account1.setActive(false);

System.out.println(account1.isActive());

System.out.println(account2.isActive());

}

Set Functions

54

• get methods for accessing class instances one by one

public static void main(String[] args) {

Account account1 = new Account(1, 100, "TL");

System.out.println(account1.getNumber());

System.out.println(account1.getBalance());

System.out.println(account1.getCurrency());

}

Ways of printing out the object - 1

55

Ways of printing out the object - 2

• report method for printing report of the account
public void report() {

System.out.println("Account " + number

+ " has " + balance + " " + currency + ".");

}

public static void main(String[] args) {

Account account1 = new Account(1, 100, "TL");

account1.report();

}

56

Ways of printing out the object

• Similar to other primitive types, can we just use the object

inside System.out.println() function?

public static void main(String[] args) {

int i = 1000;

System.out.println(i);

Account account1 = new Account(1, 100, "TL");

System.out.println(account1);

}

• What do you think the output will look like?

57

Ways of printing out the object

• Similar to other primitive types, can we just use the object

inside System.out.println() function?

public static void main(String[] args) {

int i = 1000;

System.out.println(i);

Account account1 = new Account(1, 100, "TL");

System.out.println(account1);

}

• In order to get something meaningful, we need to override

toString method of the class.

58

toString method

• toString method tells Java how to display an object of the

class.

• It returns a String representation of the object.

public String toString() {

return "Account " + number + ": " +

balance + " " + currency;

}

59

toString method

public String toString() {

return "Account " + number + ": " + balance + " " + currency;

}

public static void main(String[] args) {

int i = 1000;

System.out.println(i);

Account account1 = new Account(1, 100, "TL");

System.out.println(account1);

}

60

Any Questions?

61

