
CS105

Introduction to Object-Oriented

Programming

Prof. Dr. Nizamettin AYDIN

naydin@itu.edu.tr

nizamettin.aydin@ozyegin.edu.tr

1

Constructors

And

Method Overloading

2

Outline

• Bank Account – version 3

• Constructors

• Calling constructors

• No constructors

• Bank Account – version 4

• Multiple Constructors

• Bank Account – version 5

• Bank Account – version 6

• Overloading Functions

• Bank Account – version 7

3

Bank Account – version 3

public class AccountTest {

public static void main(String[] args) {

Account account1 = new Account();

account1.number = 1;

account1.balance = 100;

account1.currency = "TL";

Account account2 = new Account();

account2.number = 2;

account2.balance = 200;

account2.currency = "USD";

account1.report();

account2.report();

// Deposit 50 TL into account 1

account1.deposit(50);

// Deposit 300 USD into account 2

account2.deposit(300);

account1.report();

account2.report();

}

}

4

Constructors

• block of codes which are automatically called when we
create objects (when an instance of the class is created).

–a special type of method which is used to initialize the object.

• Every time an object is created using the new() keyword, at least one
constructor is called.

// Constructor
public Account(int n, double b, String c){

number = n;
balance = b;
currency = c;

}

• It looks like other methods, but...

–It has the same name with the class

–It does not have a return type,

• but it actually returns the reference to (address of) the constructed object

5

Calling constructors

Account account1 = new Account();

account1.number = 1;

account1.balance = 100;

account1.currency = "TL";

Account account1 = new Account();

// Constructor

public Account(int n, double b, String c){

number = n;

balance = b;

currency = c;

}

6

No constructors

Account account1 = new Account();

account1.number = 1;

account1.balance = 100;

account1.currency = "TL";

• We did not have any constructors before.

• How did we create objects without the constructor?

–If there is no explicit constructor, then the default constructor is

used.

–Default constructors do not take any parameters.

7

Bank Account – version 4

public class Account {
int number;
double balance;
String currency;

// Constructor
public Account(int n, double b, String c){

number = n;
balance = b;
currency = c;

}

public void deposit(double d) {
balance = balance + d;

}
public void report() {

System.out.println("Account " + number

+ " has " + balance

+ " " + currency + ".");
}

}

8

Bank Account – version 4

public class AccountTest {

public static void main(String[] args) {

Account account1 = new Account(1, 100, "TL");

Account account2 = new Account(2, 200, "USD");

account1.report();

account2.report();

// Deposit 50 TL into account 1

account1.deposit(50);

// Deposit 300 USD into account 2

account2.deposit(300);

account1.report();

account2.report();

}

}

9

Why do we get the following error?

public class AccountTest {

public static void main(String[] args) {

Account account1 = new Account(1, 100, "TL");

Account account2 = new Account();

account2.number = 2;

account2.balance = 200;

account2.currency = "USD";

account1.report();

account2.report();

// Deposit 50 TL into account 1

account1.deposit(50);

// Deposit 300 USD into account 2

account2.deposit(300);

account1.report();

account2.report();

}

}

10

When a constructor

(with parameters) is

implemented, then the

system does not

provide a default

(without parameters)

constructor.

Default Constructor

• When a constructor (with parameters) is implemented,

then the system does not provide a default (without

parameters) constructor.

• Can we implement our own constructor without

parameters?

• Yes, we can…

–A class can have multiple constructors.

• This is possible by overloading constructors.

• Method overloading gives us the capability to implement

a particular function in different ways.

• Overloaded functions will have the same name but

different function arguments.

11

Multiple Constructors

// Constructors
public Account() {

}
public Account(int n, double b, String c){

number = n;
balance = b;
currency = c;

}

public class AccountTest {

public static void main(String[] args) {

Account account1 = new Account(1, 100, "TL");

Account account2 = new Account();

account2.number = 2;

account2.balance = 200;

account2.currency = "USD";

12

Multiple Constructors

• Can we have more than two overloaded constructors?

• Yes we can…

// Constructors
public Account() {

}
public Account(int n, double b, String c){

number = n;
balance = b;
currency = c;

}
public Account(int n, String c){

number = n;
balance = 0;
currency = c;

}
public Account(int n){

number = n;
balance = 0;
currency = "TL";

}
13

All these constructors do the

same thing which is creating an

object, but what they assign to

the class instances are different.

Bank Account – version 5

public class AccountTest {

public static void main(String[] args) {

Account account1 = new Account(1, 100, "TL");

Account account2 = new Account();

account2.number = 2;

account2.balance = 200;

account2.currency = "USD";

Account account3 = new Account(3);

Account account4 = new Account(4, "EURO");

account1.report();

account2.report();

account3.report();

account4.report();

}

}

14

Lets add more to our account!

• interest rate (double)

int number;

double balance;

String currency;

double interestRate;

15

Modify the constructors

// Constructors
public Account() {

}
public Account(int n, double b, String c, double i){

number = n;
balance = b;
currency = c;
interestRate = i;

}
public Account(int n, String c){

number = n;
balance = 0;
currency = c;
interestRate = 0;

}
public Account(int n){

number = n;
balance = 0;
currency = "TL";
interestRate = 0;

}

16

Add more constructors

public Account (int n, double b, String c){

number = n;

balance = b;

currency = c;

interestRate = 0;

}

Account account5 = new Account(5, 200, "TL");

public Account (int n, double i, String c){

number = n;

balance = 0;

currency = c;

interestRate = i;

}

Account account6 = new Account(6, 0.02, "TL");

• Do you see any problem?
17

Add more constructors

• You can have multiple constructors as long as they have

different argument lists.
public Account (int n, double b, String c){

number = n;

balance = b;

currency = c;

interestRate = 0;

}

public Account (int n, double i, String c){

number = n;

balance = 0;

currency = c;

interestRate = i;

}

• System differentiates constructors based on their argument

lists, therefore two constructors with same argument list

cause compiler error.

–Duplicate method error!
18

Any idea to fix this?

Multiple Constructors

public Account (int n, double b, String c){

number = n;

balance = b;

currency = c;

interestRate = 0;

}

public Account (int n, String c, double i){

number = n;

balance = 0;

currency = c;

interestRate = i;

}

• Same type of arguments, but their order is different!

19

Bank Account – version 6

• Be careful when calling these functions!

Account account1 = new Account(1, 100, "TL");

Account account2 = new Account();

Account account3 = new Account(3);

Account account4 = new Account(4, "EURO");

Account account5 = new Account(5, 200, "TL");

Account account6 = new Account(5, "TL", 0.02);

20

Bank Account – version 6

21

public Account() {

}

public Account(int n, double b, String c, double i){

number = n;

balance = b;
currency = c;

interestRate = i;

}

public Account(int n, String c){

number = n;

balance = 0;
currency = c;

interestRate = 0;

}

public Account(int n){

number = n;

balance = 0;
currency = "TL";

interestRate = 0;

}

public Account(int n, double b, String c){

number = n;

balance = b;
currency = c;

interestRate = 0;

}

public Account(int n, String c, double i){

number = n;

balance = 0;
currency = c;

interestRate = i;

}

Account account1 = new Account(1, 100, "TL");

Account account2 = new Account();

Account account3 = new Account(3);

Account account4 = new Account(4, "EURO");

Account account5 = new Account(5, 200, "TL");

Account account6 = new Account(5, "TL", 0.02);

Overloading Functions

• We have overloaded the constructor.

• Can we overload other methods as well?

• Yes, we can…

•

• Overloading deposit function

public void deposit(double d) {

balance = balance + d;

}

public void deposit() {

balance = balance + 0;

}

22

Bank Account – version 7

public void deposit(double d) {
balance = balance + d;

}

public void deposit() {
balance = balance + 0;

}

public static void main(String[] args) {

Account account1 = new Account(1, 100, "TL");

Account account2 = new Account(2);

account2.deposit(100);

account1.deposit();

account1.report();

account2.report();

}

23

Overloading deposit method

• In addition to our two deposit methods, can we have the

following method as well?

public double deposit(double m) {

balance = balance + m;

return balance;

}

24

Overloading deposit method

public double deposit(double d) {

balance = balance + d;

}

public double deposit(double m) {

balance = balance + m;

return balance;

}

public double deposit() {

balance = balance + 0;

}

• Overloaded methods need to have different function

arguments (parameter list)

–If the arguments are same but the return type is different, we will

still get compiler error

25

www.javatpoint.com/method-overloading-in-java

• Why Method Overloading is not possible by changing the

return type of method only?

–In java, method overloading is not possible by changing the return

type of the method only because of ambiguity.

• Let's see how ambiguity may occur:

class Adder{

static int add(int a,int b){return a+b;}

static double add(int a,int b){return a+b;}

}

class TestOverloading3{

public static void main(String[] args){

System.out.println(Adder.add(11,11));//ambiguity

}}

• Output

26

www.javatpoint.com/method-overloading-in-java

• Method Overloading and Type Promotion:

–One type is promoted to another implicitly if no matching datatype is found.

• As displayed in the diagram, byte can be
promoted to short, int, long, float or double.

• The short datatype can be promoted to int,
long, float or double.

• The char datatype can be promoted
to int, long, float or double and so on.

Example of Method Overloading with TypePromotion:

class OverloadingCalculation1{

void sum(int a,long b){System.out.println(a+b);}

void sum(int a,int b,int c){System.out.println(a+b+c);}

public static voidmain(String args[]){

OverloadingCalculation1 obj=new OverloadingCalculation1();

obj.sum(20,20); //now second int literal will be promoted to long

obj.sum(20,20,20);

}

}
27

www.javatpoint.com/method-overloading-in-java

• Example of Method Overloading with Type Promotion if

matching found:

–If there are matching type arguments in the method, type

promotion is not performed.

class OverloadingCalculation2{

void sum(int a,int b){System.out.println("int arg method invoked");}

void sum(long a,long b){System.out.println("long arg method invoked");}

public static voidmain(String args[]){

OverloadingCalculation2 obj=new OverloadingCalculation2();

obj.sum(20,20);//now int arg sum() method gets invoked

}

}

• Output:

28

www.javatpoint.com/method-overloading-in-java

• Example of Method Overloading with Type Promotion in

case of ambiguity:

–If there are no matching type arguments in the method, and each

method promotes similar number of arguments, there will be

ambiguity.

class OverloadingCalculation3{

void sum(int a,long b){System.out.println("a method invoked");}

void sum(long a,int b){System.out.println("b method invoked");}

public static voidmain(String args[]){

OverloadingCalculation3 obj=new OverloadingCalculation3();

obj.sum(20,20);//now ambiguity

}

}

• Output:
29

Any Questions?

30

