
CS105 

Introduction to Object-Oriented 

Programming

Prof. Dr. Nizamettin AYDIN

naydin@itu.edu.tr

nizamettin.aydin@ozyegin.edu.tr

1



Method

2



Outline

• Algorithms

• Removing redundancy

• Methods

• Using methods

• Design of an algorithm

• Declaring a method

• Calling a method

• Program with a method

• Methods calling methods

• Control flow

• When to use method

3



ALGORITHMS

• Algorithm: 

–A list of steps for solving a problem.

• Example algorithm: "Bake sugar cookies"

– Mix the dry ingredients.

– Cream the butter and sugar.

– Beat in the eggs.

– Stir in the dry ingredients.

– Set the oven temperature.

– Set the timer.

– Place the cookies into the oven.

– Allow the cookies to bake.

– Spread frosting and sprinkles onto the cookies.

– ...

4



PROBLEMS WITH ALGORITHMS

• lack of structure: 
–Many tiny steps; tough to remember.

• redundancy: 
–Consider making a double batch...

• Mix the dry ingredients.

• Cream the butter and sugar.

• Beat in the eggs.

• Stir in the dry ingredients.

• Set the oven temperature.

• Set the timer.

• Place the first batch of cookies into the oven.

• Allow the cookies to bake.

• Set the timer.

• Place the second batch of cookies into the oven.

• Allow the cookies to bake.

• Mix ingredients for frosting.

• ...

5



STRUCTURED ALGORITHMS

• structured algorithm: Split into coherent tasks.

1. Make the cookie batter.

• Mix the dry ingredients.

• Cream the butter and sugar.

• Beat in the eggs.

• Stir in the dry ingredients.

2. Bake the cookies.

• Set the oven temperature.

• Set the timer.

• Place the cookies into the oven.

• Allow the cookies to bake.

3. Decorate the cookies.

• Mix the ingredients for the frosting.

• Spread frosting and sprinkles onto the cookies.

6



REMOVING REDUNDANCY

• A well-structured algorithm can describe repeated tasks 

with less redundancy.

1. Make the cookie batter.

• Mix the dry ingredients.

• ...

2. A. Bake the cookies (first batch).

• Set the oven temperature.

• Set the timer.

• ...

B. Bake the cookies (second batch).

3. Decorate the cookies.

• ...

7



A PROGRAM WITH REDUNDANCY

public class BakeCookies {

public static void main(String[] args) {

System.out.println("Mix the dry ingredients.");

System.out.println("Cream the butter and sugar.");

System.out.println("Beat in the eggs.");

System.out.println("Stir in the dry ingredients.");

System.out.println("Set the oven temperature.");

System.out.println("Set the timer.");

System.out.println("Place a batch of cookies into the oven.");

System.out.println("Allow the cookies to bake.");

System.out.println("Set the oven temperature.");

System.out.println("Set the timer.");

System.out.println("Place a batch of cookies into the oven.");

System.out.println("Allow the cookies to bake.");

System.out.println("Mix ingredients for frosting.");

System.out.println("Spread frosting and sprinkles.");

}

}

8



METHODS

• Methods have their origins in the mathematical concept of 

a function.

• A method is a function that belongs to a class. 

–A method performs some useful behaviour made up using code. 

–A method can have any number of inputs, and either one or zero 

output. 

–A method with zero outputs is called 

a void method.

A black box model with input(s) and an output A maths function of the form y = f(x) 

9



METHODS

• method: 

–A named group of statements.

• denotes the structure of a program

• eliminates redundancy by code reuse

• procedural decomposition:

– dividing a problem into methods

• Writing a method is like

– adding a new command to Java.

10



METHODS

• The maths way is helpful 

–helps us understand the origins of the syntax for calling methods. 

• The black box model is helpful 

–reminds us of the procedural programming paradigm, 

–process inside the method is encapsulated within that method.

• All methods in Java must belong to a class

–they cannot exist in isolation. 

–can be defined anywhere inside their host class. 

• A method definition takes the general form:
<access-modifier> <return-type> method-name(<formal-parameters>)

{

// Body of method

<return-statement-if-not-void>

}

11



METHODS

• <Access-modifier>:

– public or private depending on whether the method is intended to be invokable by other classes, or only 

by methods inside the class in which it was defined. 

– Other access modifiers also exist. 

– If not specified, the access modifier is assumed to be public.

• <return-type>: 

– the Java type of any output generated by this method. 

– If the method does not produce any returned output, the return type is void. 

– A return type must always be specified.

• The method-name:

– any valid name, by convention starting with a lower-case letter.

• The <formal-parameters>:

– a list of zero or more parameters that the method will take as inputs to do the job that is designed to 

perform. 

– If there are no inputs, the set of empty round brackets must still be included to denote that this is a 

method definition.

• return statement: 

– if the method produces a value to be returned, i.e. it is not void, then the return statement is used to 

signify the value that is returned. 

– Executing a return statement at any point during a method invocation causes the method to finish.

12



METHODS

• An example method definition that takes two formal 

parameters and produces an output:
public int addTwoNumbers(int a, int b)

{

int c;

c = a + b;

return c;

}

• To use this method, we would use some calling code 

(within another method) like this:
int d;

d = addTwoNumbers(3,4);

System.out.println(d);

• In this example, we invoke the method addTwoNumbers() 

with two actual parameters, 3 and 4 in this case.

13



METHODS

• another example of a method that takes two parameters, 

determines which is larger and displays an appropriate 

message on the console:
public void showLarger(int a, int b){

if (a > b){

System.out.println("a is larger");

}

else if (b > a){

System.out.println("b is larger");

}

else {

System.out.println("a is equal to b");

}

}

• Note that as this method is void, there is no return keyword

14



USING METHODS

1. Design the algorithm.

– Look at the structure, and which commands are repeated.

– Decide what are the important overall tasks.

2. Declare (write down) the methods.

– Arrange statements into groups and give each group a name.

3. Call (run) the methods.

–The program's main method executes the other methods to 

perform the overall task.

15



DESIGN OF AN ALGORITHM…

// This program displays a delicious recipe for baking cookies.

public class BakeCookies2 {

public static void main(String[] args) {

// Step 1: Make the cake batter.

System.out.println("Mix the dry ingredients.");

System.out.println("Cream the butter and sugar.");

System.out.println("Beat in the eggs.");

System.out.println("Stir in the dry ingredients.");

// Step 2a: Bake cookies (first batch).

System.out.println("Set the oven temperature.");

System.out.println("Set the timer.");

System.out.println("Place a batch of cookies into the oven.");

System.out.println("Allow the cookies to bake.");

16



…DESIGN OF AN ALGORITHM

// Step 2b: Bake cookies (second batch).

System.out.println("Set the oven temperature.");

System.out.println("Set the timer.");

System.out.println("Place a batch of cookies into the oven.");

System.out.println("Allow the cookies to bake.");

// Step 3: Decorate the cookies.

System.out.println("Mix ingredients for frosting.");

System.out.println("Spread frosting and sprinkles.");

}

}

17



DECLARING A METHOD

• Gives your method a name so it can be executed

• Syntax:

public static void name() {

statement;

statement;

...

statement;

}

• Example:

public static void printWarning() {

System.out.println("This product causes cancer");

System.out.println("in lab rats and humans.");

}

18



CALLING A METHOD

• Executes the method’s code

• Syntax:

name();

–You can call the same method many times if you like.

• Example:

printWarning();

• Output:

This product causes cancer

in lab rats and humans.

19



PROGRAM WITH A METHOD

public class RapLyrics {

public static void main(String[] args) {

rap(); // Calling (running) the rap method

System.out.println();

rap(); // Calling the rap method again

}

// This method prints the lyrics to my favorite song.

public static void rap() {

System.out.println("İstisnalar kaideyi bozmaz, ");

System.out.println("Kuru yanında yaş telas yapmaz. ");

}

}

• Output:
Istisnalar kaideyi bozmaz,

Kuru yanında yas telas yapmaz.

Istisnalar kaideyi bozmaz,

Kuru yanında yas telas yapmaz.

20



FINAL COOKIE PROGRAM…

// This program displays a delicious recipe for baking 
cookies.

public class BakeCookies3 {

public static void main(String[] args) {

makeBatter();

bake(); // 1st batch

bake(); // 2nd batch

decorate();

}

// Step 1: Make the cake batter.

public static void makeBatter() {

System.out.println("Mix the dry ingredients.");

System.out.println("Cream the butter and sugar.");

System.out.println("Beat in the eggs.");

System.out.println("Stir in the dry ingredients.");

}

21



…FINAL COOKIE PROGRAM

// Step 2: Bake a batch of cookies.

public static void bake() {

System.out.println("Set the oven temperature.");

System.out.println("Set the timer.");

System.out.println("Place a batch of cookies into the 
oven.");

System.out.println("Allow the cookies to bake.");

}

// Step 3: Decorate the cookies.

public static void decorate() {

System.out.println("Mix ingredients for frosting.");

System.out.println("Spread frosting and sprinkles.");

}

}

22



FINAL COOKIE PROGRAM

// This program displays a delicious recipe for baking cookies.

public class BakeCookies3 {

public static void main(String[] args) {

makeBatter();

bake(); // 1st batch

bake(); // 2nd batch

decorate();

}

// Step 1: Make the cake batter.

public static void makeBatter() {

System.out.println("Mix the dry ingredients.");

System.out.println("Cream the butter and sugar.");

System.out.println("Beat in the eggs.");

System.out.println("Stir in the dry ingredients.");

}

// Step 2: Bake a batch of cookies.

public static void bake() {

System.out.println("Set the oven temperature.");

System.out.println("Set the timer.");

System.out.println("Place a batch of cookies into the oven.");

System.out.println("Allow the cookies to bake.");

}

// Step 3: Decorate the cookies.

public static void decorate() {

System.out.println("Mix ingredients for frosting.");

System.out.println("Spread frosting and sprinkles.");

}

}

23



METHODS CALLING METHODS

public class MethodsExample {

public static void main(String[] args) {

message1();

message2();

System.out.println("Done with main.");

}

public static void message1() {

System.out.println("This is message1.");

}

public static void message2() {

System.out.println("This is message2.");

message1();

System.out.println("Done with message2.");

}

}

• Output:
This is message1.

This is message2.

This is message1.

Done with message2.

Done with main.

24



CONTROL FLOW

• When a method is called, the program’s execution…

–“jumps” into that method, executing its statements, then

–“jumps” back to the point where the method was called.

public class MethodsExample {

public static void main(String[] args) {

message1();

message2();

System.out.println("Done with main.");

}

...

}
25

public static void message1() {

System.out.println("This is message1.");

}

public static void message2() {

System.out.println("This is message2.");

message1();

System.out.println("Done with message2.");

}

public static void message1() {

System.out.println("This is message1.");

}



WHEN TO USE METHODS

• Place statements into a method if:

– The statements are related structurally, and/or

– The statements are repeated.

• You should not create methods for:

– An individual println statement.

– Only blank lines.

• (Put blank printlns in main.)

– Unrelated or weakly related statements.

• (Consider splitting them into two smaller methods.)

26



Any Questions?

27


